
Metisse is not a 3D desktop!

Olivier Chapuis, Nicolas Roussel
Projet In Situ (CNRS, Université Paris-Sud & INRIA Futurs)

LRI, Bâtiment 490, Université Paris-Sud
91405 Orsay Cedex, France

chapuis| roussel @lri.fr

ABSTRACT
Twenty years after the general adoption of overlapping win-
dows and the desktop metaphor, modern window systems
differ mainly in minor details such as window decorations or
mouse and keyboard bindings. While a number of innovative
window management techniques have been proposed, few of
them have been evaluated and fewer have made their way
into real systems. We believe that one reason for this is that
most of the proposed techniques have been designed using
a low fidelity approach and were never made properly avail-
able. In this paper, we present Metisse, a fully functional
window system specifically created to facilitate the design,
the implementation and the evaluation of innovative window
management techniques. We describe the architecture of the
system, some of its implementation details and present sev-
eral examples that illustrate its potential.

Categories and Subject Descriptors:D.4.9 [Systems Pro-
grams and Utilities]: Window managers. H.5.2 [User Inter-
faces]: Graphical user interfaces, Screen design, Windowing
systems.

Additional Keywords and Phrases:application redirection,
OpenGL, X Window system, VNC.

INTRODUCTION
Overlapping windows that users can freely move and resize
have been described more than thirty years ago and have
been available to the general public for more than twenty
years [14]. Over the time, various interaction techniques
have been proposed to control the placement, size and ap-
pearance of application windows. Yet, from a user perspec-
tive, the most popular window systems differ mainly in minor
details such as window decorations or mouse and keyboard
bindings, and not in their fundamental operation principles.
As B. Myers already put it in 1988, “there is not a great deal
of difference among different window managers” [13].

The growing range of activities supported by interactive com-
puter applications makes it more and more difficult to re-
member these activities and to organize them. At the same
time, recent advances in computer graphics and display tech-

nologies combined with decreasing costs are changing the
nature of the problem. High performance graphics cards,
high definition displays, big screens and multiple monitor
systems are becoming common place. From the original time
when window systems were too demanding and had to be
carefully tuned for performance, we have now moved to a
situation where a lot of software and hardware resources are
available. The question is: how should these resources be
used?

Little research has been performed on understanding peo-
ple’s space management practices [9]. While a number of
innovative window management techniques have been pro-
posed by HCI researchers over the last few years [23], very
few of these techniques have been formally evaluated and
even fewer, if any, have made their way into current window
systems. We believe that these two points are strongly related
to the fact that most of the techniques proposed by the HCI
community were designed using a low fidelity approach and
were never made properly available in a real window system.

Building a whole new window system is a hard task, one that
few HCI researchers are willing to do. At the same time, ex-
isting systems are either closed boxes, inaccessible to devel-
opers, too limited for the envisioned interaction techniques
or too complex to program. How would you implement a
zoomable window manager? One that would strengthen the
paper and desktop metaphor? One that can be used on a
tabletop display? One that would support bi-manual inter-
action?

In this paper, we present Metisse, a fully functional window
system specifically created to facilitate the design, the imple-
mentation and the evaluation of innovative window manage-
ment techniques. The paper is organized as follows. After
introducing some related work, we describe Metisse by pro-
viding an overview of its design and architecture as well as
some implementation details. We then present several ex-
amples that illustrate its potential for exploring new window
management techniques. Finally, we conclude with a discus-
sion and some directions for future research.

RELATED WORK

In this section, we briefly describe the current state of the
three most popular window systems as well as several re-
search projects related to the exploration of new window
management techniques.

Apple Mac OS X, Microsoft Windows and X Window
The Apple Mac OS X graphics system is based on three dif-
ferent libraries : Quartz for 2D graphics (a rendering engine
based on the PDF drawing model), OpenGL for 3D graphics
and QuickTime for animated graphics and video. Window-
ing services are available through a software calledQuartz
Compositor[1]. This software handles the compositing of all
visible content on the user’s desktop: Quartz, OpenGL and
QuickTime graphics are rendered into off-screen buffers that
the compositor uses as textures to create the actual on-screen
display.

Among other features, Quartz Compositor supports window
transparency, drop shadows and animated window transfor-
mations, which are used to create various effects such as the
scaleandgenieeffects used for window (de)iconification, the
fast user switchinganimation and the threeExpośe modes.
From a developer perspective, however, Quartz Composi-
tor is a closed box. Most of its functionalities are available
through a private, undocumented and probably unstable API
that only a few highly-motivated developers are willing to
use1. Gadget applications using this private API are inter-
esting because they show that the compositor is much more
powerful than it seems and that services such asExpośe are
in fact the result of a careful selection of its features. At the
same time, this is very frustrating since this compositing pol-
icy and the associated design space remain out of reach for
the HCI researcher.

The window system of Microsoft Windows is tightly coupled
with the operating system, which makes it difficult to access
and modify. Several applications such as SphereXP2 allow to
replace the traditional desktop by a 3D space in which arbi-
trary objects can be painted with 2D images from application
windows. However, the implementation details of these sys-
tems are not available. The next version of Microsoft Win-
dows will most probably include a composite desktop based
on DirectX 9 [3]. Details of what will be available to users
and developers remain uncertain. However, one can reason-
ably imagine that the compositing policy will probably be
out of reach for the average developer and HCI researchers.

A key feature of the X Window System [19] (or X) is that
any application can act as a window manager. As a con-
sequence, a large number of window managers have been
developed for this system, providing a range of appearances
and behaviors. Recent X extensions make it now possible for
these window managers to use a compositing approach [8]:
Composite, that allows windows to be rendered off-screen
and accessed as images;Damage, that allows an application
to be notified when window regions are updated; andEvent
Interception, that allows keyboard and mouse events to be
pre-processed before being sent to their usual targets. An-
other extension,Xfixes, provides the data types and functions
required by these extensions.

Experimental X window managers are slowly taking advan-
tage of these extensions to provide eye candy effects similar
to the ones proposed by Mac OS X. However, the numerous

1http://cocoadev.com/index.pl?WildWindows
2http://www.hamar.sk/sphere/

extensions required make it hard for developers unfamiliar
with the X architecture to implement their own compositing
window manager. Moreover, implementing a fully functional
and standard-compliant X window manager requires much
more than simple window image compositing and event pre-
processing.

Window management research
Many of the window management solutions proposed by the
HCI research community have been designed using a low-
fidelity approach and have never been implemented as part
of a real window system.Elastic windows[12], for example,
were only implemented within custom applications.Peeled
back windowshave been demonstrated within specific Tcl/Tk
and Java prototypes [2, 7]. Window shrinking operations
and dynamic space management techniques have also been
demonstrated within specific Java prototypes [10, 4].

A notable exception to the low-fidelity approach is Microsoft’s
Task Gallery [17], a system that uses input and output redi-
rection mechanisms for hosting existing Windows applica-
tions in a 3D workspace. The redirection mechanisms re-
quire several modifications of the standard window man-
ager of Windows 2000. They provide off-screen rendering
and event pre-processing facilities similar to those becoming
available in X [24]. However, as the Windows 2000 modi-
fications have never been publicly released, researchers out-
side Microsoft have not been able to experiment with this
high-fidelity approach.

Several recent projects have tried to move from low-fidelity
prototypes to real functional systems. Scalable Fabric [16],
mudibo [11] and WinCuts [22], for example, are imple-
mented as “real” applications supplementing the legacy win-
dow manager of Windows XP. However the fact that these
systems are developed outside the window system makes
them unnecessary complex, potentially inefficient and harder
to combine with other window or task management tech-
niques. As an example, since they can’t be notified of win-
dow content updates, the three mentioned systems resort to
periodically calling a slowPrintWindowfunction to get win-
dow images, which is both inefficient and unsuitable for in-
teractive manipulation of the window content.

Experimental desktop environments
Ametista [18] is a mini-toolkit designed to facilitate the ex-
ploration of new window management techniques. It sup-
ports the creation of new OpenGL-based desktop environ-
ments using both a low-fidelity approach, using placehold-
ers, as well as a high-fidelity approach based on X appli-
cation redirection through a custom implementation of the
VNC [15] protocol. Several 3D environments such as Sun’s
Looking Glass3 and Croquet [20] are also using the X exten-
sions we already mentioned to host existing applications.

The main problem of these new environments is that al-
though they provide the fundamental mechanisms for im-
plementing compositing window managers, they implement
only parts of the standard X protocols related to window
management (e.g. ICCCM, EWMH) that define the interac-

3http://wwws.sun.com/software/looking_glass/

http://cocoadev.com/index.pl?WildWindows
http://www.hamar.sk/sphere/
http://wwws.sun.com/software/looking_glass/

tions between window managers, applications, and the vari-
ous utilities that constitute traditional desktop environments
such as GNOME or KDE. As a consequence, these envi-
ronments are hardly usable on a daily basis, since they do
not support common applications such as mail readers, Web
browsers, media players or productivity tools.

METISSE
Metisse is an X-based window system designed with two
goals in mind. First, it should make it easy for HCI re-
searchers to design and implement innovative window man-
agement techniques. Second, it should conform to existing
standards and be robust and efficient enough to be used on a
daily basis, making it a suitable platform for the evaluation
of the proposed techniques. Metisse is not focused on a par-
ticular kind of interaction (e.g. 3D) and should not be seen
as a new desktop proposal. It is rather a tool for creating new
desktops.

The design of Metisse follows the compositing approach and
makes a clear distinction between the rendering and the inter-
active compositing process. TheMetisse serveris a modified
X server that can render application windows off-screen. The
default compositor is a combination of a slightly modified
version of a standard X window manager,FVWM, with an
interactive viewer calledFvwmCompositor. As we will see,
the use of FVWM provides a lot more flexibility and reliabil-
ity than custom-made window managers such as those used
by Ametista or Looking Glass. In the next section, we will
also show that other compositors can be used in conjunction
with the Metisse server.

Metisse is implemented in C and C++ and runs on the Linux
and Mac OS X platforms. Figure 1 shows the communica-
tion links between the various software components. The
Metisse server sends window-related information, including
window images, to FvwmCompositor. FvwmCompositor
displays these images with OpenGL, using arbitrarily trans-
formed textured polygons, and forwards input device events
to the server. FVWM can solely handle basic window opera-
tions such as move, resize or iconify, issuing the appropriate
commands to the X server. It can also delegate these opera-
tions to FvwmCompositor. New window operations can be
implemented either as FVWM functions, using a scripting
language, or in FvwmCompositor.

The following subsections will provide more implementation
details about the Metisse server, our modified FVWM and
FvwmCompositor.

Metisse server
The Metisse server is a fully functional X Window server de-
rived from Xserver4, a software used by the X community for
exploratory developments. It uses Xserver’s rootless exten-
sion to provide off-screen rendering of application windows:
each top-level window is rendered in a separate pixmap – an
image stored in a single contiguous memory buffer – that is
dynamically allocated when the window is created and re-
allocated when it is resized. The server stores along with
each window image the coordinates of its upper-left corner

4http://www.freedesktop.org/

Figure 1: General overview of Metisse.

in the compositor’s display. These coordinates are the ones
reported to applications that issue geometry requests.

Each time an application updates a window content, the
server sends an update notification to the compositor. The
corresponding region of the pixmap can be transmitted to the
compositor using a custom protocol similar to VNC. It can
also be copied in a shared memory space if the two processes
are running on the same machine. These off-screen render-
ing and update notification mechanisms are quite similar to
theCompositeandDamageX extensions. In fact, the main
reason why we didn’t use these extensions is that they were
still in early development stages and heavily discussed when
we started implementing Metisse.

The server sends various other notifications to the compositor
to indicate the creation, destruction, mapping or unmapping
of a window as well as geometry modifications, changes in
the stacking order and cursor changes. It provides the com-
positor with the actual bounds of shaped (i.e. non rectan-
gular) windows. It also indicates a possibly related window
for all transient and override redirect windows (e.g. pop-up
menus). All these notifications make it easy for the compos-
itor to maintain a list of the windows to be displayed and to
apply to pop-up menus the transformation used for the corre-
sponding application window.

Window visibility is usually an important concern for X
server implementations, since a window can be partially oc-
cluded by another one, or be partially off-screen. Traditional
servers generateExposeevents to notify applications of vis-
ibility changes and clip drawing commands to the visible
regions. Since the Metisse server renders windows in sep-
arate pixmaps, partial occlusion never happens. Moreover,
since the actual layout of windows is defined by the com-
positor, the notion of being partially off-screen doesn’t make
any sense in the server. As a consequence, the Metisse server
never generatesExposeevents.

Traditional X servers receiving a mouse event use the pointer
location and their knowledge of the screen layout to decide
which window should receive the event. Again, in the case
of Metisse, since the actual layout is defined by the compos-
itor, the server cannot perform this computation. As a con-

http://www.freedesktop.org/

sequence, the mouse events transmitted by the compositor
must explicitly specify the target window. When the screen
layout changes, X servers usually look for the window un-
der the pointer and, if it has changed, sendLeaveandEnter
events to the appropriate windows. In the case of Metisse,
this process is left to the compositor.

Metisse compositor: FVWM and FvwmCompositor
FVWM5 is an X window manager created in 1993 and still
actively developed. Originally designed to minimize mem-
ory consumption, it provides a number of interesting features
such as GNOME and KDE compatibility, customizable win-
dow decorations, virtual desktops, keyboard accelerators, dy-
namic menus, mouse gesture recognition, as well as various
focus policies. All these features can be dynamically config-
ured at run-time using various scripting languages.

Scripted functions are a powerful and simple way of extend-
ing the window manager. As an example, one can easily
define a new iconification function that raises the window,
takes a screenshot of it with an external program, defines
this image as the window icon and then calls the standard
iconification command. Commands can be executed condi-
tionally, depending on the nature and state of a window, and
can be applied to a specific set of windows. Commands and
scripted functions can be easily bound to a particular mouse
or keyboard event on the desktop, a window or a decoration
element. They can also be bound to higher-level events such
as window creation or focus changes.

FVWM can also be extended by implementingmodules, ex-
ternal applications spawned by the window manager with
a two-way communication link. FvwmCompositor is an
FVWM module implemented with the Ńucleo6 toolkit, which
provides a simple OpenGL scenegraph and a basic asyn-
chronous scheduler for multiplexing event sources. It uses
the window images as textures that can be mapped on arbi-
trary polygons, these polygons being themselves arbitrarily
transformed (Figure 2).

Implementing the Metisse compositor as an extension of
FVWM has several advantages over developing one from
scratch. First, almost nothing needs to be done to replicate
the standard window operations of existing window systems:
FvwmCompositor simply needs to display window images at
the positions given by the Metisse server, and to forward in-
put device events to it. Second, since FVWM reparents appli-
cation windows in new ones containing the decorations, these
decorations are automatically made available in the compos-
itor through the server. This has proved to be much more
convenient than writing OpenGL code to display and inter-
act with title bars and borders, buttons and pull-down menus.

FvwmCompositor displays its composition in an OpenGL
window of the native window system (a GLX window on
Linux and a Carbon/AGL window on Mac OS X). Although
not mandatory, this window is usually set to be full-screen,
so that FvwmCompositor visually replaces the native win-
dow system. The current implementation uses a perspective
projection. The third dimension (i.e. Z axis) of OpenGL is

5http://www.fvwm.org/
6http://insitu.lri.fr/˜roussel/projects/nucleo/

Figure 2: Basic composition showing a rotated Mozilla
window with a pop-up menu, a downscaled xemacs
window and a translucent GIMP window. Note that the
same transformation is used for the pop-up menu and
the Mozilla window.

used to enforce the stacking order of the windows defined
in the server by FVWM. In order to avoid intersections be-
tween windows that would not be on parallel planes, large Z
distances are used between windows, especially for the bot-
tom and top ones. Consequently, all windows are rescaled
to keep their original size despite their distance to the viewer
and the perspective projection.

Keyboard events are simply forwarded to the Metisse server,
the keyboard focus policy being handled by FVWM. When
receiving a mouse event, FvwmCompositor uses OpenGL’s
selection mode and picking to find the window under the
pointer. It then uses the transformation matrix associated to
that window and its position on the server’s virtual screen to
transform the mouse coordinates into the server’s coordinate
system. The event is then forwarded to the server with these
adjusted coordinates and additional information specifying
the target window.

In some situations, FvwmCompositor needs to use the trans-
formation matrix of a particular window even if the mouse
pointer is not over it. This happens, for example, if the user
is interactively resizing the window in a movement so fast
that the pointer leaves the window. To avoid this particular
situation, FvwmCompositor uses “infinite” polygons when
drawing windows in selection mode.

EXAMPLES
In the previous section, we have described the architecture
of Metisse and explained how this design provides a window
system that is both fully functional and highly tailorable. In
this section, we present several examples that illustrate how
Metisse facilitates the implementation of innovative window
management techniques.

Basic operations
The following code sample shows how FVWM can be con-
figured to scale windows by clicking on one of the buttons of
their title bar or pressing some keys:

http://www.fvwm.org/
http://insitu.lri.fr/~roussel/projects/nucleo/

Mouse 3 4 A SendToModule FvwmCompositor Scale 0.7

Key minus W C SendToModule FvwmCompositor Scale 0.9
Key plus W C SendToModule FvwmCompositor Scale 1.11

The first line requests FVWM to send the string “Scale 0.7”
to FvwmCompositor when the user does a right mouse click
(third button) on the minimize icon of the title bar (fourth
icon), no matter the active keyboard modifiers (A is for “any
modifier”). In addition to the specified string, FVWM will
send the X id of the window that received the click. A sim-
ple parser implemented in FvwmCompositor will decode the
message and perform a 30% reduction of the representation
of the specified window. Similarly, the two other lines re-
quest FVWM to send a scale command to FvwmCompositor
when the user presses Ctrl+ or Ctrl- while the mouse pointer
is on the window.

Other commands implemented in FvwmCompositor allow
to rotate a window around different axes, to scale it non-
uniformly and to set, lower and raise its opacity and bright-
ness levels. Metisse provides a default configuration file for
FVWM with menus and various bindings (mouse, keyboard
or high-level events) for all these operations. These bindings
make it possible, for example, to lower the brightness of all
windows except those of the application having the keyboard
focus. One can also specify that all windows of a certain type
should be semi-transparent (e.g. those of an instant messag-
ing application) and become fully opaque when the mouse
pointer comes over them.

FvwmCompositor commands can also be combined with tra-
ditional window operations in interesting ways. As a first
example, one can easily replace the usual maximizing oper-
ation by a function that zooms in the window so that it takes
the whole screen space instead of resizing it. Another inter-
esting combination is the ZoomOutAndMaximizeY function
illustrated by Figure 3. This function zooms out a window
uniformly and then resizes its height so that it takes the whole
screen. It is available in Metisse as a toggle switch (i.e. call-
ing the function a second time returns the window back to its
previous state).

The ZoomOutAndMaximizeY function is particularly inter-
esting when working on a large text document. When acti-
vated, it allows to see a larger part of the document which
in turn makes it easier to navigate. Calling the function a
second time restores the original scale and size of the win-
dow, providing a more detailed view of the selected part of
the document. A notable fact about this function is that it
has been designed and implemented in a few minutes by the
authors on a laptop during a subway trip between Paris and
Orsay. The final implementation is only a few lines long to
be added to the configuration file of Metisse.

Interactive window manipulation
Interactive window manipulations such as the peel-back op-
eration described in [2] (Figure 4) cannot be implemented
with FVWM scripts. This kind of complex operations need
to be handled directly by FvwmCompositor. In order to fa-
cilitate this, we have created a new FVWM command called
MetisseInteractiveManip.

Figure 3: ZoomOutAndMaximizeY funtion applied on
a Web browser showing a large document. The upper
image shows the browser before calling the function,
the lower one shows the resulting transformation.

Figure 4: Xemacs window being peeled back.

MetisseInteractiveManip abstracts the concept of interactive
manipulation from the FVWM point of view. It takes a win-
dow operation name and a cursor name as arguments. When
executed, it grabs the mouse and the keyboard (i.e. forbids
other applications to use them), changes the cursor for the
one specified, and checks that the specified window is still
valid. FVWM then sends to FvwmCompositor the operation
name along with the cursor position and the target window,
and enters a simple event loop, waiting for the operation to
complete. Upon completion, FVWM releases the mouse and

keyboard and reenters its main loop.

Interactive move, rotation and scaling are implemented in
the same way, as FvwmCompositor operations called in re-
sponse to an FVWM message sent by MetisseInteractiveMa-
nip. Here’s how the folding operation might be configured in
FVWM:

Immediately (I) raise the window and start the
fold operation (Fold) if the mouse is dragged (M)
or hold (H)
AddToFunc FoldWindow
+ I Raise
+ M MetisseInteractiveManip Fold FOLD_CURSOR
+ H MetisseInteractiveManip Fold FOLD_CURSOR

Bind the folding function to a right mouse button
click (3) on the window border (F A)
Mouse 3 F A FoldWindow

The interactive scale operation is in a certain way similar
to the usual resize operation and can be bound to the ma-
nipulation of the borders of the windows with a given key-
board modifier. Rotation around the Y axis can be bound to
a mouse drag on the left or right border of the window with a
keyboard modifier. The top and bottom borders can be used
for rotations around the X axis. The corners of the window
might be used for rotations around the Z axis.

We believe that window scaling might offer some interesting
new ways of managing overlapping windows. As opposed
to the traditional resize operation, scaling a window reduces
overlapping while preserving the layout of window contents.
This has proved to be useful, for example, for checking the
layout of a Web page in one or more browsers while editing
it in a text editor. Temporarily scaling down two applica-
tions also allows to quickly perform a series of interactions
between them, such as drag-and-drop or copy/paste opera-
tions. Note that when using a perspective projection, rota-
tions around the X and Y axis produce a non-uniform scaling
effect that can also be used to reduce overlapping.

Unlike low-fidelity environments usually used to implement
innovative window management techniques, Metisse allows
all these techniques to be used for real on a daily basis.
This can help adjusting the details of a particular technique.
The peel-back operation, for example, became much more
interesting after we decided to make the back side of the
peeled-back window translucent (Figure 4). Daily use also
helped realize that the ability to put back windows into a
“normal” state after some transformation was very important.
As a consequence, the default Metisse configuration allows
to cancel the transformations applied to a window by right-
clicking on its title bar, a simple animation being used to
ease the transition. We are also adding a history mechanism
with an undo/redo mechanism that should make it easier to
understand manipulation errors and to capture interaction se-
quences to create new commands.

Animations and temporary transformations
Animations have long been used in window managers to pro-
vide feedback of ongoing operations. Specifying animations
in Metisse is quite simple. It doesn’t require much program-
ming skills and could probably be done by experienced users.

The following code sample shows how to create an animated
iconification function. It uses two lines of Perl to send mul-
tiple Scalecommands to FvwmCompositor to produce the
animation effect. Note that this animation is implemented as
a script that can be parsed at run-time by FVWM. No modi-
fication of FvwmCompositor is necessary:

AddToFunc myIconify
+ I PipeRead ’for ((i=0; $i<20; i++)) ; do \

echo "SendToModule FvwmCompositor Scale 0.9"; \
done’

+ I State 1 True

AddToFunc myDeIconify
+ I PipeRead ’for ((i=0; $i<20; i++)) ; do \

echo "SendToModule FvwmCompositor Scale 1.11"; \
done’

+ I State 1 False

AddToFunc myToggleIconify
deiconify if iconified
+ I ThisWindow (State 1) myDeIconify
iconify if not iconified
+ I TestRc (NoMatch) myIconify

The functions for moving, rotating and scaling windows have
been implemented in two forms. The first one corresponds
to the usual operation mode: the user presses a mouse but-
ton and moves the mouse to define the transformation. When
the button is released, the window stays where it is, using
the last transformation. The second form is a temporary one:
when the mouse button is released, the window returns to its
original position with an animation. This second form pro-
vides interesting alternatives to the folding operation. While
experimenting with translucency effects, we also found out
that temporary modifications of the opacity level also offers
new interesting possibilities. As an example, when moving
a window, making that window or the other ones translucent
helps finding the right place to put it.

Position-dependent window transformations
Until now, we have presented techniques that put the user
in total control of every detail of the transformations applied
on windows. However, combining two or more elementary
transformations, such as a move and a rotation, can be quite
tedious. A simple and powerful way of solving this problem
is to define the transformation to be applied on a window as
dependent of its position. This way, the user will indirectly
apply these transformations by simply moving the window.
A position-dependent transformation can be described as a
function

f : S4 −→ {Finite sequence of OpenGL transformations}

whereS is the screen (or a set of screens with its layout for
a multi-monitor setting). Given a window we apply to it a
sequence of OpenGL transformationsf(ā, b̄, c̄, d̄) whereā =
(a1, a2), . . . d̄ = (d1, d2) are the coordinates of the corners
of the window.

As a first example, we use this approach to scale down win-
dows as they approach the left or right borders of the screen
so that they remain fully visible instead of becoming partly

off-screen (Figure 5). A minimum window size is imposed
so that at some point, moving the window further towards the
border of the screen has no effect. A special FvwmCompos-
itor command allows to restore the original position and size
of a window before it was moved and scaled. This new opera-
tion provides a simple and continuous way, as opposed to the
usual iconification operation, of moving a window from the
foreground to the background. Although different in spirit,
it is in some ways similar to the window manipulation tech-
niques provided by Scalable Fabric [16].

Figure 5: The top left window has been pushed against
the left border of the screen and scaled down. The
right window has the same size but is not scaled. The
small windows on the right have been either dragged
to the black region by hand or sent there by clicking on
a button in their title bar.

Daily use of this move-and-scale operation also gave us the
idea of implementing a second version of it, a temporary one
following the approach described in the previous subsection.
This version allows users to grab a window with the mouse,
move it to the side of the screen (and thus reduce its size) and
then simply release the mouse button to restore the window’s
original size and position. This new operation proved to be
quite useful to see what’s behind a window while keeping its
content visible.

Our second example of position-dependent transformation
has been designed for tabletop interactive displays [6]. In
this example, we split the screen into two equal partsA (the
bottom part) andB (the top part). When a window is totally
contained inA no transformation is applied to it. When it is
totally contained in partB, it is rotated around the Z axis by
180 degrees. When a window is between theA andB parts a
rotation between0 and180 degree is applied to it depending
on the distance to the splitting line. The rotation is applied
clockwise if the center of the window is on the left part of
the screen and counterclockwise if on the right. This way, if
a window is moved fromA to B, it is progressively rotated
upside down (Figure 6).

One nice feature of FvwmCompositor is that it can dupli-
cate a window. Users can interact with a duplicated window
exactly as if it were the original one (see [21] for more de-
tails). This feature can be combined with the tabletop inter-

Figure 6: Tabletop interface featuring automatic win-
dow orientation and on-demand window duplication.

actions we just described: the top-left window of Figure 6 is
a zoomed duplicate of the one in the middle of the lower
part. Window duplication is also interesting in multiple-
monitors configurations. Although the current implementa-
tion of Metisse does not support multiple simultaneous input,
this example has already proved to be useful in situations
where one user needs to show something to other people.

Interactive desktop manipulation

Global operations that transform all the windows can also
be implemented in Metisse. As an example, we have im-
plemented a zoomable desktop that allows to navigate in a
virtual space nine times bigger than the physical one (nine
virtual screens arranged in a 3x3 matrix). This desktop sup-
ports standard panning techniques that allow to move from
one virtual screen to adjacent ones by simply moving the
mouse towards the corresponding edge. It also supports con-
tinuous zooming with the mouse wheel, which provides an
overview of several adjacent screens at the same time up to a
complete bird’s eye view of the virtual desktop (Figure 7).

Figure 7: Bird’s eye view of a virtual desktop made of
nine virtual screens.

In the current implementation of this zoomable desktop,
clicking on a particular virtual screen from an overview ini-
tiates an animated transition that zooms into it. Note that
all applications remain accessible while in overview mode:
they can be moved between virtual screens, resized or closed
by the user who can also interact with them as usual. We
have also implemented a simple version of Apple’sExpośe,
which scales down the windows on the screen and tiles them
to make them all visible. Like our zoomable desktop and as
opposed toExpośe, this version lets the user interact with ap-
plications as usual. The zoomable desktop and ourExpośe-
like could probably be combined, the latter allowing users to
access windows otherwise unreachable.

DISCUSSION AND DIRECTIONS FOR FUTURE WORK
We believe that a well chosen subset of the techniques de-
scribed above could significantly improve window manage-
ment tasks. The main problem we have when we demon-
strate a Metisse-based desktop to some people is that they
tend to assume that Metisse is what they see (e.g. a 3D
desktop). Metisse is not a 3D desktop! It is a highly tai-
lorable, graphics-rich, out-of-the-box replacement for exist-
ing X desktops. Which makes it a perfect tool for rapid high-
fidelity prototyping of window management techniques. As
we already stated above, we believe this is an important point
and a great improvement over other experimental desktops
because it should make it possible to conduct longitudinal
studies of new window management techniques.

Metisse raises some interesting questions. As an example,
when the cursor comes over a transformed window, should
the same transformation be applied to the cursor itself? Con-
versely, when a transformation is applied on a window and
the cursor is on that window, should the cursor be automat-
ically moved to stay at the same place? Should a pop-up
menu or a transient window follow the transformation of its
parent window? In some cases, this seems desirable but in
some others not... Our experience indicates that a distinction
between windows in the user’s focus and peripheral windows
might help finding answers to these questions.

Metisse allows to easily add rendering artifacts to windows,
like shadows. Amon other things, we plan to investigate the
design of new artifacts that would help users to understand
the relations between the various windows. As an exam-
ple, one could show the relation between a dialog box and
its parent windows by drawing translucent lines between the
corners of the two windows. This, like the other window
management techniques described in this paper, should be
evaluated as part of a future longitudinal study.

Performance and preliminary evaluation
One of the authors uses Metisse on a regular basis. In par-
ticular, a large part of FvwmCompositor has been devel-
oped inside FvwmCompositor itself (modify the code, com-
pile and restart FvwmCompositor!). Metisse works perfectly
well for day to day activities such as e-mail and instant mes-
saging, digital pictures and web browsing, text and image
editing, as well as small-sized videos. Rotations and scal-
ing are often used to reduce overlapping. The overview
mode of the zoomable virtual desktop is used for rearrang-
ing windows. One limitation of the current implementation

is that OpenGL applications cannot be hardware-accelerated
in Metisse, which makes them slower than usual. The cur-
rent way of dealing with this is to switch from Metisse to the
native desktop for OpenGL applications (and high-resolution
videos).

The computer used by the author is a two years old Laptop
running Linux, with a 2 GHz Pentium IV, 768 MB of mem-
ory and a Radeon Mobility M6 graphics card with 32 MB
of memory. On that machine, applications making an ex-
tensive use of the X drawing API run at up to fifty frames
per second while high-resolution videos, as we explained,
can’t be played at their nominal frame rate. As an ex-
ample, a 720x576 Divx video is displayed at only twelve
frames per second. As illustrated by Figure 7, many applica-
tions can run together without problem. The limited amount
of video memory sometimes causes temporary performance
problems. However, iconification of a few windows is usu-
ally enough to free some memory and return to the standard
performance level. Several tests with a more recent graphics
card, a Nvidia GeForce with 128 MB of memory, doubled
the frame rate of drawing-based applications and allowed to
view the Divx video at nominal frame rate.

A preliminary version of the Metisse source code has been
publicly released in June 2004. A few maintenance releases
have followed. The last release has been downloaded more
than 4500 times and the Metisse web site serves around 800
pages by day. E-mail messages from about eighty people
were sent to the authors asking for support, giving some feed-
back and reporting a few bugs. Most people who contacted
us were very positive and a few of them actually use Metisse
as their default desktop. We are currently preparing an eval-
uation survey that will be distributed with the next release.
We are also working on an extension of Metisse that would
allow the recording of all window operations for later replay
and analysis.

Towards a variety of compositors
The Metisse server is currently being used by a group of peo-
ple from Mekensleep7, a company developing an OpenGL-
based on-line poker game. Their original motivation was to
be able to integrate an external chat application in the game.
Once they had implemented a basic Metisse compositor in
their application, they realized that it could also be used to
bring 2D interfaces built with traditional GUI toolkits such
as GTK+ into their OpenGL scene (Figure 8).

This idea of using Metisse to integrate 2D interfaces in 3D
environments seems very interesting to us. We hope that
Metisse will be used by other researchers in similar ways.
As a consequence, we are currently developing a library to
facilitate the use of the Metisse server and the implementa-
tion of new compositors. FvwmCompositor has a now rela-
tively long history. Some code clean-up will also be made,
which will probably facilitate the implementation of new
experimental window management techniques by other re-
searchers.

As we said in the previous section, FvwmCompositor can

7http://www.mekensleep.com/

http://www.mekensleep.com/

Figure 8: Poker3D as a Metisse compositor: the blue
windows contain GTK+ interface elements and are ren-
dered by the Metisse server.

display multiple instances of a window. But it can do more:
it can duplicate a window region (as described in [22]), cre-
ate holes in a window (as suggested in [9]), create a new
window from pieces of others, and embed part of a window
into another one. In fact, FvwmCompositor should be seen
as awindow regioncompositor (details are available in [21]).
The next natural step is to move to awidget compositor. We
are currently investigating the use of accessibility APIs to
get the widget tree associated to a particular window and
use it to support new interaction techniques. As an exam-
ple, since FvwmCompositor already handles all user input,
this should make it possible to use semantic pointing [5] for
window management.

CONCLUSION
In this paper, we have described Metisse, a window system
created to facilitate the design, the implementation and the
evaluation of innovative window management techniques.
We have presented the general architecture of the system and
described some of its implementation details. We have pre-
sented several examples of uses that illustrate its potential
and several directions for future research.

Metisse is available from http://www.lri.fr/ chapuis/metisse/

REFERENCES
1. Mac OS X v10.2 Technologies: Quartz Extreme and

Quartz 2D. Apple Technology brief, October 2002.

2. M. Beaudouin-Lafon. Novel interaction techniques for
overlapping windows. InProceedings of UIST 2001,
pages 153–154. ACM Press, November 2001.

3. J. Beda. Avalon Graphics: 2-D, 3-D, Imaging And
Composition. Presentation at the Windows Hardware
Engineering Conference, May 2004.

4. B. Bell and S. Feiner. Dynamic space management for
user interfaces. InProceedings of UIST 2000, pages
239–248. ACM Press, 2000.

5. R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Se-
mantic pointing: Improving target acquisition with

control-display ratio adaptation. InProceedings of CHI
2004, pages 519–526. ACM Press, April 2004.

6. P. Dietz and D. Leigh. DiamondTouch: a multi-user
touch technology. InProceedings of UIST 2001, pages
219–226, New York, NY, USA, 2001. ACM Press.

7. P. Dragicevic. Combining crossing-based and paper-
based interaction paradigms for dragging and dropping
between overlapping windows. InProceedings of UIST
2004, pages 193–196. ACM Press, 2004.

8. J. Gettys and K. Packard. The (Re)Architecture of the
X Window System. InProceedings of the Linux Sym-
posium, Volume 1, pages 227–237, July 2004.

9. D. Hutchings and J. Stasko. Revisiting Display Space
Management: Understanding Current Practice to In-
form Next-generation Design. InProceedings of
GI 2004, pages 127–134. Canadian Human-Computer
Communications Society, June 2004.

10. D. Hutchings and J. Stasko. Shrinking window oper-
ations for expanding display space. InAVI ’04: Pro-
ceedings of the working conference on Advanced visual
interfaces, pages 350–353. ACM Press, 2004.

11. D. Hutchings and J. Stasko. mudibo: Multiple dialog
boxes for multiple monitors. InExtended abstracts of
CHI 2005. ACM Press, April 2005.

12. E. Kandogan and B. Shneiderman. Elastic Windows:
evaluation of multi-window operations. InProceedings
of CHI 1997, pages 250–257. ACM Press, March 1997.

13. B. Myers. A taxonomy of window manager user in-
terfaces. IEEE Computer Graphics and Applications,
8(5):65–84, sept/oct 1988.

14. B. Myers. A brief history of human-computer in-
teraction technology.ACM interactions, 5(2):44–54,
march/april 1998.

15. T. Richardson, Q. Stafford-Fraser, K.R. Wood, and
A. Hopper. Virtual Network Computing.IEEE Internet
Computing, 2(1):33–38, Jan-Feb 1998.

16. G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch,
D. Hutchings, B. Myers, D. Robbins, and G. Smith.
Scalable Fabric: Flexible Task Management. InProc.
of AVI 2004, pages 85–89, May 2004.

17. G. Robertson, M. van Dantzich, D. Robbins, M. Cz-
erwinski, K. Hinckley, K. Risden, D. Thiel, and
V. Gorokhovsky. The Task Gallery: a 3D window man-
ager. InProceedings of CHI 2000, pages 494–501.
ACM Press, April 2000.

18. N. Roussel. Ametista: a mini-toolkit for exploring
new window management techniques. InProceedings
of CLIHC 2003, pages 117–124. ACM Press, August
2003.

19. R.W. Scheifler and J. Gettys. The X Window System.
ACM Transactions on Graphics, 5(2):79–109, 1986.

20. D. Smith, A. Raab, D. Reed, and A. Kay. Croquet: A
menagerie of new user interfaces. InProceedings of
C5 2004, pages 4–11. IEEE Computer Society, January
2004.

21. W. Stuerzlinger, O. Chapuis, and N. Roussel. User in-
terface façades: towards fully adaptable user interfaces.
Submitted for publication.

22. D. Tan, B. Meyers, and M. Czerwinski. Wincuts: ma-
nipulating arbitrary window regions for more effective
use of screen space. InExtended abstracts of CHI 2004,
pages 1525–1528. ACM Press, 2004.

23. M. Tomitsch. Trends and Evolution of Window Inter-
faces. Diploma thesis, University of Technology, Vi-
enna, December 2003. 132 pages.

24. M. van Dantzich, G. Robertson, and V. Ghorokhovsky.
Application Redirection: Hosting Windows Applica-
tions in 3D. InProceedings of NPIV99, pages 87–91.
ACM Press, 1999.

	INTRODUCTION
	RELATED WORK
	Apple Mac OS X, Microsoft Windows and X Window
	Window management research
	Experimental desktop environments

	METISSE
	Metisse server
	Metisse compositor: FVWM and FvwmCompositor

	EXAMPLES
	Basic operations
	Interactive window manipulation
	Animations and temporary transformations
	Position-dependent window transformations
	Interactive desktop manipulation

	DISCUSSION AND DIRECTIONS FOR FUTURE WORK
	Performance and preliminary evaluation
	Towards a variety of compositors

	CONCLUSION

