
L R I

A LANGUAGE-DRIVEN TOOL FOR FAULT

INJECTION IN DISTRIBUTED SYSTEMS

HOARAU W / TIXEUIL S

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

02/2005

Rapport de Recherche N° 1399

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

A language-driven tool for fault injection in distributed
systems

William Hoarau Sébastien Tixeuil

LRI-CNRS 8623 et INRIA Grand Large
{hoarau,tixeuil}@lri.fr

Abstract

In a network consisting of several thousands computers, the occurrence of faults is unavoid-
able. Being able to test the behavior of a distributed program in an environment where we
can control the faults (such as the crash of a process) is an important feature that matters
in the deployment of reliable programs.

In this paper, we present FAIL (for FAult Injection Language), a language that permits
to elaborate complex fault scenarios in a simple way, while relieving the user from writing low
level code. Besides, it is possible to construct probabilistic scenarios (for average quantitative
tests) or deterministic and reproducible scenarios (for studying the application's behavior
in particular cases). We also present FCI, the FAIL Cluster Implementation, that consists
of a compiler, a runtime library and a middleware platform for software fault injection in
distributed applications. FCI is able to interface with numerous programming languages
without requiring the modi�cation of their source code, and the preliminary tests that we
conducted show that its e�ective impact at runtime is low.

Résumé

Dans un réseau constitué de plusieurs milliers d'ordinateurs, l'apparition de fautes est
inévitable. Être capable de tester le comportement d'applications réparties dans un environ-
nement où il est possible de contrôler les fautes (telles que le crash d'un processus) est une
caractéristique importante pour la mise en ÷uvre de programmes �ables.

Dans ce rapport, nous présentons FAIL (pour FAult Injection Language), un langage qui
permet d'élaborer des scénarios de fautes complexes de manière simple, tout en évitant à
l'utilisateur d'écrire du code de bas niveau. De plus, il est possible de construire des scénarios
probabilistes (pour des tests moyens quantitatifs) ou déterministes et reproductibles (pour
tester le comportement de l'application dans des cas particuliers). Nous présentons également
FCI (pour FAIL Cluster Implementation), qui comporte un compilateur, une bibliothèque
d'éxecution et un intergiciel pour l'injection de fautes par programme dans les applications
distribuées. FCI est capable de s'interfacer avec de nombreux langages de programmation
sans requérir de modi�er le code source des applications, et les tests préliminaires que nous
avons menés montrent que son impact e�ectif sur le temps d'exécution est faible.

Chapter 1

Introduction

In a network including several thousands machines, the appearance of faults is unavoidable.
Some applications (for example peer to peer applications) involve a considerable number
of users, e.g. to exchange �les or to execute long calculations (SeTi@Home, Decrypthon,
Xtremweb, Boinc, etc.). For those applications, the appearance and disappearance of partic-
ipating machines are unpredictable, very frequent and occur eventually while the application
is run.

It is particularly di�cult to study the functioning of large-scale distributed programs :
it would be necessary to have a considerable number of computers and engineering power
to execute the software in an actual situation, to measure the performances or to detect the
defects. With the di�culty to set up such experiments and the fact that fault occurrences
in such systems is not controllable nor predictable (it is also di�cult to compare various so-
lutions), two other approaches are possible: simulation and emulation. Simulation consists
in using a single computer to simulate the behavior of a network of computers. It allows
complete control of the runtime environment, but fails in imitating the actual behavior of
all components in the system. Emulation consists in using a small network to reproduce the
behavior of a large-scale network. Current platforms for emulation use, e.g., one thousand
powerful machines on a fast network, and every single machine emulates, using proper soft-
ware, a dozen machines of lower power, each "believing" to be independent. Emulation also
limits emulated machines' access to the network devices in order to reproduce the bigger
system conditions. Such a system allows to control the programs execution environment,
and to modulate it according to the network that we wish to emulate. However, it is not
enough to emulate the machines used by the participants: it is also necessary to reproduce
their behavior.

Testing the validity of fault-tolerant software and measuring the impact on performance
of occurring faults requires to be able to control those faults. Indeed, a fundamental result [3]
shows that in an asynchronous distributed system (where the relative speeds of the processors
are not known and unbounded), it is impossible to solve the consensus problem (all processors
terminate agreeing on some initial value) when there is as little as one faulty process, even
when the considered fault is as simple as a crash fault. The reason for this is that the decided
value can depend on just one process, and that in an asynchronous system, it is impossible

1

to distinguish between a crashed process and a very slow one. When an application is run
on a cluster, it is likely that machines will run roughly at the same speed (for example
a one to ten ratio on relative speeds makes easy to solve the consensus problem), so the
considered system is actually synchronous. Afterwards, when the application is then run at
a larger scale (e.g. in an Internet-like setting) where the strong synchrony hypothesis does
not hold any more, crucial issues related to fault-tolerance and asynchronous settings have
been overlooked.

In this paper, we concentrate on studying crash (with potential restart) faults in asyn-
chronous distributed applications. However, we target platforms that are widely available
(e.g. clusters or grids), but that might actually exhibit synchronous (or partially syn-
chronous) behavior. To this purpose, we provide a scheme for distributed software fault
injection. While there exist hardware methods (that consist in injecting faults into the ac-
tual hardware), they are di�cult to set up, expensive, unstable, and can damage the actual
hardware. On the other side, software methods (that consist in injecting faults using proper
software) are easier to set up, may be reproduced, and do to risk to damage the hardware
used for the experiment. In the context of cluster of grid platforms, software methods have
the additional advantage to be compatible with emulation mechanisms.

2

Chapter 2

Related works

When considering solutions for software fault injection in distributed systems, there are
several important parameters to consider. The main criteria is the usability of the fault
injection platform. If it is more di�cult to write fault scenarios than to actually write the
tested applications, those fault scenarios are likely to be dropped from the set of performed
tests. The most obvious point is that simple tests (e.g. every few minutes or so, a randomly
chosen machine crashes) should be simple to write and deploy. On the other hand, it should
be possible to inject faults for very speci�c cases (e.g. in a particular global state of the
application), even if it requires a better understanding of the tested application. Also,
decoupling the fault injection platform from the tested application is a desirable property, as
di�erent groups can concentrate on di�erent aspects of fault-tolerance. Decoupling requires
that no source code modi�cation of the tested application should be necessary to inject
faults. Also, having experts in fault-tolerance test particular scenarios for application they
have no knowledge of favors describing fault scenarios using a high-level language, that
abstract practical issues such that communications and scheduling. Finally, to properly
evaluate a distributed application in the context of faults, the impact of the fault injection
platform should be kept low, even if the number of machines is high. Of course, the impact is
doomed to increase with the complexity of the fault scenario, e.g. when every action of every
processor is likely to trigger a fault action, injecting those faults will induce an overhead that
is certainly not negligible.

We now review previous approaches relatively to those criteria.

2.1 ORCHESTRA
ORCHESTRA [2] is a fault injection tool. It allows the user to test the reliability and the
liveliness of distributed protocols. A fault injection layer is inserted between the the tested
protocol layer and the lower layers, and allows to �lter and manipulate messages exchanged
between the protocol participants. Messages can be delayed, lost, reordered, duplicated,
modi�ed and new messages can be spontaneously introduced into the tested system to bring
it into a particular global state.

3

The reception script and the sending script are written in Tcl language and determine
which operations are to be performed on received/sent messages. These scripts are speci�ed
with state machines. Transitions in these state machines are driven by the type of the mes-
sage, its contents, the history of received messages or other information that was previously
collected during the test (e.g. local time, number of received messages, etc.). The message
modi�cations are speci�ed using a user-de�ned script. The resulting message is passed to
the next layer of the protocol stack.

ORCHESTRA is a "Message-level fault injector" because a fault injection layer is in-
serted between two layers in the protocol stack. This kind of fault injector allows to inject
faults without requiring the modi�cation of the protocol source code. However, the user
has to implement his faults injection layer for the protocol he uses. The expressiveness of
the faults scenario is limited because there is no communication between the various state
machines executed on every node. Then, as the faults injection is based on exchanged mes-
sages, the knowledge of the type and the size of these messages is required. In summary,
ORCHESTRA is well adapted for the study of network protocols, but is too complex to use
and not expressive enough to study distributed applications.

2.2 NFTAPE
The NFTAPE project [8] arose from the double observation that no tool is su�cient to
inject all fault models and that it is di�cult to port a particular tool to di�erent systems.
NFTAPE [8] provides mechanisms for fault-injection, triggering injections, producing work-
loads, detecting errors, and logging results. Unlike other tools, NFTAPE separates these
components so that the user can create his own fault injectors and injection triggers us-
ing the provided interfaces. NFTAPE introduces the notion of Lightweight Fault Injector
(LWFI). LWFIs are simpler than traditional fault injectors, because they don't need to in-
tegrate triggers, logging mechanisms, and communication support. This way, NFTAPE can
inject faults using any fault injection method and any fault model. Interfaces for the other
components are also de�ned to facilitate portability to new systems.

In NFTAPE, the execution of a test scenario is centralized. A particular computer, called
the control host, takes all control decisions. this computer is generally separated from the
set of computers that execute the test. It executes a script written in Jython (Jython is a
subset of the Python language) which de�nes the faults scenario. All participating computers
are attached to a process manager which in turn communicates with the control host. The
control host sends commands to process managers according to the fault scenario. When
receiving a command, the process manager executes it. At the end of the execution or if
a crash occurs, the process manager noti�es the control host by sending a message. All
decisions are taken by the controller, which implies that every fault triggered at every nodes
induces a communication with the controller. Then, according to the de�ned scenario, the
controller sends a fault injection message to the appropriate process manager which can then
inject the fault.

Although NFTAPE is modular and very portable, the choice of a completely centralized

4

decision makes it very intrusive (its execution strongly perturbs the system being tested) if
a considerable amount of resources is not dedicated to the controller. Scalability is then an
issue if the controller is to manage a large number of process managers, and NFTAPE is
run on regular clusters or grids (where there is no overpowered node that can take care of
controlling the fault injector). Furthermore, implementing tests can end up in being very
di�cult for the user (the user may have to implement every component).

2.3 LOKI
LOKI [1] is a fault injector dedicated to distributed systems. It is based on a partial view
of the global state of the distributed system. The faults are injected based on a global state
of the system. An analysis a posteriori is executed at the end of the test to infer a global
schedule from the various partial views and then verify if faults were correctly injected (i.e.
according to the planned scenario). Normally, injecting faults based on a global state of a
distributed application leads to a high impact on its execution time. However, the technique
used by LOKI allows to verify the validity of the injected faults while limiting their impact
on the execution time.

In LOKI, every process of the distributed system is attached to a LOKI runtime to
form a node. The LOKI runtime includes the code which manages the maintenance of
the partial view of the global state, injects faults when the system arrives in a particular
state, collects information about state changes and faults injections. LOKI proposes three
execution modes: centralized, partially distributed and fully distributed. The de�nition of a
scenario in LOKI is made by specifying the state machine used to maintain the local state,
faults that are to be injected, and implementing a probe used to instrument the application
in order to detect events (events are used to trigger faults). The user has to de�ne fault
identi�ers and associate them to global states of the tested application, and then has to
implement the probe by modifying the application source code. Calls to functions of the
LOKI library must be inserted into the source code of the tested application to notify the
LOKI runtime about events so that the appropriate state is reached. Also, to inject faults,
the user has to implement the injectFault() function and insert it into the source code of
the tested application.

LOKI is the �rst fault injector for distributed systems that allows to inject faults based
on a global state of the system and to verify if these faults were correctly injected. However,
it requires the modi�cation of the source code of the tested application. Furthermore, faults
scenario are only based on the global state of the system and it is di�cult (if not impossible)
to specify more complex faults scenario (for example injecting "cascading" faults). Also,
LOKI doesn't provide any support for randomized fault injection.

5

Chapter 3

Our solution

Our solution consists in two main components, that are described separately. First, FAIL
(for FAult Injection Language) is a language that permits to easily described fault scenarios.
Second, FCI (for FAIL CLuster Implementation) is a distributed fault injection platform
whose input language for describing fault scenarios is FAIL. Both components are developed
as part of the Grid eXplorer project [4] which aims at emulating large-scale networks on
smaller clusters or grids.

The FAIL language allows to de�ne fault scenarios. A scenario describes, using a high-
level abstract language, state machines which model fault occurrences. The FAIL language
also describes the association between these state machines and a computer (or a group of
computers) in the network.

The FCI platform (see Figure 3.1) is composed of several building blocks:
The FCI compiler : The fault scenarios written in FAIL are pre-compiled by the FCI

compiler which generates C++ source �les and default con�guration �les.

The FCI library : The �les generated by the FCI compiler are bundled with the FCI
library into several archives, and then distributed across the network to the target
machines according to the user-de�ned con�guration �les. Both the FCI compiler
generated �les and the FCI library �les are provided as source code archives, to enable
support for heterogeneous clusters.

The FCI daemon : The source �les that have been distributed to the target machines are
then extracted and compiled to generate speci�c executable �les for every computer
in the system. Those executables are referred to as the FCI daemons. When the
experiment begins, the distributed application to be tested is executed through the
FCI daemon installed on every computer, to allow its instrumentation and its handling
according to the fault scenario.

Our approach is based on the use of a debugger to trigger and inject the software faults.
The tested application can be interrupted when it calls a particular function or upon exe-
cuting a particular line of its source code. Its execution can be resumed depending on the
considered fault scenario.

6

Figure 3.1: The FCI fault injection platform

With FCI, every physical machine is associated to a fault injection daemon. The fault
scenario is described in a high-level language and compiled to obtain a C++ code which will
be distributed on the machines participating to the experiment. This C++ code is compiled
on every machine to generate the fault injection daemon. Once this preliminary task has
been performed, the experience is then ready to be launched. The daemon associated to
a particular computer consists in (i) a state machine implementing the fault scenario, (ii)
a module for communicating with the other daemons (e.g. to inject faults based on a
global state of the system), (iii) a module for time-management (e.g. to allow time-based
fault injection), (iv) a module for the instrumenting the tested application (by driving the
debugger), and (v) a module for managing events (to trigger faults).

FCI is thus a Debugger-based Fault Injector because the injection of faults and the
instrumentation of the tested application is made using a debugger. This makes it possible
not to have to modify the source code of the tested application, while enabling the possibility
of injecting arbitrary faults (modi�cation of the program counter or the local variables to
simulate a bu�er over�ow attack, etc.). From the user point of view, it is su�cient to specify
a fault scenario written in FAIL to de�ne an experiment. The source code of the fault
injection daemons is automatically generated. These daemons communicate between them
explicitly according to the user-de�ned scenario. This allows the injection of faults based
either on a global state of the system or on more complex mechanisms involving several
machines (e.g. a cascading fault injection). In addition, the fully distributed architecture
of the FCI daemons makes it scalable, which is necessary in the context of emulating large-
scale distributed systems. FCI daemons have two operating modes: a random mode and
a deterministic mode. These two modes allow fault injection based on a probabilistic fault
scenario (for the �rst case) or based on a deterministic and reproducible fault scenario (for
the second case). Using a debugger to trigger faults also permits to limit the intrusion

7

Criteria ORCHESTRA NFTAPE LOKI FAIL + FCI
High Expressiveness no yes no yes
High-level Language no no no yes

No Source Code Modi�cation yes no no yes
Scalability yes no yes yes

Probabilistic Scenario yes yes no yes
Global-state-based Injection no yes yes yes

Figure 3.2: Fault injection systems comparison

of the fault injector during the experiment. Indeed, the debugger places breakpoints which
correspond to the user-de�ned fault scenario and then runs the tested application. As long as
no breakpoint is reached, the application runs normally and the debugger remains inactive.

In a nutshell, the essential di�erences between our approach and the aforementioned
works are summarized in Figure 3.2.

3.1 The FAIL language
In FAIL, fault scenarios are described with named state machines that can be associated to
one or several machines of the system. State machines are described using guarded commands
like guard -> action. A guard is a predicate on the current state of the state machine,
the time or the occurrence of events (e.g. exceptions being thrown, a particular function of
the tested program being executed, a particular line of the source code - if it is available
- of the tested program being reached, a particular message from another state machine
being received, etc.). An action is simply a sequence of instructions, and can also bring the
machine into a new state. When the predicate which corresponds to the guard is true, the
corresponding rule is activatable. When an activatable rule is activated, the corresponding
action is executed.

The explicit use of states for the state machines allows to ease programming by avoiding
the use of too many variables. The intrusion of the faults injector is limited because all
guards are not systematically evaluated. Only the guards that correspond to the current
state of the machine may generate an event and are thus the only ones to be evaluated. The
use of messages for communication between state machines allows to inject faults according
to a global state of the system. Of course, if all faults are to be triggered according to a
global state machine, the intrusion is likely to increase signi�catively.

Besides, the guards can depend on random variables to allow the injection of probabilistic
faults. Several functions for random numbers generation are prede�ned, but the user can use
other functions of an existing library if it is necessary to make probabilistic tests according
to a speci�c plan.

The possible instructions in the action of a guarded command are the sending of messages
to other state machines (e.g. to notify the arrival of the tested program at a particular state),

8

assignments of internal variables of the state machine and actions which permit the control
of the tested program. These control actions are:

• stop: stops the execution of the program,

• continue: resume the execution of the program from where it was previously stopped
(after a stop action),

• halt: stops de�nitively the execution of the program;

• restart: restarts the program in its initial state.

On one hand, stop and continue actions allow to add asynchronism to the system, by
acting on the relative speeds of the participating processes of the distributed application.
On the other hand, halt and restart actions make it possible to simulate de�nitive system
failures (halt only) or with recovery (halt and restart).

3.1.1 Syntactic elements of the FAIL language
A FAIL automaton is de�ned using the constructor Daemon. Here is a simple example of an
automaton written in the FAIL language:

Daemon Adv1 { ?ok -> !done, halt; }

In this example, ?ok is a guard, !done an instruction and halt another instruction. The
guard ?ok means "upon receipt of message ok", the instruction !done means "I send done
message" and the instruction halt means "the process executed on the local machine which
is associated to the FAIL daemon stops de�nitively".

In a sequence of actions, the actions are separated by commas. The semicolon is used at
the end of a rule. Every sequence of actions has to end with the target state the machine
will be placed into when all actions are done (using the goto keyword). If at the end of a
sequence of actions, there is no target state, then the target state is the current state of the
automaton.

Daemon Adv2 { node 1: ?bye -> stop, goto 2;
node 2: ?hello -> continue, goto 1; }

In this example, when the automaton receives the message bye, it interrupts the execution
of the tested application. Then, when it receives the message hello, it resumes its execution.
This mechanism is repeated until the end of the test.

Each automaton is associated to a computer of the system. This association is made
using the keyword Computer.

Computer p1 { daemon = Adv1; }

9

In this example, Adv1 is associated to the computer which has the identi�er p1.
In practise, the applications to be tested run on a large number of computers, it is thus

necessary to o�er the possibility for the user to associate a automaton to a group of computers
to facilitate the writing of the scenario. The de�nition of this group is made using the Group
keyword.

Group g1 { size = 100; daemon = Adv1; }

In this example, Adv1 is associated to 100 computers of the system which are individually
accessible through a named table of identi�ers g1.

The user has access to several constants, variables and prede�ned functions. They are
all pre�xed with FAIL_ and are composed with capital letters and "_". It is possible to
access the global time (in seconds) FAIL_GLOBAL_CLOCK, the local time (in milliseconds)
FAIL_LOCAL_CLOCK, a table FAIL_COMPUTERS containing the identi�ers of all used computers
in the system, a function FAIL_SIZE taking a table of computers identi�ers and returning
its size, a function FAIL_RANDOM(min, max) returning a uniform random integer taken from
the interval [min,max], and a function

FAIL_RANDOM_TABC(tab_comp, nb_comp)

taking table of computers identi�ers tab_comp and an integer nb_comp and returning a table
of identi�ers whose size is nb_comp and whose elements are chosen randomly among those
of tab_comp.

The guards are conjunctions of predicates with boolean values. The conjunction is de-
noted by the operator &&. The various predicates which can be part of a guard are the receipt
of a message, the test of equality, inequality or di�erence of a variable and a value, the test
of a function call by the tested program or the test of the arrival of the tested program in a
particular line of its source code.

Daemon Adv3 { int rand = FAIL_RANDOM(1,2);
// definition of a random variable.
time_g timer = FAIL_GLOBAL_CLOCK + 20;
timer && rand == 1 -> halt; }

In this example, at the end of 20 seconds of global time, the automaton stops de�nitively
the tested process with a probability of 0.5.

3.1.2 Example
In this example, a distributed program which requires 500 machines, will have to cope
with the following fault scenario: every minute, some computers (randomly chosen) will be
potentially faulty (they cease to execute the application). The number of potentially faulty
computers ranges between 1 and 4. The potentially faulty computers must fail before calling
the send_value function or when the tested program arrives at the line 666 of the matrix.c
�le.

10

spyfunc send_value ; // the "send_value" function can be used in a
guard
Daemon dem_root { // the "dem_root" state machine

// "timer" contain the global time plus 2 minutes
// (the global time is in seconds)
// The keyword "always" allows to evaluate a variable each time
// there is recursion on a node.
// (This automaton does not have nodes, thus the variables are
// recomputed at the end of the execution of the command actions).

always time_g timer = FAIL_GLOBAL_CLOCK + 120;
// "rand" ranges uniformy from 1 to 4

always int rand = FAIL_RANDOM (1, 4);
// "comp_to_fail" contains the random choice of "rand" computers.

always tabc comp_to_fail = FAIL_RANDOM_TABC (All_comp, rand);
timer -> !crash(comp_to_fail); // when timer expires, send message

// "crash" to all computers in "comp_to_fail"
}

Daemon dem_other { // the "dem_other" state machine
// "kill_line" refers to a line in the source code that can be used
// in a guard.

ln kill_line = "matrix.c":666;
node 1 : // Upon receipt of message
?crash -> goto 2; // "crash", go to node 2.

node 2 : // When the tested program calls "send_value" or arrives
// at line 666 of "matrix.c", permanently stop its execution
// and go to node 1.

kill_line -> halt, goto 1;
before(send_value) -> halt, goto 1;

}

Computer comp_root { // the "comp_root" computer
program = "test 500"; // "test 500" is the command line to be

// executed
daemon = dem_root; // computer "comp_root" is driven by

// "dem_root"
}

Group group_others { // the "group_others" group
size = 499; // this group has 499 machines
daemon = dem_other; // computers in this group are driven by "dem_other"

}

If there are no processes launched on a machine that executes the "halt" action, then
this action does not have any e�ect. The expression timer -> !crash(comp_to_fail) is
a guarded command. When the moment de�ned by timer is reached, the action is exe-

11

cuted. Here, the action consists in a sending of the message crash to the set of machines
comp_to_fail (which was previously calculated).

When an automaton consists of several guarded commands, it is possible that several
guards become activatable at the same moment (for example if they depend on the reception
of the same message). In this case, only one guarded command is executed. The choice of this
guarded command depends on the execution mode of the automaton (there are two modes).
In the random mode, the criterion is to randomly choose among activatable commands. In
the deterministic mode, the �rst activatable command appearing in the automaton de�nition
is executed. This second mode is necessary, albeit less intuitive, if reproducibility of the tests
is to be ensured.

3.2 The FCI platform
The FCI platform is the �rst fault injection platform that uses FAIL as its input language.
We now describe the implementation of the runtime library and address some deployment
issues. Finally, we run some preliminary tests to investigate the potential impact of FCI on
the tested applications.

3.2.1 The FCI library
The FCI library supplies to the automatons generated from the user's scenario basic building
blocks that are necessary for the execution. This library consists in a set of C++ classes
which use the standard C++ library and the ACE library (Adaptive Communication Envi-
ronment) [7, 6], that is available on a large set of system platforms (including MS Windows
and various Unixes). The classes of the FCI library can be partitioned in three main cate-
gories:

Event management The FCI library use the ACE library to manage events. It supplies
a mechanism for events multiplexing. An ACE class calledReactor [5] is used to wait
for particular events to occur. When an object is interested by a particular event
(e.g. meter, network connection, etc.), it registers itself with the appropriate Reactor
object which also starts waiting. When one of the expected events occurs, the Reactor
activates the object which were interested by it. This mechanism allows to wait for
several events of di�erent types with a minimal impact on the functioning of the tested
application. Indeed, when the Reactor is waiting for events, the FCI daemon remains
sleeping.

Application control The FCI library uses gdb software to control the tested application.
This mechanism allows to observe and to control the behavior of the application with-
out modifying its source code and with low intrusiveness1. Also, having the source

1The written application should however be written to be �debugger friendly�, i.e. properly resume
blocking operations when interrupted (the gdb debugger makes use of signals to control the execution of the
debugged process).

12

code of the application is not necessary. For full features, at least the application com-
piled in debug mode is needed. However, if only a �release� application is available,
automatas that do not use knowledge of the source code (e.g. using timers, messages,
etc.) can be implemented. Furthermore, gdb works with many di�erent programming
languages, which allows to use our tool for numerous existing applications.

Daemon communication The FCI daemons are themselves a distributed application. We
use the ACE library to connect and communicate with distant machines. Besides, a
con�guration �le (which is automatically generated) allows to deploy the whole appli-
cation.

3.2.2 Deployment
The compilation of a FAIL scenario (e.g. file.fl), using the FCI compiler, produces a
dedicated directory. This directory contains the generated C++ �les corresponding to the
fault scenario, the source code of the FCI runtime library, and Perl language scripts used
for deployment. The �init� script copies appropriate FCI source code to every participating
machines (that are speci�ed using a con�guration �le) and compiles them into FCI deamons
executable �les speci�c to every platform. The �exec� script spawns every daemon. When
all daemons are initialized, either each daemon executes a command (if such command was
provided by the user) or wait for some other daemon to connect. A distinguished daemon, the
entry point, takes care of waiting for all other daemons to be properly initialized. The entry
point daemon need not (but can) participate to the experiment. When the experiment is
over, the �stop� script is to be executed to shutdown all daemons on participating machines.

3.2.3 Preliminary tests
Due to the still early stage of development of FCI, only simple preliminary tests were carried
out. Those tests are aimed at determining the impact of our solution on the execution time
of a distributed application, rather than actually evaluating distributed applications in a
faulty environment. The application being used for the tests consists in a server and several
clients. The tests were led on 61 machines performing under Linux 2.6.7. Thirty machines
were equipped each with a 2083 MHz processor and 885 Mb RAM (the server was run on
one of those machines). Six machines were equipped each with two 1533 MHz processors
and 885 Mb RAM. Eighteen machines were equipped each with a 1533 MHz processor and
885 Mb RAM. Seven machines were equipped each with a 1800 MHz processor and 504 Mb
RAM. All machines were connected using a 100 Mbps Ethernet network. We considered two
possible kinds of clients (that were executed each on 60 machines):

1. the sleepy client executes 60 times a loop where it sleeps for 10 seconds and then
performs a TCP connection to the server and wait for some response,

2. the looping client executes 60 times a loop where it performs a calculus (an addition
within a inner loop) and then performs a TCP connection to the server and wait for

13

Client Ref. Empty Time Func. 1->all all->1
sleepy 0 0.01% 0.02% 0.03% 0.08% 0.10%
looping 0 0.00% 0.31% 0.08% 0.18% 0.17%

Figure 3.3: FCI Overhead

some response.

This operation is then repeated several times and averaged over all clients. The description
of the tests we made and the results that we obtained are as follows:

First, we ran the application without using FCI, to obtain a reference execution time of
the application. The execution time we measured was 600.37 seconds with the sleepy clients,
and 554.02 seconds with the looping clients.

Then, we ran the application using FCI, by specifying an empty fault scenario. Every
program was also launched through a FCI daemon, the objective was to measure the extra
cost induced by our architecture. The execution's time of the application we measured was
600.42 seconds with the sleepy clients, and 554.03 seconds with the looping clients.

Then, we launched the application using FCI and time-based triggers (the FCI daemon
getting control of the application every 1 second, this duration corresponding to the granular-
ity of timing events in ACE). On the simulations we performed, each daemon was activated
556 times on average. However, no faults were injected and no guarded commands were
de�ned. This allowed us to verify the impact of this type of triggers on the performance.
The execution's time of the application we measured was 600.47 seconds with the sleepy
clients, and 555.75 seconds with the looping clients.

Then we ran the application using FCI and triggers based on functions calls in the tested
application (in our case, when the tested application tried to call the function connect_and_read
for the reception of messages (this function being called 60 times), the FCI daemon gets con-
trol of the application). Still we injected no faults and performed no actions. The measured
execution time was 600.58 seconds with the sleepy clients, and 554.48 seconds with the
looping clients.

Then, we launched the application using FCI and using triggers based on function calls
(60 function calls are made by each process), but this time we executed actions when a
particular function was called by the tested application. We considered to kinds of actions:

1. one to all : one daemon sends a message to every other daemon in the system,

2. all to one: every daemon sends a message to the same designated daemon.

The execution time we obtained was 600.83 (for the one to all scheme) and 600.95 (for the
all to one scheme) seconds with the sleepy clients, and 555.01 (for the one to all scheme) and
554.97 (for the all to one scheme) seconds with the looping clients.

Overall, the preliminary tests that we ran show that the event-driven model of our fault
injector limits its impact (i.e. calculated overhead) on the execution time of the application

14

to less than 0.31% for the considered cases (see Figure 3.3). The highest impact is reached
with the looping clients, which is explained by the interruption of the normal program �ow.
Also, the higher impact of the time based trigger can be explained by the higher number of
interruptions (556 on average versus 60).

15

Chapter 4

Concluding Remarks

In this article, we presented a new language (FAIL) and tool (FCI) for software fault injection
in distributed applications. Our solution allows to build complex faults scenario in a simple
way while preserving the user of writing low-level code. It is possible to generate probabilistic
scenarios (for average quantitative tests) or deterministic and reproducible scenarios (for
studying the application's behavior in particular cases). Lastly, it is possible to work with
applications written in many programming languages without requiring modi�cation of their
source code and the preliminary tests which we made show that FCI e�ective impact at
runtime is low.

We are now investigation using our fault injector in larger systems, typically by using em-
ulation systems, within the Grid eXplorer project framework. Extra development is needed
to integrate FCI with self-distributing applications (such as those based on MPI), since
our current implementation assumes that distributed applications are launched through a
ssh-like mechanism.

For typical fault scenarios in large scale systems, previous studies show that the average
time between two faults will be on the order of minutes. In this context and with the results
we obtained from the preliminary tests, FCI is expected to be scalable, at least when faults
do not require to maintain the whole global state during the whole execution (note that
probabilistic and cascading faults fall in this category).

The source code of FCI and the source code of the tests carried out in this article can be
downloaded at http://www.lri.fr/~hoarau/fail.html.

16

Bibliography

[1] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders. Loki: A state-driven fault
injector for distributed systems. In In Proc. of the Int. Conf. on Dependable Systems and
Networks, June 2000.

[2] S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A fault injection environment for
distributed systems. In In 26th International Symposium on Fault-Tolerant Computing
(FTCS), pages 404�414, Sendai, Japan, June 1996.

[3] M. Fisher, N.A. Lynch, and M.J. Paterson. Impossibility of consensus with one faulty
process. Journal of the ACM, 1985.

[4] http://www.lri.fr/~fci/GdX.

[5] D.C. Schmidt. Reactor: An object behavioral pattern for concurrent event demultiplexing
and event handler dispatching. In Proceedings of the 1st Pattern Languages of Programs
Conference, August 1994.

[6] D.C. Schmidt and S.D. Huston. C++ Network Programming: Mastering Complexity
Using ACE and Patterns. Addison-Wesley Longman, 2002. ISBN 0-201-60464-7.

[7] D.C. Schmidt and S.D. Huston. C++ Network Programming: Systematic Reuse with
ACE and Frameworks. Addison-Wesley Longman, 2003. ISBN 0-201-79525-6.

[8] D.T. Stott and al. Nftape: a framework for assessing dependability in distributed systems
with lightweight fault injectors. In In Proceedings of the IEEE International Computer
Performance and Dependability Symposium, pages 91�100, March 2000.

17

	RR1399entête.pdf
	RR1399rapp.pdf

