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Abstract

We consider small world graphs as defined by Kleinberg (2000), i.e., graphs obtained from a
d-dimensional mesh by adding links chosen at random according to the d-harmonic distribution,
d > 1. This model aims at giving formal support to the “six degrees of separation” between
individuals experienced by Milgram (1967), and verified recently by Dodds, Muhamad, and
Watts (2003). In particular, Kleinberg shows that greedy routing performs in ©(log® n) expected
number of steps in d-dimensional augmented meshes, with O(log n) bits of topological awareness
per node, for any d > 1. We show that giving O(log® n) bits of topological awareness per node
decreases the expected number of steps of greedy routing to O(log'**/?n) in d-dimensional
augmented meshes. We also show that, independently of the amount of topological awareness
given to the nodes, greedy routing performs in Q(log!t*/?n) expected number of steps. In
particular, augmenting the topological awareness above this optimum of O(log?n) bits would
drastically decrease the performances of greedy routing. Moreover, our model demonstrates
that the efficiency of greedy routing is sensible to the “world’s dimension”, in the sense that
high dimensional worlds enjoy faster greedy routing than low dimensional ones. This could not
be observed in Kleinberg’s model.
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1 Introduction

We consider augmented graphs as defined in [12], i.e., the family of graphs H = (G, D) obtained
from a graph G by adding links chosen at random according to a probabilistic distribution D. The
graph G models an awareness common to all the social entities represented by the nodes of H. In
other words, nodes of H are aware of the topology G. In particular, any node  can compute the
distance distg(z,y) from z to any other node y in G. The links in G model acquaintances between
social entities that can be easily deduced from characteristics of the social entities (geographical
positions, hobbies, professional activities, etc.). The added links, called long-range links, model
acquaintances that cannot be deduced globally because they correspond to random events which
created acquaintances between entities that have generally little in common. If (u,v) is an edge of
G, then any node z is aware that u and v have some acquaintance. However, if (u,v) is a long-range
link non-incident to z, then z ignores that there is an acquaintance between « and v. In particular,
2 cannot compute the distance disty(z,y) from z to any other node y in H.

Milgram’s experiment [9], recently reproduced by Dodds, Muhamad, and Watts [4] (see also [1]),
reports that there are short chains of acquaintances between individuals, and that these chains can
be discovered in a greedy manner. Roughly speaking, given an arbitrary source person s (e.g., living
in Wichita, KA), and an arbitrary target person ¢ (e.g., living in Cambridge, MA), a letter can be
transmitted from s to ¢ via a chain of individuals related on a personal basis. The transmission rule
is that the letter held by an intermediate person z is passed to the next person y who, as judged by =z,
is most likely to know the target among all persons z knows on a first-basis. Milgram’s experiment
conclusion is often summarized as the “six degrees of separation” phenomenon because, for chains
that reached the target!, the number of intermediate persons between the source and the target
ranged from 2 to 10, with a median of 5.

In his seminal work [6, 7] (see also [8]), Kleinberg gives a formal support to the six degree of
separation phenomenon. He considers a d-dimensional mesh augmented with long-range links
chosen according to the d-harmonic distribution, for d > 1 (see Fig. 1). More precisely, the
underlying graph G is the d-dimensional mesh n'/? x .- x n!/%, and the augmented graph H
is obtained by adding exactly one out-going link to every node z. If there is a long-range link from
z to y, then y is called the long-range contact of z. The probability that z chooses y as long-range
contact is h(z,y) = 1/(Z, - dist(z,y)?) where dist() is the Manhattan distance in the mesh (i.c., the
distance in the L; metric), and the normalizing coefficient Z, satisfies Z, = 3, ., 1/ dist(z, z)¢. In
Kleinberg’s model, long-range links are directed, i.e., a long-range link from z to y does not imply
a long-range link from y to . This is coherent with what can be observed in the human society.
In particular, human relationships are not always symmetric. More importantly, although directed
long-range links produce nodes with high in-degree, these “hubs” remain with only an out-degree
of one. Hence the impact of hubs is kept limited in the model?,

A salient property of Kleinberg’s model is that it is a small world, i.e., a graph in which not
only the expected distance between nodes is small, but also greedy routing is able to discover short
routes between any pair of nodes.

Greedy routing is a metaphor of the way social entities proceed to search for resources or
information in the graph representing their acquaintances [1, 4, 10, 11]. These entities are given

IMany chains did not succeeded in Milgram’s experiment. Experiments by Dodds et al. [4] revealed however that
this is not due to the inability of reaching the target, but rather due to the fact that individuals do not necessarily
benefit from their connectedness: they often stop retransmission simply because they believe that there is no short
chain to the target, although such a chain does exist.

*Dodds et al. [4] observed that, in contrast with what is often believed, the presence of hubs appears to have a
Jimited relevance to social search. Thus it is desirable that a model keeps the role of hubs limited.



Figure 1: Long-range links in the 2-dimensional mesh.

very limited computational power. This restriction is motivated by the fact that social entities (e.g.,
humans) have bounded storage capability, and are usually unable to perform complex computations
involving more than a small number of objects. Typically, computing shortest paths in a graph
with more than few vertices is assumed to be a too complex task to be performed by social entities.
Greedy routing performs as follows: at the current node x, a search for a target node ¢ is forwarded
to the neighboring node y of z, including its long-range contact, which is the closest to t in the
mesh. In other words, a social entity optimizes locally the discovery of the target by choosing,
among all its acquaintances, the one that is likely to be the closest to the target. The distance to
the target is however computed using the Manhattan distance.

In a social context, professional as well as leisure occupation, citizenship, geography, ethnicity,
and religiousness are all intrinsic dimensions of the human multi-dimensional world, playing different
roles with possibly different impact degrees [5]. Each of these dimensions should be used as an
independent criterion for searching in the social graph. In this context, one would thus expect that
the more criteria used the more efficient the search should be. Surprisingly however, Kleinberg’s
model does not reflect this fact, in the sense that greedy routing has the same performances whether
the number of dimensions considered is one, two, or more. Indeed, Kleinberg has shown that greedy
routing in the n-node d-dimensional mesh augmented with long-range links chosen according to
the d-harmonic distribution performs in O(log?n) expected number of steps, i.e., independently
of d (note that this bound is tight as it was shown in [3] that greedy routing performs in at least
Q(log? n) expected number of steps, independently of d). Kleinberg has also shown that augmenting
the d dimensional mesh with the r-harmonic distribution, r # d, results in poor performances, i.e.,
2(n®) expected number of steps for some positive constant a,. Furthermore, it is shown in [2] that,
in the 1-dimensional mesh augmented according to any probabilistic distribution, greedy routing
performs in Q(log?n /loglogn) expected number of steps, and this lower bound is conjectured to
hold in higher dimensions.

In the light of the previous observations, one can conclude that the absence of the dimension
parameter from the complexity of greedy routing in augmented meshes is a problem of the greedy
routing specification, and not of the links distribution. In this paper, we propose a new greedy
routing protocol based on Kleinberg’s model. The key feature of our protocol is that its asymptotic
complexity depends on the dimension of the mesh.



Our protocol, called indirect-greedy routing, is based on additional tepological awareness given
to the nodes, meaning that every node z is aware of the existence of a list A, of long-range links
(see Fig. 2). Kleinberg’s model can actually be seen as a special case of our model in which the
awareness of every node is reduced to its own long-range contact, i.e., to O(logn) bits. At every
step of indirect-greedy routing towards a target ¢, there are two phases. In the first phase, the
current node z uses its awareness A, to select an intermediate destination y, i.e., a node y such
that its long-range contact is close to ¢. In the second phase, z applies greedy routing towards y,
and forwards the search to some node z'. In z/, the same process is applied, a new intermediate
destination 3/ is selected (thanks to z'’s awareness A,), and greedy routing is applied towards y'.
And so on. Generally, the intermediate destination remains the same at every step of indirect-
greedy routing, until the search reaches it. Once the search reaches an intermediate destination y,
it is forwarded to y’s long-rank contact, which is expected to be not too far from the target ¢. The
same actions are repeated until the search eventually reaches the target.

Figure 2: The topological awareness of node z is composed of the four plain long-range links.

Our contributions. We show that if every node is given a topological awareness of size O(log? n)
bits or, more specifically, if every node is aware of the long-range contacts of its O(logn) closest
nodes in the d-dimensional mesh, then indirect-greedy routing performs in O(log”lf 4 ) expected
number of steps. We conclude that additional topological awareness has positive impact, and that
the speed-up factor compared to Kleinberg’s greedy routing protocol is O(log1'1/ dp).

We also show that, surprisingly, the positive impact of additional topological awareness reaches
a certain limit. Indeed, indirect-greedy routing performs in Q(log”lf 4 1) expected number of steps,
independently of the topological awareness given to the nodes, that is independently of the lists Az,
and of their sizes. Above a certain limit, augmenting the topological awareness of the nodes not
only becomes useless, but also degrade the performances of indirect-greedy routing. Precisely, this
limit is ©(log? n) bits of topological awareness per node (i.e., the awareness of ©(log n) long-range
links).

These results prove that there is no trade-off between the amount of topological awareness
given to the nodes and the performances of indirect-greedy routing, and demonstrate an intrinsic
limitation of the greedy routing strategy in augmented graphs. In particular, if every entity has a
topological awareness of size n, i.e., is aware of all long-range contacts, then the entities would not



perform better than Kleinberg’s greedy routing, leading an (log?n) expected number of steps.

More importantly, our study captures the trade-off that we expected: if entities are living in a
d-dimensional world, then giving additional topological awareness of O(log? n) bits to these entities
enable indirect-greedy routing to perform in O(log'*t/%n) expected number of steps. (Again, this
is in contrast with Kleinberg’s greedy routing which performs in ©(log? n) number of steps, inde-
pendently to the world’s dimension.) In particular, our model demonstrates a significant difference
between routing using one criterion, which performs in O(log?n) expected number of steps, and
routing using two criteria, which performs in O(logS/ ?n) expected number of steps. The relative
improvement decreases when the number of dimensions increases, which is coherent with what was
observed by Killworth and Bernard [5].

To summarize, given a fixed number of acquaintances 2d + ¢ per social entities in an augmented
d-dimensional mesh, greedy routing performs in O(%log2 n) expected number of steps, whereas
indirect-greedy routing performs in O(% 10g1+1/ 4 n) expected number of steps. These results lead
to the conclusion that the variety d of our relationships has more impact on the distance between
people than the number 2d + ¢ of these relations. Our investigation is perhaps a first step towards
the formalization of arguments in favor of the sociological evidence stating that eclecticism shrinks
the world.

Organization. The paper is organized as follows. The next section precisely describes indirect-
greedy routing, including the notion of topological awareness. Then, in Section 3, we give a nec-
essary and sufficient condition for indirect-greedy routing to converge, and we compute an upper
bound on the expected number of steps of indirect-greedy routing when nodes are aware of the
long-range contacts of their O(logn) closest neighbors in the mesh. In Section 4, we compute a
tight lower bound on the expected number of steps of indirect-greedy routing, independently of the
amount of awareness given to the nodes. Finally, Section 5 contains some concluding remarks.

2 Toplogical awareness and indirect-greedy routing

Our model addresses the following question: what is the additional “topological awareness” that
could be given to nodes so that greedy routing performs in less than ©(log? n) expected number of
steps in the augmented d-dimensional mesh, at least for d > 1?7 By additional topological awareness
we do not mean adding long-range contacts to nodes. Obviously, if entities are given more than
one long-range contact, then the performances of greedy routing can be improved, however to a
limited extend only. For instance, with ¢ long-range contacts per node, Kleinberg’s greedy routing
would perform in O(% log? n) expected number of steps, which remains O(log®n) for ¢ = O(1).
We propose a model in which the log? n barrier can be overcome, with a constant number ¢ (say,
¢ = 1) of long-range contacts per social entity. This is motivated by the fact that every individual
personally knows a constant number of other individuals only, independently of the size of the

world population.

2.1 Topological awareness

Our model is based on the following observation: although every individual personally knows a
constant number of other individuals only, he or she is often aware of a large number of personal
acquaintances between individuals that he or she does not personally know. Let us take a simple
example to illustrate this observation (see Fig. 3). Consider Milgram’s experiment in which the
goal is to send a letter to Joe Wilson, who is located at Revelstoke, Alberta, Canada. In addition to



Wilson’s location, we are also given the facts that Wilson is a designer, and that he won a downhill
ski Canadian championship in the 80’. The letter is currently held by Alice, a Librarian in San
Francisco. Alice has a friend, Mary, living in Seattle, an uncle, Olson, living in Bergen where he
is training the Norwegian cross country ski team, and finally a former schoolfriend, Mark, who is
a pianist in the Vienna symphony orchestra. Based on her acquaintances, Alice may forward the
letter either to Mary or to Olson. In the former case, there is a geographical improvement. In
the latter case, there is also an improvement because a cross country ski trainer is somewhat close
(in terms of occupation) to a downhill ski champion. On the other hand, Alice would certainly
not forward the letter to Mark because Mark is geographically farther from Joe Wilson than Ann,
and Mark’s vitae has little to do with Wilson’s vitae. Now, assume that in Alice’s recent phone
conversation with Mark, she learnt that Mark moved to a new house, entirely designed by his
new girlfriend, Ann, an architect who graduated from Vancouver. Based on this “topological
awareness”, it makes sense for Alice to forward the letter to Mark, because he may then forward it
to his girlfriend Ann. Once the letter will be in Ann’s hands, the improvement will be significant
because an architect who graduated in Vancouver is reasonably close to a designer living in Alberta.
Note that there is no personal acquaintance between Alice and Ann (she hardly remembers her
name). However, Alice is aware that there is an acquaintance between Mark and somebody from
Vancouver. This acquaintance is a long-range link because an acquaintance between a member of
the Vienna symphony orchestra and a Canadian architect can be hardly guessed. The fact that
Alice is aware of Mark’s long-range contact significantly improves the search for Joe Wilson. This
phenomenon cannot be captured by Kleinberg’s model because, in his model, a social entity is not
aware of any long-range links not incident to it.

Geography Occupation
[ ]

Figure 3: Searching for Joe Wilson.

In this paper, we define a model that captures the “indirect” routing strategy based on Alice’s
awareness of the social characteristics of Mark’s long-range contact. In this model, we assume that,
in addition to the underlying graph @, and to its long-range contact in the augmented graph H,
every social entity is aware of some list of acquaintances between pairs of other entities. This idea
is formalized as follows.

Definition 1 The topological awareness of a node x of G is a list A, of long-range links in the
augmented graph H.

In Kleinberg’s model A, = {e;} where e, is the long-range link of z. We consider the case
in which A, = {e1,ea,...,ex} with e; € A, and where, for every i, e; is a long-range link not
necessarily incident to z. Note that the degree of z remains unchanged compared to Kleinberg’s
model, i.e., the number of long-range contacts of every node z is the same in our model and
in Kleinberg’s model. For instance, in Fig. 2, node z has four neighbors in the 2-dimensional



mesh: a,b,c, and d. It also has one long-range contact z’. The topological awareness of = is
Ay = {(z,2'),(a,a"),(d,d'), (y,9')}. This means that node z is aware that there is a long-range
link from a to @/, from d to d’, and from y to 4. Note that x does not have any acquaintance with
either y or ¢/, but is just aware of an acquaintance from y to 3'. On the other hand, z ignores the
long-range contacts of b and ¢. To be realistic, the number of nodes y that z is aware of should not
be too large. Furthermore, these nodes should be preferably located not too far from z. However, it
is a reasonable assumption that the topological awareness of every individual grows (though slowly)
with the total number of individuals in the world. Indeed, although the total number of individuals
has a limited impact on the number of our personal acquaintances (relatives, close friends, etc.),
the more individuals, the more stories every individual hears about other individuals, increasing
his or her awareness of some inter-individual acquaintances.

This gives rise to the following second question: how to benefit from the additional topo-
logical awareness given to the nodes to perform simple (i.e., greedy) routing in the augmented
d-dimensional mesh?

2.2 Indirect-greedy routing

To answer the previous question, let us return to our simple example in which Alice is searching
for Joe Wilson. According to Kleinberg’s greedy routing, Alice chooses, among all her personal
acquaintances, the one who is most likely to know Wilson. As we mentioned before, this strategy
results in having Alice choosing either Olson or Mary, but not Mark, although Mark is more likely
to be closer to Wilson than both Olson and Mary. Being aware of Mark’s long-range contact
Ann, Alice may then decide to use Mark as an “intermediate destination”. Mark is farther to the
target Joe Wilson than Alice. However, from Mark, the search may be forwarded close to Wilson,
thanks to the long-range link Mark-to-Ann. We define indirect-greedy routing in which, at every
routing step towards a target ¢, there are two phases. In the first phase, the current node z uses
its topological awareness A, to select an intermediate destination y, i.e., a node y such that its
long-range contact is close to ¢. In the second phase, z applies greedy routing towards y. (Clearly,
= makes use of the intermediate destination y only if y is closer to x than  in the mesh. Otherwise,
z discards y and simply applies greedy routing towards ¢.) More formally, we define indirect-greedy
routing as follows.

Indirect-greedy routing: For a directed edge e = (u, v), we denote u = tail(e), and v = head(e).
The 2d neighbors of the current node z in the d-dimensional mesh are denoted by w1, ..., waq, and
the long-range contact of z is denoted wy. Finally, let ¢ be the target node, ¢ # z.

Phase 1. Among all edges in {(z,w1),...,(z,wyq)} U Az, z selects an edge e such that head(e)
is the closest to the target ¢ in the mesh (according to the Manhattan distance); If there
are several such edges e, = selects the one such that tail(e) is the closest to z in the mesh.
Possible remaining ties are broken arbitrarily. If tail(e) = z or if dist(z, tail(e)) > dist(z, t),
then set y = ¢, otherwise set y = tail(e).

Phase 2. Node z selects, among its 2d + 1 neighbors wg, w1, . .., waq, the one that is the closest
to y, and the search is forwarded to that neighbor.

In the following, the node y selected during Phase 1 is called the intermediate destination. Note
that the computation of the intermediate destination is performed at every node involved in the
routing process. In particular, if « is the current node, and if w; is the neighbor of  to which the



search is forwarded during Phase 2, then the intermediate destination for w; may be different from
the intermediate destination for z.

Let us take two extreme examples to illustrate the behavior of indirect-greedy routing:

a) If the topological awareness of every node is reduced to its own long-range contact, then the
edge e selected during Phase 1 is necessarily incident to the current node z, i.e., y = tail(e) = =.
Thus, during Phase 2, the search is forwarded to head(e). Therefore, indirect-greedy routing reduces
to greedy routing in this case.

b) If the topological awareness of every node is the whole graph, i.e., if every node is aware of
all long-range contacts (a very unrealistic hypothesis), then let ey, ..., ey be the k > 1 long-range
links such that, for every i, 1 < i < k, dist(head(e;),#) is minimum among all long-range links. At
every node involved in the search, the intermediate destination is y; = tail(e;) for some i. (The
intermediate destination may change if the current node is at equal distance from two intermediate
destinations.) For a source s, let m = minj<;<k dist(s, y;). Most of the process actually consists to
travel distance m in the mesh, from s to one of the y;’s, using Kleinberg's greedy routing. Hence,
indirect-greedy routing also reduces to greedy routing in this case.

Obviously, in the latter example, a faster search would be obtained by computing a shortest
path from the source to the target in the augmented mesh. However, such a complex computation
is assumed to be beyond the computing capabilities of the entities. For instance, although most
humans would be able to go through a reasonably large directory to select one key (say, the
smallest), most humans would be unable to sort a directory based on the keys contained into it.
We underline here that indirect-greedy routing fully preserves the greediness assumption.

Remark. As opposed to Kleinberg’s greedy routing, the Manhattan distance to the target is not
strictly decreasing at each step. Indeed, an intermediate destination can be farther to the target
than the current node, and thus going to this intermediate destination may result in increasing the
Manhattan distance to the target. We will see in the next section that this phenomenon has, under
some weak condition, little impact on the expected performances of indirect-greedy routing because
it is counter balanced by the fact that the intermediate destination has a long-range contact leading
close to the target.

3 Greedy routing in O(Iog1+1/d n) expected number of steps

In this section, we give a necessary and sufficient condition for indirect-greedy routing to converge,
i.e., to always route correctly the search for any setting of the long-range links. We later prove that
if every node is aware of the long-range contacts of its O(logn) closest nodes in the d-dimensional
mesh, then indirect-greedy routing performs in O(logl"'l/ 4 p) expected number of steps.

Let A, be the topological awareness given to every node z. The set {A; | z € V'} is called the
system of awareness of the augmented mesh H = (V, E). Now, for every node z, let us denote
by N, the set of 2’s neighbors in H (thus including z’s long-range contact). For every link e with
tail(e) # z, we then define

Ny(e) = {y € N, | dist(y, tail(e)) < dist(z, tail(e)) for every z € Ny} .
Our condition for convergence of indirect-greedy routing is based on the following definition.

Definition 2 A system of awareness {A; | © € V} is monotone if, for every =, and for every
e € Az \ {es} where ey is the long-range link of z, we have e € Ay for every y € Ny(e).



Observe that monotonicity is a property that a system of awareness usually satisfies. Indeed, if
a social entity x is aware of the acquaintance that some node « has with v, then a node y that is
closer to u than x is certainly also aware if this acquaintance. For instance, if you become aware
that Bob, the companion of the sister Sophie of your friend Tom, meets some unrelated guy Charles
in a plane, then certainly Tom is aware of that, and this is even more certainly the case of Sophie.

Remark. If all sets S, = {tail(e) | e € A;} have the same shape S for all nodes z, in the sense
that S = Sg, = {tail(e) | e € Ag,} for some fixed node zo, and S, is obtained by translating Sy,
along zoz, then monotonicity is equivalent to the fact that S is zg-convex, i.e., every shortest path
from zg to any node in S is included in S. “Be monotone” is more general than “having the same
shape” because it does not require the structure of the topological awareness to be the same for all
nodes.

Lemma 1 Indirect-greedy routing converges if and only if the system of awareness is monotone.

Proof. Assume first that the system of awareness is not monotone, and let us prove that indirect-
greedy routing does not always converges in this case, i.e., there is a setting of the long-range
contacts for which indirect-greedy does not converge. If the system of awareness is not monotone,
then there exists a node z, and e € A, such that e ¢ Ay where y is the neighbor of z that is the
closest to z = tail(e). We denote by €' the long-range link of z. We construct a setting of the
long-range contacts yielding non convergence of the indirect-greedy protocol. First of all, if there
are several such y, we choose one that is closest to z. We set ¢ = head(e) as the target, and we
set dist(¢, head(f)) > dist(¢,y) for every long-range link f ¢ {e,e’}. Now, we consider two cases,
depending whether y is the long-range contact of z or not. In both cases, we place t so that z is
on a shortest path from y to .

— If y is not the long-range contact of z, i.e., y is one of the four neighbors of z in the mesh,
then we set the long-range link €’ of z such that dist(¢,head(e’)) > dist(¢,y). By definition of
indirect-greedy routing, = forwards the search to its neighbor y. Next, greedy routing is applied at
node y. Since e ¢ Ay, and since all other long-range links lead away from ¢, the search is sent back
to z, creating an infinite loop between nodes z and y, and thus indirect-greedy routing does not
converge.

— If y is the long-range contact of z, i.e., y = head(e’), then, from the setting of all long-range
links different from e and ¢/, the search is sent from y to a neighbor 3’ on the mesh that is on a
shortest path from y to ¢. We place ¢ so that y' is also on a shortest path from y to z. Thus, by the
choice of y as the closest node from z satisfying e ¢ A, we have e € Ay . Therefore, the search is
sent back from y’ to y, creating an infinite loop between y and 4/, and thus indirect-greedy routing
does not converge.

We now assume that the system of awareness is monotone, and we prove that indirect-greedy
routing always converges, for any setting of the long-range contacts. Let s be the current node,
and let ¢ be the target. Let u be the current intermediate destination, and let ¥ be the long-range
contact of u. We define the potential of s as:

P(s) = dist(s,u) + n - dist(v, t)

From s, the search is forwarded to some node s’ on a shortest path from s to w. If the intermediate
destination at s’ is the same as the one at s, then ¢(s') < ¢(s) — 1. If the intermediate destination
changes, then let u' be the new intermediate destination, and let v be its long-range contact. Since
the system of awareness is monotone, we have (u,v) € Ay. Therefore dist(v',t) < dist(v,t). If



dist(v', 1) < dist(v,t) then ¢(s') = dist(s',u) + n - dist(v',t) < (n — 1) +n - (dist(v,t) — 1) =
dist(v,t) — 1 < ¢(s). If dist(v', t) = dist(v, ) then Phase 1 of indirect-greedy routing specifies that
since ' chooses u', u' is at least as close to s’ as u. Therefore, ¢(s') = dist(s’,u') + n - dist(v', ) <
dist(s',u) +n - dist(v,t) < $(s) — 1. Therefore, in all cases, the potential is strictly decreasing after
each step of indirect-greedy routing. Thus indirect-greedy routing eventually reaches the target. B

Theorem 1 In the d-dimensional mesh augmented with one long-range link per node chosen ac-
cording to the d-harmonic distribution, if every node is aware of the long-range contacts of its
O(logn) closest nodes in the mesh, then indirect-greedy routing performs in O(logl"'l/d n) expected
number of steps.

Proof. Clearly, the system of awareness induced by balls of same radius is monotone (since a ball
centered at z is z-convex). Therefore, thanks to Lemma 1, indirect-greedy routing converges. We
compute the expected number of steps to reach any target from any source.

Let z be the current node, and ¢ be the target node. First, we consider the case where x is far
from the target ¢ in the mesh, that is m = dist(z,t) > c- log'/%n for some constant ¢ large enough.
Let us compute the expected number of steps required by indirect-greedy routing for reaching a
node z' at Manhattan distance < m/2 from t. Let B = {u | dist(u,t) < m/2}. For any node
u, let V(u) = {v | dist(u,v) < log"/?n}. Let Pr(V(u) — B) be the probability that at least one
node in V (u) has its long-range contact in the ball B. We have Pr(V(z) — B) > Pr(V'(z) = B)
where V'(z) = {u € V(z) | dist(u,t) < m}. Note that |V'(z)| > 5|V (z)| as t ¢ V(z), so that
|V!(z)| = ©(logn). For any node u, let £, be the event “u has its long-range contact in B”. We
have Pr(V'(z) = B) = 1 — Ieyig)(1 — Pr(€y)). Let p = Pr(€;). Since Pr(&:) < Pr(€,) for any
u € V'(z), we get Pr(V'(z) = B) > 1 — (1 — p)V'@)I|. Now, we have

p = Zh(ﬂ:,u) = ZiZl/dist(:n,u)d

ueB * ueB

where Z; = 3,4, 1/dist(z,w)?. On one hand Z; = Y, |S|/i® where S; is the set of nodes at
Manhattan distance exactly i from z. We have |S;| = O(i4"!) for any i. Thus Z, = O(logn). On
the other hand,

> 1/dist(z, w)* > |B|/(3m/2)* > Q(m?)/(Bm/2)? > Q(1).
ueEB

Therefore p is at least (1/logn). Since |V'(z)| = ©(logn), we get 1—(1 —p)IV' @) ig at least some
constant > 0, and thus Pr(V(z) — B) is at least some constant 3 > 0.

Let us return to the indirect-greedy routing process, and let z; € V(z) be the intermediate
destination selected by @ = zg during phase 1 of indirect-greedy routing. In phase 2, the search is
routed from zg to z; according to Kleinberg’s greedy protocol. However, on the way to z;, new
long-range links are discovered, and possibly a new node z; whose long-range contact is a node
closer to ¢t than the long-range contact of z; is discovered (see Fig. 4(a)). If such a new node z2
is discovered, z; is discarded, and the new intermediate destination becomes z2. In this case, z2
is discovered after performing O(log'/?n) steps of routing toward z; in the worst-case. Indeed,
every node is aware of the long-range contacts of its logn closest neighbors, which correspond to
a ball of radius @(logl/ ?n). Again, on the way to zo, possibly a new node z3 whose long-range
contact leads to a node closer to ¢ than the long-range contact of z9 is discovered, and routing
switches to z3. This phenomenon may occur many times, constructing a sequence z1, g, €3, ... of



unreached intermediate destinations (see Fig. 4(a)). The Manhattan distance between every two
consecutive unreached intermediate destinations z; and =z, satisfies dist(z;,z;11) < O(logt?n),
for every 7 > 0.

1 Reached
intermediate
X destination

Unreached ¥

intermediate s,
destinations \

(a)

toB

(b)

b4
Figure 4: Intermediate destinations before jumping into B.

We show that the expected number of unreached intermediate destinations z; is a constant.
Let s; be the node where greedy routing switches from z; to zi+1. Let C; be the set of all tails
of the new long-range links discovered while going from s; to Tit+1, and let ap,a1,as9,...,a; be
the path from s; to z;41 generated by Kleinberg’s greedy routing, where ag = s; and a; = z;41.
By definition, we have C; = (Ué—le(aj)) \ V(s;). The path ag,ai,as,...,q is included in the
ball centered at x4, and of radius dist(s;,z;11) (see Fig. 5). This inclusion holds even if the
path contains long-range links (a;,a;4+1). Hence |C;] < (2¢ — 1) logn. From this fact, one cannot
conclude that Pr(C; - B) < (2¢ — 1) - Pr(V(s;) — B) because the probability of having a long-
range contact in B changes with the distance to the target. Nevertheless, since the radius of C; is
only a small fraction of m for ¢ large enough, one can show that, for any € > 0, there is a setting
of the constant ¢ such that Pr(C; — B) < ((2¢ — 1) +¢) - Pr(V(s;) — B) for every i such that
dist(s;, ) > c¢-log/%n. Therefore, if dist(s;,t) > e-log!/? n, then the probability that, going from s;
to zi41, a new intermediate destination is discovered is at most roughly (2¢ — 1) /2¢. It follows that
one can set the constant ¢ large enough so that the expected number of successive intermediate
destinations z;’s is a constant. Therefore, after at most O(logl/ % n) expected number of steps, one
eventually reaches an intermediate destination y; (see Fig. 4(a)).

Starting from y;, we argue the same as when starting from gy = z, and thus, after at most
O(logl/ % n) expected number steps, one eventually reaches another intermediate destination Y.
And so on, we construct in this way a sequence 11,4s,... of intermediate destinations that are
reached during indirect-greedy routing (see Fig. 4(b)). Let & be the event “at least one node
in V(y;) has its long-range contact in B”. We show that the expected number of reached in-
termediate destinations y; before the event &; holds is constant. The events & are not pairwise
independent. Nevertheless, if dist(y;,y;) > 2 - logl/ 4y, then & and &; are independent. Thus, we
consider a subsequence (y;);>o of reached intermediate destinations y;’s such that (1) the events
& =“at least one node in V(y}) has its long-range contact in B” are pairwise independent, (2)
dist(y}, yf,1) = O(log"*n), and (3) yh = yo = x. (Note that the expected number of reached
intermediate destinations between y; and 3/, is constant). Let p; = Pr(&}). In particular py = 8.
Since dist(y;,y;,,) = O(log!/?n), for any positive & < 1, one can set the constant ¢ such that
pi+1 = ap; for any i > 0. (Recall that ¢ determines how far the current node is from the target.)
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(@) (b)

Figure 5: The set C; is included in the grey area, and in the 2-dimensional mesh |C;| < 3logn.

We are let with a sequence of trials, such that the ith trial succeeds with probability at least o'B.
The expected number of trials before we get a success is constant. Therefore, starting from z,
indirect-greedy routing eventually reaches an intermediate destination yy, for some k = 0O(1), such
that at least one node in V(i) has its long-range contact in B (see Fig. 4(b)). Since going from
yi to yiy1 takes O(log'/?n) expected number of steps, going from z to y; takes no more than
O(log'/? n) expected number of steps in total.

We are now in the situation in which the current node z' = yj, satisfies that at least one node
in V(z') has its long-range contact in B. Indirect-greedy routing applies, that is an intermediate
destination z} is selected, and the search goes toward z}. The long-range contact of ¥} is in B
because there is a node in V(z') that has its long-range contact in B. As when the search was
routed from z to 1, new long-range links are discovered on the way to . Thus, a new intermediate
destination =, may be selected on the way from z’ to z}. Again, the long-range contact of zh i8
in B. In fact, the same analysis as for & can reproduces for 2. One can thus show that, after
O(Iogl/ . n) additional expected number of steps, the search reaches an intermediate destination
71 = z. Similarly to @f,z},..., node z has its long-range contact in B. Now, the long-range
link e going from z to B may not be taken at zi, because indirect-greedy routing may discover
at 2 a better long-range link, i.e., a long-range link going closer to ¢ than head(e). However, if
such a long-range link f does exist, then tail(f) is on the frontier of V'(21). Indeed, otherwise,
z1 would not be a reached intermediate destination because indirect-greedy routing would have
switched to tail(f) before reaching z;. Since tail(f) is on the frontier of V(z1), the probability
of existence for f is O(1/ logt/¢n) = o(1). Hence this event does not occur too often. Applying
the same kind of analysis as before, we consider the sequence of reached intermediate destinations
21,2, ..., all having their long-range contact in B, and such that dist(2;, 2;+1) < O(logl'/ 4p). The
expected length of such a sequence is constant, and thus indirect-greedy routing eventually reaches
an intermediate destination z, such that the long-range link e of 2 is in B, and all long-range
contacts of the nodes in V(z) are further from ¢ than head(e). At z, indirect-greedy routing
applies, and the search is forwarded to head(e) € B.

Putting everything together, starting from z at Manhattan distance m from ¢, it takes
O(logl/ 4 n) expected number of steps to reach a node in B. In other words, decreasing the Man-
hattan distance by a factor of 2 takes at most O(logl/ 4p) expected number of steps. Therefore,
from any source at Manhattan distance m > c- log!/%n from ¢, it takes O((logm) - (log"/?n)) =

11



O(log'*'/ ) expected number of steps to reach a node at Manhattan distance < ¢-log!/¢n from t.

Hence, it remains to consider the case where the current node z is close to the target £, le.,
m = dist(z,t) < e¢- logl/ 9n. Let u be the current intermediate destination (i.e., the one selected
by z), and let v be the long-range contact of u. We proceed similarly as in the proof of Lemma 1,
and define the potential of & as ¢(z) = dist(z,w) + dist(v,¢) - (1 + log"/¢n). From z, the search is
forwarded to some node 2’ on a shortest path from z to u. If the intermediate destination at z' is the
same as the one at x, then ¢(z') < ¢(z) — 1. If the intermediate destination changes, then let u' be
the new intermediate destination, and let v’ be its long-range contact. Since balls form a monotone
system of awareness, we have (u,v) € Ay, Therefore dist(v',t) < dist(v,t). If dist(v', ) < dist(v, ¢)
then ¢(z') = dist(z', ') + dist(v', £) - (14 log"/? n) < log"%n + (dist(v,8) — 1) - (1 +1og%n) < ¢(z).
If dist(v', ) = dist(v,t) then Phase 1 of indirect-greedy routing specifies that since z' chooses u/,
dist(2', ') < dist(z',u). Therefore, ¢(z') = dist(z’,u’) + dist(',t) - (1 + log/%n) < dist(z',u) +
dist(v, ) - (1 +log"/%n) < ¢(z) — 1. Therefore, in all cases, the potential is strictly decreasing after
each step of indirect-greedy routing. The potential of a node z at distance m from ¢ is at most
log'/%n + m - (1 + log"/?n). Thus, a node at distance at most ¢ - log"4n from ¢ has potential
< O(log*n) < O(log'*'/% ). Therefore, the target is reached after at most O(log'tY/%n) steps,
which completes the proof. u

4 An Q(log"*?n) lower bound for greedy routing

Theorem 1 shows that, comparatively to Kleinberg’s greedy routing, augmenting the awareness up
to O(logn) long-range per node links speeds up indirect-greedy routing. In Theorem 2, we show
that the excepted number of steps of indirect-greedy routing is Q(Ioglﬂ/ 4 ) for any amount of
awareness. More interestingly, Theorem 2 demonstrates that logn is an optimum for the awareness.
If the awareness is smaller than logn then the expected number of steps is a decreasing function of
the awareness. However, after the threshold of logn, the expected number of steps is an increasing
function of the awareness (see Fig. 6).

Expected (n)

number of steps f;’ﬁ f;gnn
A A

bg's & . e 2 ‘2/+a/d_a
1+a/d—o(1)
logttt/dp | 1+1/d 4
| ; - T T -
1 logn log?n Awareness 0 1 d a= 4_1;35 fé.gn =

Figure 6: The expected number of steps v.s. the awareness. For v(n) = (logn)®, the expected num-
ber of steps is s(n) = Q((logn)?T*/4~) if @ < 1 (by Lemma 2), and is s(n) = Q((log n)'+e/d-o(1))
if 1 <« <d (by Lemma 3). For @ > d, s(n) = ©(log?n) (by Lemma 3).
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Theorem 2 In the d-dimensional mesh augmented with one long-range link per node chosen ac-
cording to the d-harmonic distribution, for any 1 < v(n) < n, if every node is aware of the
long-range contacts of its v(n) closest nodes in the mesh, then indirect-greedy routing performs in
Q(log" /4 n) expected number of steps. Moreover, if d > 1, then a performance of O(log' /4 n)
expected number of steps cannot be reached if v(n) # O(logn).

To prove Theorem 2, we consider separately the cases v(n) < logn, and v(n) = Qlogn).
Intuitively, if every node is aware of the long-range contacts of its v(n) < logn closest neighbors,
then reaching an intermediate destination is fast, but a large number of intermediate destinations
must be visited before expecting reaching a node whose long range-contact leads close to the target.
In fact, we show the following:

Lemma 2 If v(n) < logn, then the expected number of steps to reach the target is al least
Q ((logn/v(n))l_l/d Jog'tH/e n) 4

Proof. We assume that the distance m = dist(z,t) between the current node x and the target
tis > c- logl/ 4y for ¢ large enough. We use the same notations as in the proof of Theorem 1.
Let B = {u | dist(u,t) < m/2}, and, for any node u, let V(u) = {v | dist(u,v) < v(n) 7%}, We
have observed that an expected number of (logn) long-range contacts must be considered before
finding one that leads to a node in B. Hence, we compute the expected number of steps required
to learn about Q(logn) long-range contacts.

Starting from , the search reaches a sequence y1,. .., yx of intermediate destinations satisfying
that at least one node in V (yz) has its long-range contact in B, and no node of V(y;) has its long-
range contact in B for j < k (see Fig. 4). Let us compute the expected number of steps required to go
from y; to y;41 using Kleinberg’s greedy routing. Let o, 1,...,%¢ be the sequence of considered
intermediate destinations before the search eventually reaches the intermediate destination y;11
starting from y;. Le, zo = y; and zp = yj11. Let r = dist(wo, z1) (note r < v(n)4 as x; € V(z0)),
and let A = {u|dist(u,2;) <r/2}. For every node v such that dist(v,z1) > 3r/4, we have
Pr(v — A) < O(1/logn). Therefore, the probability that a long-range contact is used during the
first quarter of the path from zg to z; is at most O(r/logn), that is at most O(v(n)4/ logn).
Thus, with probability 1 —o(1), no long-range contacts is used on the path from zy to 1. Since the
expected Manhattan distance 7 between zg and z7 is Q(v(n)/4), we get that the expected number
of steps required to go from zg to z; using Kleinberg’s greedy routing is Q(v(n)Y/%). Actually, the
routing does not reach z; if a new intermediate destination z3 is discovered. However, one can
easily check that a constant portion of the path from x¢ to z; must be traversed before expecting
discovering a new intermediate destination. Therefore, the portion of the path from zg to z; that is
traversed before possibly switching toward z requires Q(v(n)l/ 9) expected number of steps. Hence,
the expected number of steps required to go from y; to y;41 is Q(v(n)V9).

On the other hand, using the same arguments as in the proof of Theorem 1, we prove that the
expected number of steps required to go from y; to yj41 is actually ©(v (n)/4) because the sequence
Tg,Z1,. .., T is of constant expected length. Since the probability that a long-range contact is used
between z; and z;y1 is o(1), the expected number of long-range contacts discovered while going
from y; to yjq1 is O(v(n)). Therefore, learning about an expected number of Q(logn) long-range
contacts implies that the expected length of the sequence y1,y2, ..., ¥k is Q(logn/v(n)).

To summarize, starting from  at distance m from the target, the search visits an expected
number of Q(logn/v(n)) intermediate destinations y1,...,¥k, and the expected number of steps
required to go from y; to y;j41 is Q(v(n)'/4). Therefore, the expected number of steps required to
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reach B, and thus to reduce the distance to the target by a factor at least 2, is Q(log n/v(n)'~/4).
Now, one can show that, after this amount of steps from a node at distance m from the target ¢,
the distance from ¢ is reduced by an expected constant factor. Therefore, starting from a node at
expected Manhattan distance ©(n'/4) from the target, the expected number of steps to reach a

node at distance < ¢ - log'/¢n from the tar get is ( ﬁ% log (logl /;i )), which completes the
proof.

Conversely, if every node is aware of the long-range contacts of its v(n) >> log n closest neighbors
in the mesh, then it is easy to find a long-range link that leads close to the target. However, traveling

from the current node to the intermediate destination that is the tail of this long-range link requires
a large number of steps. More precisely, we show the following:

Lemma 3 If v(n) = Q(logn), then the ezpected number of steps to reach the target is at least

Q (log o (lfjflog o min {(log n) - (log v(n)), v(n)l/d}) :

Proof. We consider first the case v(n) < n and v(n) = Q(logn). Assume, in the same spirit as
in the proof of Theorem 1, that the distance m = dist(z,t) between the current node z and the
destination ¢ is > ¢ v(n )l/d where c is a constant large enough. Let B = {u | dist(u,t) < m/2" (™}
where r(n) = 1log; (yv(n)/logn) where ¥ > 0 is a constant fixed such that r(n) > 1, constant
dependent on ¢ and on the hidden constant in Q(logn). From the setting of r(n), one can easily
show that Pr(V(z) — B) is at least some constant > 0. The expected Manhattan distance between
z to a node in V() whose long-range contact is in B is Q(v(n)'/%). To travel such a distance using
Kleinberg’s greedy routing, the expected number of steps is

Q(min{(log n) - (log v(n)), v(n)/}).

Thus, reducing the distance to the target by a factor 2"(") requires Q(min{(logn) -
(logv(n)), v(n)/?}) expected number of steps. Therefore, starting from a node at expected dis-
tance @(nlf d) from the target, the expected number of steps to reach a node at Manhattan distance

< ¢+ v(n)Y% from the target is ( i ) -min {(logn) - (log v(n)), v(n)l/d}).
If v(n) = ©(n), then indirect-greedy routing reduces to Kleinberg’s greedy routing since most

of the time is spent while routing to an intermediate destination, which is at expected distance
Q(n'/4) from the source. Hence, the expected number of steps to reach the target is Q(log®n). MW

5 Conclusion

In this paper, we proposed a model for the small world phenomenon. This model demonstrates
that eclectic relationships are desirable, as far as connectedness to other individuals is concerned.
This is coherent with what can be observed in every-day life. In particular, searching using two
criteria is significantly faster than searching using only one criterion. For instance, Killworth and
Bernard (5] have observed that, in a search for an individual, at least two criteria (occupation and
geography) were used by the participants. Determining whether individuals involved in Milgram’s
experiment used intermediate destinations (consciously or unconsciously) to route the letter to the
target would allow us to validate our model.
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