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Abstract

Milgram’s experiment (1967) demonstrated that there are short chains of acquaintances be-
tween individuals, and that these chains can be discovered in a greedy manner. Kleinberg (2000)
gave formal support to this so-called “small world phenomenon” by using meshes augmented
with long-range links chosen randomly according to harmonic distributions. In this paper, we
propose a new perspective on the small world phenomenon by considering arbitrary graphs aug-
mented according to distributions guided by tree-decompositions of the graphs. We show that,
for any n-node graph G of treewidth < k, there exists a tree-decomposition-based distribution
D such that greedy routing in the augmented graph (G, D) performs in O(k log? n) expected
number of steps. We argue that augmenting a graph with long-range links chosen according to
a tree-decomposition-based distribution is plausible in the context of social networks. However,
social networks can have unbounded treewidth. Nevertheless, we note that these networks have
few long chordless cycles because of their high clustering coefficient. We prove that if G has
chordality < k, then the tree-decomposition-based distribution D insures that greedy routing in
(G, D) performs in O((k + logn)logn) expected number of steps. In particular, for any n-node
graph G of chordality O(logn) (e.g., chordal graphs), greedy routing in the augmented graph
(G, D) performs in O(log® n) expected number of steps. This latter result stresses the fact that
our model may well explain why greedy routing is so efficient in social networks, such as observed
in Milgram’s experiment.
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1 Introduction

In his seminal work [20], Kleinberg gave a formal support to the “six degrees of separation” phe-
nomenon, defined after the Milgram’s experiment [28], recently reproduced by Dodds, Muhamad,
and Watts [11]. This experiment demonstrated that there are short chains of acquaintances between
individuals, and that these chains can be discovered in a greedy manner. More precisely, given an
arbitrary source person s (e.g., living in Wichita, KA), and an arbitrary target person t (e.g., living
in Cambridge, MA), a letter can be transmitted from s to ¢ via a chain of individuals related on
a personal basis. The target is identified by its name, its professional occupation, and by the US
state of its home town. The transmission rule is that the letter held by an intermediate person x
is passed to the next person y who, as judged by x, is most likely to know the target among all
persons x knows on a first-name basis. Milgram’s experiment conclusion is often summarized as
the six degrees of separation phenomenon because, for chains that reached the target, the number
of intermediate persons between the source and the target ranged from 2 to 10, with a median of 5.

Expanding on [31], Kleinberg modeled Milgram’s experiment as follows (cf. [20, 21]). Let M
be the set of all 2-dimensional square meshes (i.e., the n x n grids, for n > 1). For M € M,
every node x of M is given an additional directed link pointing to some node y. The head y of
the added link (z,y), called the long-range contact of x, is chosen according to the 2-harmonic
distribution H, i.e., the probability that x chooses y, y # x, as long-range contact, is Prob,(y) =
1/(H, - dist?(z,y)) where dist(z,y) denotes the Manhattan distance between 2 and y in M, and
H, = zy?ﬁx 1/ distz(a:,y) is a normalizing coefficient. The resulting graph is called an augmented
mesh, and the set of graphs M augmented by H is denoted by (M, H). Then, Kleinberg defined
greedy routing in any graph of (M, H) as the following process: Given a target node ¢, and a current
node z, = selects among all its neighbors (including its long-range contact) the one that is closest
to t in the mesh M (i.e., according to the Manhattan distance), and forwards to this neighbor.
Kleinberg proved that greedy routing in the n-node mesh augmented with long-range links set
according to the 2-harmonic distribution performs in O(log? n) expected number of steps.

In Kleinberg’s model, the choice of the 2-harmonic distribution for the 2-dimensional meshes
is crucial. Indeed, Kleinberg also proved that greedy routing in 2-dimensional meshes augmented
with the k-harmonic distribution Prob,(y) = 1/(H§k> -dist*(z, y)) where alf = >yt 1/dist” (z, y),
performs poorly if k # 2, i.e., in Q(n®) expected number of steps, for some a > 0 that depends on k.
Therefore, finding the right distribution for 2-dimensional meshes was far from being obvious, and
there is no distribution D for which greedy routing in (M, D) is known to perform in O(polylog(n))
expected number of steps, but (distributions structurally equivalent to) the 2-harmonic distribution.
More generally, the design of an appropriate distribution D for an arbitrary given graph G seems
to be uneasy. Formally, we rise the following question:

Problem 1 For any n-node graph G = (V, E), is there a distribution D such that greedy routing
in the augmented graph (G, D) performs in O(polylog(n)) expected number of steps?

By greedy routing in the augmented graph (G, D), it is meant the following process:
Definition 1 (Greedy Routing.) For any target node t € V', the current node x € V' selects among

all its meighbors (including its long-range contact chosen according to D) the neighbor y that is
closest to t in the underlying graph G, and forwards to y.



Note that it is not sufficient to place a graph with small diameter on top of the underlying graph
G for greedy routing to perform in a small number of steps. Indeed, greedy routing optimizes the
choice of the current node’s neighbor according to a distance measured in GG, and not in the graph
including the long-range links.

Beside its own theoretical interest as a natural generalization of Kleinberg’s work on the mesh,
solving Problem 1 would have a significant impact on our understanding of routing in social net-
works, as illustrated by Milgram’s experiment. Indeed, although Kleinberg’s model is a powerful
tool for analyzing greedy routing strategies, there is no evidence that the network formed by social
acquaintances looks like an augmented mesh. There are however some evidences that the social
entities share a common knowledge about their relative distances, based on their geographical posi-
tions, on their professional occupations, on their hobbies, or on any criteria available to the entities.
This common knowledge could be modeled by a graph G. Then, the random events of life create
connections between individuals who have, a priori, very little in common. This could be modeled
by random links added on top of the underlying graph G. Therefore there is some support to the
hypothesis that a social network can reasonably be modeled by an augmented graph (G, D). Still,
this gives rise to several questions: what is the graph G7 What is the distribution D? Why the
long-range links are structured according to some specific distribution rather than to another? By
considering Problem 1, this paper is an attempt to solve these questions.

Last but not least, solving Problem 1 by the affirmative would have some impact on routing in
fully decentralized P2P systems. Indeed, given a set of peers connected according to some topology
G, then, in the same spirit as in [24] for the ring, it would be possible to enhance G with additional
links so that a simple greedy search procedure would proceed in a polylogarithmic expected number
of steps, with no flooding nor any use of sophisticated routing protocols.

1.1 Our Results

First, we address Problem 1 in tree-decomposed graphs. Informally, the treewidth of a graph
measures how far the graph is from a tree. Graphs of bounded treewidth form a large class
of graphs, including trees, outer-planar graphs, series-parallel graphs, etc. In addition to their
connection to the graph-minor theory (cf, e.g., [30]), they have a wide range of applications in
graph searching [29] and routing [15, 16]. They also play a central role in complexity and logic. In
particular, it is known that several NP-hard problems can be solved in polynomial time if instances
are restricted to graphs of bounded treewidth [2, 5]. Actually, on graphs of treewidth at most k,
where k is fixed, every decision or optimization problem expressible in monadic second-order logic
has a linear algorithm [10]. We show that, for any n-node graph G of treewidth tw(G), there exists
a tree-decomposition-based distribution D such that greedy routing in the augmented graph (G, D)
performs in

O(tw(G) log® n) (1)

expected number of steps. In particular, for graphs of bounded treewidth, there exists a tree-
decomposition-based distribution such that greedy routing in the augmented graph performs in
O(log2 n) expected number of steps. This latter bound is close to optimal as it is known that, in the
n-node directed ring, no distribution enables greedy routing to perform better than Q(log2 n/loglogn)
expected number of steps [3]. We also give a constructive variant of our result. More precisely, given
any n-node graph G, we show how to construct (in polynomial time) a distribution D such that



Underlying graph Distribution Expected #steps References
d-dimensional meshes d-harmonic O(log® n) [20]
d-dimensional meshes k-harmonic, k # d Q(n*),a>0 [20]

ring 1-harmonic Q(log? n) [4]

directed ring any Q(log? n/loglogn) 3]

d-dimensional meshes, d > 1 d-harmonic Q(log? n) [17]

moderate growth graphs 1/ball-size O(polylog(n)) [13]
graphs of treewidth < k tree-decomposition-based O(klog®n) [this paper]
graphs of chordality < ~ tree-decomposition-based | O((vy + logn)logn) | [this paper]

Table 1: Performances of (pure) greedy routing (with 1 long-range contact per node)

greedy routing in the augmented graph (G, D) performs in O(tw(G) - log tw(G) - log®n) expected
number of steps.

Next, we focus our attention on social networks, and argue that our tree-decomposition-based
distribution is plausible in this context, i.e., a social network is well modeled by a graph G aug-
mented with long-range links chosen according to a tree-decomposition-based distribution D. In
particular, as opposed to hierarchical models which define the hierarchical structure a priori (cf.,
e.g., [22]), the hierarchy of our model is inherited from the natural structure of the social network.

However, social networks do not necessarily have bounded treewidth. Thus the bound of Equa-
tion 1 does not directly explain why greedy routing performs so well in the Milgram’s experiment.
Nevertheless, social networks possess specific topological properties which strongly impact the per-
formances of greedy routing. In particular social networks generally have high clustering coefficient,
a parameter measuring the probability that two nodes having a common neighbor be neighbors too.
A high clustering coefficient implies that the network contains a lot of triangles. More generally, a
high clustering coefficient implies that a cycle of more than three nodes is likely to have a chord.
This property motivated us to investigate greedy routing in graphs of bounded chordality (the
chordality is the length of the longest chordless cycle). We prove that if G has chordality 7, then
the tree-decomposition-based distribution D insures that greedy routing in (G, D) performs in

O((7 + logn)logn) (2)

expected number of steps. In particular, for any n-node graph G of chordality O(logn) (e.g., chordal
graphs), greedy routing in the augmented graph (G, D) performs in O(log? n) expected number of
steps, where D is the tree-decomposition-based distribution. It is important to note that, as opposed
to Equation 1, the performances of greedy routing in graphs of bounded chordality are independent
from the treewidth of these graphs, although the treewidth of n-node chordal graphs can take any
value between 1 and n — 1.

Since high clustering coefficient implies that, in average, long cycles have chords, these results
stress the fact that our model may well explain why greedy routing is so efficient in social networks,
such as observed in Milgram’s experiment.

All known complexity results (including ours) relative to the performances of greedy routing in
graphs augmented with one long-range contact per node are summarized in Table 1. This table
does not list results related to variants of greedy routing, such as the ones mentioned in Section 1.2.



1.2 Related Works

Several authors expanded on [20, 21]. In [4], it is shown that the O(log?n) upper bound of [20]
is tight in the ring augmented with the l-harmonic distribution, i.e., greedy routing performs
in Q(log?n) expected number of steps. More generally, [3] shows that in the directed ring aug-
mented with any distribution, greedy routing performs in Q(log2 n/loglogn) expected number of
steps. In [23], a decentralized routing algorithm for augmented meshes is described. The routing
visits O(log?n) nodes, and distributively discovers routes of expected length O(logn(loglogn)?)
links using headers of size O(log?n) bits. Neighbor-of-neighbor greedy routing defined in [9, 25]
performs in O(Clggc log? n) expected number of steps, with ¢ long-range contacts per node. The

1+1/d

non-oblivious routing protocol described in [26] performs in O(log n) expected number of
steps in the d-dimensional mesh. The oblivious Indirect-greedy routing protocol described in [17]
performs in O(log1+1/ 4pn) expected number of steps in the d-dimensional mesh. [17] also shows
that the O(log?n) upper bound of [20] is tight in the d-dimensional mesh augmented with the d-
harmonic distribution, for any d > 1. [13] generalizes Kleinberg’s result to the family of “moderate
growth graphs”, namely the graphs such that, roughly speaking, the size of the ball of radius r
centered at any node z is equal to 7% (") where d, is a function that is C! and whose derivative
is in O(1/(rlogr)). Finally, [27] recently proposed several constructions of small worlds, based on
adding links with probability proportional to the inverse distance. These constructions generalize
both [20] and [22] (reference [22] will be discussed in more detail in Section 4).

2 Definitions and Notations

2.1 Performances of Greedy Routing

Let G = (V, E) be a connected graph with n nodes, and let D = {Prob,, x € V}, where, for any
x € V, Prob, is a probability distribution on V' \ {z}. An augmentation of G according to D is a
graph obtained from G by adding at every node z € V one directed edge (x,y) where y is chosen
with probability Prob,(y). For every ordered pair (s,t) € V x V, let X5, be the random variable
specifying the number of steps required by greedy routing to go from s to ¢ in the augmented graph.
Let EX; ¢ be the expected value of X, ;. Kleinberg proved that, if G is a 2-dimensional square mesh,
and D is the 2-harmonic distribution, then EX,; = O(log2 n). Greedy routing insures that, at every
step, one gets closer in G to the target, i.e.:

Fact 1 If x is the current node, and greedy routing forwards to y, then distg(y,t) < distg(x,t)
where distg() is the distance function in the underlying graph G.

As a consequence, greedy routing has no loop, and it requires at most distg (s, t) steps to go from
s to t. In particular, in graphs with polylogarithmic diameter, there is no need to add long-range
contacts for greedy routing to perform in polylogarithmic number of steps.



2.2 Treewidth

A tree-decomposition of graph G is a pair (T, X) where T is a tree, and X = {X,,v € V(T)} is a
collection of subsets of V(G) satisfying the following three conditions:

e Cl1: V(G) = UUGV(T)XU;
e C2: For any edge e of G, there is a set X, such that both end-points of e are in X,;

e C3: For any triple u,v,w of nodes in V(T), if v is on the path from u to w in T, then
X, NX, CX,.

Condition C3 can be rephrased as: for any node z of G, {v € V(T) | z € X, } is a subtree of
T. The sets X,s are called bags. The width, w(T, X), of a tree-decomposition (7', X) is defined as
max,cy (1) | Xp| —1, i.e., the width of (7', X) is roughly the maximum size of its bags. The treewidth
tw(QG) is defined as minw(7', X') where the minimum is taken over all tree-decompositions (7', X) of
(. For instance, trees have treewidth 1, cycles have treewidth 2, and n-node cliques have treewidth
n— 1.

Internal bags of a (non-artificial) tree-decomposition are separators of the graph. In fact, a
tree-decomposition can be obtained by recursively separating the graph. (This is essentially the
way treewidth is O(logn)-approximated in [6, 7].) We will intensively use this fact throughout all
the paper. Let (T, X) be a tree-decomposition of a graph G. Let z and y be two nodes of G, and
let b be a bag of T' containing neither x nor y, i.e., bN {x,y} = 0. Removing b from T results in
a forest of k > 1 trees T1,...,Tk. Since bN{z,y} = 0, C1 and C3 imply that there is a unique 4
(resp., j) in {1,...,k} such that x (resp., y) belongs to some bag(s) of T; (resp., 7). Assume that
i # j, then the following is folklore:

Fact 2 The bag b is an (z,y)-separator in G (i.e., all paths from x to y in G go through some
node(s) in b).

3 Tree-Decomposition-Based Long-Range Contacts Distribution

This section is dedicated to the definition of the tree-decomposition-based distribution of the long-
range contacts, and to the proof of the following result:

Theorem 1 For any connected n-node graph G of treewidth < k, there is a distribution D such
that, for any source-destination pair (s,t), EXs; = O(klog?n).

Corollary 1 For any connected n-node graph G of bounded treewidth, there is a distribution D
such that greedy routing in the augmented graph (G, D) performs in O(log?n) expected number of
steps.

Corollary 1 is close to optimal since [3] shows that greedy routing performs in Q(log? n/ log log n)
expected number of steps in the directed ring augmented with any distribution. In both Theorem 1
and Corollary 1, the distribution D is a tree-decomposition-based distribution, as defined in the
proof bellow.



Proof of Theorem 1. For any k > 2, let Gi be the class of connected graphs of treewidth < k.
Let G € G be a graph of n nodes, and let T be a tree-decomposition of G, of width < k. We
can choose T' with at most n bags (cf., e.g., Theorem 4.8 and Proposition 4.16 in [19]). In order
to describe the distribution D, we describe the D,s, i.e., we describe the setting of the long-range
contact of every node x in G. Recall that a centroid of an r-node tree is a node whose removal
from the tree results in a forest with at most r/2 nodes in each subtree. A tree has either one or
two centroids, and if a tree has two centroids, then they are neighbors.

Let ¢ be a centroid of T. For every node z € V, let us denote by Z the bag containing x that

is closest to ¢ in T. Note that, by C3 of the treewidth definition, Z is uniquely defined. We set
cgco) = ¢, and define ngl) as the subtree of T\ {cﬁ,?)} containing Z. Then, let cS) be a centroid of
ngl), and let 7% be the subtree of 71" \ {cggl)} containing Z. And so on. One constructs in this
way two sequences

(O, 1M 1))y and (M ela)y

x x

where (cf. Fig. 1):

L7V =T;

2. cg) is the centroid of ngi) closest to ¢ in T}

3. T8 is the subtree of T." \ {cg)} containing ;
4. c&q“) =7.

Note that since |T'| < n, and \ngHl)\ < ]Téi)]/l we get that both sequences are of length ¢, + 1 <
logn. The result hereafter directly follows from the definition of these two sequences.

Lemma 1 For any two nodes uw and v, and for any index i, if v e qui), then ) = cg) for
7=0,...,1, andcgj) ETU(Z) forj=1,...,q.

Tree-decomposition-based distribution D. Node z picks its long-range contact as follows:

o First z selects an index i € {0, ..., q,} with Prob, (i) = 1/(¢z + 1);

e Next, x selects a node y chosen uniformly at random in the bag cg).

Node y is the long-range contact of x (cf. Fig. 1).

We show that with this setting of the long-range contacts, for any source node s, and any target
node ¢, EXs; = O(klog®n). Let GT be an instance of the graph G augmented with the long-range
contacts set as above. Note that G is directed since the edge from a node to its long-range
contact is directed (edges of the underlying graph G remain undirected). Let ¢t € V(G), and let
ie{l,...,q}. Let

Ui ={veV(@)|veT").

Lemma 2 The node-set U;;%)cgj) C V(G) separates U; and V(G)\ U; in G*, i.e., any path in G

from a node in U; to a node in V(G) \ U; goes through a node in U;»_:%)cgj).

7



Proof. Let P be a path from a node in U; to a node in V(G) \ U;. Let e = (v, w) be an edge of
PfromveU;towe V(G)\U;. Ifve CEJ) for some j € {0,...,i — 1}, then we are done. Thus

assume v ¢ Ul_locgj ). Since w ¢ U;, we have 0 ¢ Tt(i). We consider separately the case where e is
an edge of G, from the case where e is a long-range link.

If e € E(G), then let b be a bag containing both v and w (this bag exists from C2). On the one
hand, by C3, w belongs to all bags on the path in T' from b to w. On the other hand, we have b
further from ¢ than v, i.e., U is on the path from b to ¢ in T. Now, by construction of the sequence
{cij), 0 < j < ¢}, the neighborhood of Tt(i) in T (i.e., the set of bags not in Tt(i) but adjacent to
some bag in Tt(i)) is included in U;_:%)cgj ). Hence b € Tt(i) since otherwise v would belong to some
bag of the neighborhood of Tt(i) (by C€3), which would imply v € U’ %cﬁj ). Since @ is closer to c

than b, but @ ¢ Tt(i), there is some cgj), j €40,...,i—1} on the path from b to @ in T. Therefore,
(4)

w € U;_:%)ct , proving Lemma 2.

If e ¢ E(G), then w is the long-range contact of v. By the setting of the long-range contacts,

w € Uq“ ch, 7 By Lemma 1, all bags c(] ) ®

of T( ) , then, as in the case e € E(G), combining C3 with the fact that w ¢ T( yields w € UJ ch ),
(1) 1)

and we are done. Thus assume that w does not belong to any bag of 7,’. Therefore w € U’_ = OCU .
From Lemma 1, since v € Tt(i), P = cgj ) for j=0,...,i. Therefore w € U; 5@9 ), which completes

the proof of Lemma 2. o

for j > i are nodes of T} If node w belongs to some bag b

Let (Tt(o),Tt(l), . ,Tt(qt)) and (¢ © cgl),. cﬁ‘”)) be the sequences of subtrees and centroids
corresponding to the target ¢. Let x be the current node. (Initially, = is the source node s.) Let

i be the largest index such that Z € Tt(i). Let xg,x1,...,2, be the sequence of nodes visited by
i)

greedy routing from z = xy until either it reaches a node z, with z, ¢ Tt( , or it reaches t.

Lemma 3 Let y € U;'»:chj). For every £ = 0,...,r — 1, the probability that y is the long—mnge
contact of xy is at least 1/(klogn). The probability that the long-range contact of x is in cgj) s at
least 1/logn for every j =0,...,1i

Proof. We have z; € T, @ for every £ < r. Thus, from Lemma 1, for any ¢ < r, c;e) = c,E] ) for

j = 0,...,i. Therefore, every node x4, £ < r, has its long-range contact in a specific bag cgj ),
0 < j < i, with probability 1/(1 + ¢;,). A node y € c(] ) for some j < 1 is the long-range contact
of xy with probability at least 1/(]c§j)\(1 + ¢z,)). Since ]cgj)] <k, and 1+ ¢, < logn, Lemma 3
follows. ©

Lemma 4 The path from s to t constructed by greedy routing does mot visit any bag CEO), . ,cgqt)

more than k times.

Proof. Since T has width < k, no bag contains more than k£ nodes. Thus, from Fact 1, no bag can

be visited by greedy routing more than k times on the way from s to ¢. This is true in particular

for bags CEO), . ’ngt)' o



Finally, we will make use of the following simple result. Let (X;);>1 be a sequence of independent
random variables in {0,1,..., N} with

Prob({X; =j})=p/N ifje{l,...,N};
Prob({X; =0}) =1 — p;

for some 0 < p < 1. We consider the following iterative process. Let Sy = {b1,...,bx} be a set of
N non negative integers. After the ith trial, if X; > 0, then all integers b; > bx, in the current set
are removed, i.e., S; = S;_1 \ {b; | bj > bx,}. Let Y be the random variable specifying the number
of trials ¢ until S; becomes empty.

Lemma 5 EY < N/p.

Proof. The set becomes empty after the first trial ¢ such that X; = j, where b; = minyb,. This
occurs with probability at least p/N. o

Let P be the path followed by greedy routing from s to ¢ in G*. We decompose P into a
sequence of subpaths Py P P ... P, where the first node of Fy is s, the last node of P, is ¢, and, for

everyi=0,1,...,q, P, C Tt(z) and is minimal for that property. More explicitely, let P = xg, ..., z,
with g = s and o, = ¢. For i =0, ..., ¢, let a; be the smallest index such that, for every j > a,,

(0)

zj € Tt(i). In particular, ag = 0 since s € T' = Tt0 and every node of G belongs to some bag of

T'. Similarly, ag, < r since greedy routing eventually reaches ¢ € cﬁ‘”) € Tt(qt). We define P; as the

path in G which starts at x,,;, and ends at x,,,, 1, but P, which ends at ¢. (If a;+1 = aj, then P;
is the empty path.) We have:

Pl = > IP 3)
=0

Let i € {0,1,...,¢:}, and consider P;. By definition, while traveling along P;, greedy routing

never goes out of Tt(l). Thus, from Lemma 2, it does not visit nodes x such that 7 € Ué;})cﬁj ),

)

P, may however go in and out of Tt(iJrl .

Tt(iﬂ) is through ng‘)‘ From Lemma 3, for each node x of P;, the long-range contact y of z is
in CEZ) with probability at least 1/logn. Assume success, i.e., y € CEZ). From Fact 1, no node z

with distg(z,t) > distg(y, t) will be ever visited by greedy routing after z. In particular, no node

From Lemma 2, the only way P; goes in and out of

z € cgl) with distg(z,t) > distg(y,t) will be ever visited by greedy routing after z. In the same
spirit as for Lemma 5, we just say that those nodes y and z € cgl) are “removed”. We are in the

situation of Lemma 5 with p > 1/logn, and N = |c§i)| < k. Thus, after an expected number of at

most O(klogn) trials, all nodes in ng’) are removed. Therefore, from Lemma 4, after this expected

amount of trials, no nodes of cy) will be ever visited by greedy routing. Hence, once in P;, the path
P enters P;y; after at most O(klogn) expected number of steps. In other words, the expected
length of P; is O(klogn). Therefore, from Eq. 3, the expected length of the path P is at most

O(qiklogn) < O(klog®n) which completes the proof of Theorem 1. [

Theorem 1 is an existential result. Nevertheless, a combination of this theorem with known
results from the literature allows us to explicitly construct a long-range contact distribution for



any graph G. This is however to the price of a logtw(G) factor in the performances of greedy
routing. More precisely, a tree-decomposition 7" of any graph G, with width < O(tw(G) log tw(G)),
can be computed in polynomial time (see, e.g., [7]). Once this is done, since the distribution D in
Theorem 1 can obviously be computed in polynomial time, we get:

Corollary 2 There is an polynomial time algorithm that, for any connected n-node graph G of
treewidth < k, computes a distribution D such that greedy routing in the augmented graph (G, D)
performs in O(k:logk:log2 n) expected number of steps.

4 The Case of Social Networks

4.1 Substratum of Tree-Decomposition

As already mentioned in the Introduction, social entities share a common knowledge about their
relative distances, based on their geographical positions, on their professional occupations, on their
hobbies, or on any criteria available to the entities. This common knowledge could be modeled by a
graph G. The random events of life create connections between individuals who have, a priori, very
little in common. This could be modeled by random links added on top of the underlying graph G.
This is essentially the main acknowledged justification to the hypothesis that a social network can
reasonably be modeled by an augmented graph (G,D) (cf., e.g., [17, 21, 23]). Hereafter, we argue
that, in addition, D can reasonably be assumed to be a tree-decomposition-based distribution.

For each criterion, the individuals can be grouped in large families. For instance: Africans,
Americans, Europeans, etc., or artists, scientists, farmers, etc. This can be done recursively. For
instance, Europeans can be grouped according to their countries of leaving, while scientists can be
grouped according to their scientific domains. And so on. This clustered and hierarchical structure
of the social networks was already pointed out by several authors (cf., e.g., [1, 8, 12, 14, 31]). The
model in [22] was the first model specified to capture this hierarchy (see also [27]). However, this
model assumes that the hierarchy is induced by a specific structured graph, defined a priori. (More
precisely, in the model, nodes are leaves of a complete b-ary tree, and the downer is the lowest
common ancestor of two nodes, the more likely these two nodes are to be connected by a long-
range link.) Moreover the model in [22] reflects one type of hierarchy only (e.g., arts/music/opera)
whereas social entities belong to several interleaved hierarchies such as those based on the place
of living, the professional activity, the recreative activity, etc. In contrast, a tree-decomposition
of the “natural” acquaintances (i.e., the acquaintances described by the graph G) determines a
hierarchy that is inherited from these acquaintances, and not specified a priori. This hierarchy
is the expression of all the underlying interleaved hierarchies. (This “general” hierarchy could
be interpreted a posteriori in the same way one interprets the result of a Principal Components
Analysis, but this is beyond the scope of this paper.) The long-range contacts enable jumping
across this hierarchy, as illustrated on Fig. 1, and one may jump upwards as well as downwards
across the hierarchy. In addition, the hierarchy is viewed differently from each node. In particular,
nodes that are placed far apart in the tree-decomposition have very different views of the hierarchy.
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4.2 Clustered Networks

Social networks are known to have high clustering coefficient [31]. That is, two social entities having
both an acquaintance with a third one are likely to know each other. A high clustering coefficient
limit the number of long chordless cycles in the acquaintance graph, simply because the probability
that a cycle of length ¢ be chordless is at most (1 — p)¢ where p is the probability that two nodes
sharing a common neighbor be connected. This motivated us to study greedy routing using tree-
decomposition-based long-range contact distributions in graphs of bounded chordality. Formally,
the chordality of a graph G is the maximum length of a chordless cycle in G. In particular, a graph
of chordality 3 is a chordal graph.

Theorem 2 For any connected graph G of n nodes and chordality -y, there is a tree-decomposition-
based distribution D enabling greedy routing in (G, D) to perform in O((vy + logn)logn) expected
number of steps, for any source-destination pair.

The proof uses the same arguments as in the proof of Theorem 1, combined with the following
two additional facts.

1. For any n-node connected graph of chordality ~, there is a tree-decomposition with at most
n bags such that two nodes in the same bag are at distance at most v/2 (cf., e.g., [18]).

2. Let z9 = s,x1,%9,...,2, =t be the path followed by greedy routing from s to ¢;
If distg(z;, 2;) < d then [i — j| < d.

Note that the result of Theorem 2 is independent from the treewidth of the graph. It has an
important consequence:

Corollary 3 For any n-node graph G of chordality O(logn) (in particular for any chordal graph),
there s a tree-decomposition-based distribution D such that greedy routing in the augmented graph
(G, D) performs in O(log?n) expected number of steps.

5 Concluding Remark

Assuming that social networks are well modeled by graphs of small chordality augmented with long-
range links set according to a tree-decomposition-based distribution, Corollary 3 may well explain
why greedy routing is so efficient in social networks, such as observed in Milgram’s experiment.

Acknowledgments: The author is thankful to Cyril Gavoille, Emmanuelle Lebhar, and Nicolas
Nisse, for their help and comments.
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Figure 1: Tree-decomposition-based long-range contacts distribution

This figure displays all possible locations of the long-range contacts of some node x € V(G). The

tree-decomposition T has ¢ = ¢\ as centroid, and 7 € V(T) is displayed as the black node.

Removing cg) from T results in three subtrees. Node T is in the middle subtree ngl), whose

centroid is cg) Removing c§) from T( ) results in three subtrees. Node 7 is in the bottom-right

subtree ng ), whose centroid is cg). Removing cgc ) from T( ) results again in three subtrees. Node

3) (3) (3) (3)

, whose centroid is ¢y ’. Removing ¢y’ from Ty
subtrees. Node Z is in the upper-right subtree ng ). whose centroid is cgv ). The process stops here
by assuming that 7 = cgl). Therefore g, = 4. Node z € V(@) chooses its long-range contact

y € V(G) as one of the nodes in one of the bags c(o) M cg) c§c3),c§04).

7 is in the upper-left subtree ng results in four
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