
Easy Fault Injection and Stress Testing with FAIL-FCI

William Hoarau Sébastien Tixeuil Fabien Vauchelles

LRI-CNRS 8623 et INRIA Grand Large

{hoarau,tixeuil}@lri.fr

Abstract

In a network consisting of several thousands computers, the occurrence of faults is unavoid-
able. Being able to test the behavior of a distributed program in an environment where we
can control the faults (such as the crash of a process) is an important feature that matters
in the deployment of reliable programs.

In this paper, we extend FAIL-FCI (for Fault Injection Language, and FAIL Cluster Im-
plementation, respectively), a software tool that permits to elaborate complex fault scenarios
in a simple way, while relieving the user from writing low level code. In particular, we show
that not only we are able to fault-load existing distributed applications (as used in most cur-
rent papers that address fault-tolerance issues), we are also able to inject qualitative faults,
i.e. inject specific faults at very specific moments in the program code of the application
under test. Finally, and although this was not the primary purpose of the tool, we are also
able to inject specific patterns of workload, in order to stress test the application under test.
Interestingly enough, the whole process is driven by a simple unified description language,
that is totally independent from the language of the application, so that no code changes or
recompilation are needed on the application side.

Résumé

Dans un réseau constitué de plusieurs milliers d’ordinateurs, l’apparition de fautes est
inévitable. Être en mesure de tester le comportment des programmes répartis dans un envi-
ronnement où on contrôle les fautes (comme le crash d’un processus) est une caractéristique
importante du déploiement de programmes fiables.

Dans cet article, nous étendons FAIL-FCI (pour FAult Injection Language et Fail Cluster
Implementation, respectivement), un outil logiciel qui permet d’élaborer des scénarios de
fautes complexes d’une manière simple, tout en évitant à l’utilisateur d’avoir à écrire du code
de bas niveau. En particulier, nous montrons que non seulement il est possible de déclencher
des fautes de manière quantitative (comme cela est fait dans la plupart des papiers qui
traitent de tolérance aux pannes), Nous sommes également capables d’injecter des fautes
de manière qualitative, par exemple injecter des fautes spécifiques à l’exécution de lignes
de codes spécifiques de l’application sous test. Enfin, et bien que cela ne constitue pas
l’objectif principal de notre outil, nous somme également capables d’injecter des motifs
spécifiques de charge, pour faire des tests de montée en charge de l’application. L’ensemble
de ces caractéristiques est pilotée par un langage de description unique, qui est totalement
indépendant du langage utilisé dans l’application, de manière qu’aucun changement du code
source ou recompilation de l’application n’est nécessaire.

Chapter 1

Introduction

One of the topics of paramount importance in the development of Grid middleware is the
impact of faults since their probability of occurrence in a Grid infrastructure and in large-
scale distributed system is actually very high. So it is expected that Grid middleware is
itself reliable and provides a comprehensive support for fault-tolerance mechanisms, such
as failure-detection, check-pointing-recovery, replication, software rejuvenation, component-
based reconfiguration, among others. One of the techniques to evaluate the effectiveness
of those fault-tolerance mechanisms and the reliability level of the Grid middleware is to
make use of some fault-injection tool and robustness tester to conduct some experimental
assessment of the dependability metrics of the target system. In this paper, we present a
software that can be used both for software fault-injection and for stress testing of distributed
applications, which are the basis for dependability benchmarking in Grid Computing.

In a network including several thousands machines, the appearance of faults is unavoid-
able. Some applications (for example peer to peer applications) involve a considerable num-
ber of users, e.g. to exchange files or to execute long calculations (SeTi@Home, Decrypthon,
Xtremweb, Boinc, etc.). For those applications, the appearance and disappearance of partic-
ipating machines are unpredictable, very frequent and occur eventually while the application
is run. It is particularly difficult to study the functioning of large-scale distributed programs:
it would be necessary to have a considerable number of computers and engineering power
to execute the software in an actual situation, to measure the performances or to detect the
defects. With the difficulty to set up such experiments and the fact that fault occurrences in
such systems is not neither controllable nor predictable (it is also difficult to compare various
solutions), two other approaches are possible: simulation and emulation. Simulation allows
complete control of the runtime environment, but fails in imitating the actual behavior of
all components in the system. Emulation consists in using a small network to reproduce the
behavior of a large-scale network. However, it is not enough to emulate the machines used
by the participants: it is also necessary to reproduce their behavior.

Testing the validity of fault-tolerant software and measuring the impact on performance
of occurring faults requires being able to control those faults. Indeed, a fundamental result [5]
shows that in an asynchronous distributed system (where the relative speeds of the processors
are not known and unbounded), it is impossible to solve the consensus problem (all processors

1

terminate agreeing on some initial value) when there is as little as one faulty process, even
when the considered fault is as simple as a crash fault. The reason for this is that the decided
value can depend on just one process and that in an asynchronous system, it is impossible to
distinguish between a crashed process and a very slow one. When an application is run on a
cluster, it is likely that machines will run roughly at the same speed (for example a one to ten
ratio on the relative speeds of the processors makes it easy to solve the consensus problem),
so the considered system is actually synchronous. Afterwards, when the application is then
run at a larger scale (e.g. in an Internet-like setting) where the strong synchrony hypothesis
does not hold any more, crucial issues related to fault-tolerance and asynchronous settings
have been overlooked.

2

Chapter 2

Related works

When considering solutions for software fault injection in distributed systems, there are
several important parameters to consider. The main criterion is the usability of the fault
injection platform. If it is more difficult to write fault scenarios than to actually write the
tested applications, those fault scenarios are likely to be dropped from the set of performed
tests. The issues in testing component-based distributed systems have already been described
and methodology for testing components and systems has already been proposed [6, 12].
However, testing for fault tolerance remains a challenging issue. Indeed, in available systems,
the fault-recovery code is rarely executed in the test-bed as faults rarely get triggered. As
the ability of a system to perform well in the presence of faults depends on the correctness
of the fault-recovery code, it is mandatory to actually test this code. Testing based on
fault-injection can be used to test for fault-tolerance by injecting faults into a system under
test and observing its behavior. The most obvious point is that simple tests (e.g. every few
minutes or so, a randomly chosen machine crashes) should be simple to write and deploy.
On the other hand, it should be possible to inject faults for very specific cases (e.g. in a
particular global state of the application), even if it requires a better understanding of the
tested application. Also, decoupling the fault injection platform from the tested application
is a desirable property, as different groups can concentrate on different aspects of fault-
tolerance. Decoupling requires that no source code modification of the tested application
should be necessary to inject faults. Also, having experts in fault-tolerance test particular
scenarios for application they have no knowledge of favors describing fault scenarios using a
high-level language, that abstract practical issues such that communications and scheduling.
Finally, to properly evaluate a distributed application in the context of faults, the impact
of the fault injection platform should be kept low, even if the number of machines is high.
Of course, the impact is doomed to increase with the complexity of the fault scenario, e.g.
when every action of every processor is likely to trigger a fault action, injecting those faults
will induce an overhead that is certainly not negligible.

Several fault injectors for distributed systems already exist. Some of them are dedicated
to distributed real-time systems such as DOCTOR [8]. ORCHESTRA [3] is a fault injection
tool that allows the user to test the reliability and the liveliness of distributed protocols.
ORCHESTRA is a ”Message-level fault injector” because a fault injection layer is inserted

3

between two layers in the protocol stack. This kind of fault injector allows injecting faults
without requiring the modification of the protocol source code. However, the expressiveness
of the faults scenario is limited because there is no communication between the various
state machines executed on every node. Then, as the faults injection is based on exchanged
messages, the knowledge of the type and the size of these messages is required. Nevertheless,
those approaches do not fit the cluster and Grid category of applications.

The NFTAPE project [14] arose from the double observation that no tool is sufficient to
inject all fault models and that it is difficult to port a particular tool to different systems.
Although NFTAPE is modular and very portable, the choice of a completely centralized
decision process makes it very intrusive (its execution strongly perturbs the system being
tested). Finally, writing a scenario quickly becomes complex because of the centralized
nature of the decisions during the tests when they imply numerous nodes.

LOKI [2] is a fault injector dedicated to distributed systems. It is based on a partial view
of the global state of the distributed system. An analysis a posteriori is executed at the end
of the test to infer a global schedule from the various partial views and then verify if faults
were correctly injected (i.e. according to the planned scenario). However, LOKI requires the
modification of the source code of the tested application. Furthermore, faults scenario are
only based on the global state of the system and it is difficult (if not impossible) to specify
more complex faults scenario (for example injecting ”cascading” faults). Also, LOKI there
is no support for randomized fault injection.

In [10] is presented Mendosus, a fault-injection tool for system-area networks that is
based on the emulation of clusters of computers and different network configurations.

Finally in [13] is presented a fault-injection tool that was specially developed to assess
the dependability of Grid (OGSA) middleware. However, the tool described in that paper
is very limited since it only allows the injection of faults in the XML messages in the OGSA
middleware, which seems to be a bit far from the real faults experienced in real systems.

Recently, the FAIL-FCI architecture [9] was proposed. This solution addresses most of
the drawbacks of previous approaches, and is overviewed in the next chapter.

4

Chapter 3

Overview of FAIL-FCI

In this chapter, we describe the FAIL-FCI framework that is presented in [9]. For further
explanations, please refer to the original paper. First, FAIL (for Fault Injection Language)
is a language that permits to easily described fault scenarios. Second, FCI (for FAIL Cluster
Implementation) is a distributed fault injection platform whose input language for describ-
ing fault scenarios is FAIL. The FAIL language allows defining fault scenarios. A scenario
describes, using a high-level abstract language, state machines which model fault occur-
rences. The FAIL language also describes the association between these state machines and
a computer (or a group of computers) in the network.

The FCI platform is composed of several building blocks:

The FCI compiler: The fault scenarios written in FAIL are pre-compiled by the FCI compiler
which generates C++ source files and default configuration files.

The FCI library: The files generated by the FCI compiler are bundled with the FCI library
into several archives, and then distributed across the network to the target machines
according to the user-defined configuration files. Both the FCI compiler generated files
and the FCI library files are provided as source code archives, to enable support for
heterogeneous clusters.

The FCI daemon: The source files that have been distributed to the target machines are
then extracted and compiled to generate specific executable files for every computer
in the system. Those executables are referred to as the FCI daemons. When the
experiment begins, the distributed application to be tested is executed through the
FCI daemon installed on every computer, to allow its instrumentation and its handling
according to the fault scenario.

The FAIL-FCI approach is based on the use of a software debugger. Like the Mantis
parallel debugger [11], FCI communicates to and from gdb (the Free Software Foundation’s
portable sequential debugging environment) through Unix pipes. But contrary to Mantis
approach, communications with the debugger are kept to a minimum to guarantee low over-
head of the fault injection platform (in our approach, the debugger is only used to trigger and

5

inject software faults). The tested application can be interrupted when it calls a particular
function or upon executing a particular line of its source code. Its execution can be resumed
depending on the considered fault scenario. With FCI, every physical machine is associated
to a fault injection daemon. The fault scenario is described in a high-level language and
compiled to obtain a C++ code which will be distributed on the machines participating to
the experiment. This C++ code is compiled on every machine to generate the fault injection
daemon. Once this preliminary task has been performed, the experience is then ready to be
launched. The daemon associated to a particular computer consists in:

1. a state machine implementing the fault scenario,

2. a module for communicating with the other daemons (e.g. to inject faults based on a
global state of the system),

3. a module for time-management (e.g. to allow time-based fault injection),

4. a module to instrument the tested application (by driving the debugger), and

5. a module for managing events (to trigger faults).

FCI is thus a Debugger-based Fault Injector because the injection of faults and the
instrumentation of the tested application is made using a debugger. This makes it possible
not to have to modify the source code of the tested application, while enabling the possibility
of injecting arbitrary faults (modification of the program counter or the local variables to
simulate a buffer overflow attack, etc.). From the user point of view, it is sufficient to
specify a fault scenario written in FAIL to define an experiment (See subsequent chapter).
The source code of the fault injection daemons is automatically generated. These daemons
communicate between them explicitly according to the user-defined scenario. This allows
the injection of faults based either on a global state of the system or on more complex
mechanisms involving several machines (e.g. a cascading fault injection). In addition, the
fully distributed architecture of the FCI daemons makes it scalable, which is necessary in
the context of emulating large-scale distributed systems. FCI daemons have two operating
modes: a random mode and a deterministic mode. These two modes allow fault injection
based on a probabilistic fault scenario (for the first case) or based on a deterministic and
reproducible fault scenario (for the second case).

6

Chapter 4

Demonstrating Fault Injection and
Stress Testing with FAIL-FCI

In [9], the vast majority of experiments were made on a custom made distributed program,
for which both source code and expertise were available. Moreover, tests only dealt with
the overhead of the FAIL platform, and simply showed that this overhead was, for practical
purposes, negligible.

In this chapter, we use FAIL-FCI to inject fault and stress test a readily available dis-
tributed application: XtremWeb [4]. The remaining of the chapter is organized as follows:
Section 4.1 reviews the XtremWeb platform that we use for our tests. Section 4.2 describes
the particular settings that we use for our experiments. Sections 4.3, 4.4, and 4.5 describe
respectively how to use FAIL-FCI for quantitative fault injection, qualitative fault injection,
and stress testing.

4.1 Overview of XtremWeb

XtremWeb is a general purpose platform that can be used for high performance distributed
calculus. A list of tasks (or jobs) is described by the user and then distributed over the
different available nodes of the system. The basic operating mode of XtremWeb is based
on a participants community, e.g. it allows a High School, a University or a Company to
setup and run a Global Computing or Peer to Peer distributed system for either a dedicated
application or a whole range of applications. The original XtremWeb application is written
in Java, but we used here the C++ version of the software, that is expected to achieve the
most efficient results. The XtremWeb tool is divided into three modules:

the dispatcher centralizes, organizes and distributes the tasks,

the client proposes a set of tasks to the manager,

a set of workers regularly requests a work from the manager.

7

Like other distributed system platforms, the XtremWeb platform uses (i) remote resources
(PCs, workstations, servers) connected to the Internet, or (ii) a pool of resources (PCs,
workstations, servers) inside a LAN.

4.2 Technical Settings

4.2.1 Hardware Settings

The experiments were performed on 30 machines running Linux 2.6.7 (except for the XtremWeb
dispatcher and the XtremWeb client which were run on a different machine). Thirteen ma-
chines were equipped each with a 2083 MHz processor and 885 Mb RAM. Six machines
were equipped each with two 1533 MHz processors and 885 Mb RAM. Eleven machines were
equipped each with a 1533 MHz processor and 885 Mb RAM. The dispatcher and the client
were run on a machine equipped with a 2995 MHz processor and 527 MB RAM. This last
machine was running Linux 2.6.8. All machines were connected using a 100 Mbps Ethernet
network.

4.2.2 XtremWeb Settings

For all performed experiments, the XtremWeb dispatcher and client were placed on a single
machine (lri7-209). The workload of the client does not really influence the dispatcher:
indeed, the client and dispatcher almost run in a sequential way; the client first gives a list
of jobs to the dispatcher at the beginning of the run, and the dispatcher notices the client
when the jobs have been completed and results are available. The workers are each placed
on a dedicated machine in the cluster (30 such machines).

Before a particular test starts, the dispatcher is started, as well as all workers. Then, the
client is started (the staring time of the client is referred to as the test begin time). When the
client exits (after receipt of an acknowledgement from the dispatcher), this time is referred
to as the test end time.

The particular application that is run with XtremWeb is POV-Ray, which creates three-
dimensional, photo-realistic images using a rendering technique called ray-tracing. For our
purpose, a task consists in calculating a particular picture using POV-Ray. This operation
is requested 40 times. When the dispatcher receives a task request from a worker, it sends
all necessary information to perform the calculus of one picture.

4.3 Quantitative Fault Injection

We first design a probabilistic fault scenario, to quickly get a quantitative view of the fault
tolerance capabilities of XtremWeb. We assume that both the dispatcher and the client are
not subject to faults (i.e. some tasks can be submitted, and some results can be returned).
XtremWeb workers are run on the remaining 30 machines that are subject to faults. The
running time is the time between the client is started and the results are collected. The fault

8

model is as follows: every x seconds, each of the XtremWeb workers may crash (and cease
functioning) with probability y. Yet, we wish to ensure that there exists a particular worker
that can not crash, in order to guarantee that the running time is always finite. The above
scenario can be expressed in a surprisingly terse way using the FAIL language (with x = 5
and y = 10% here):

spyfunc main;

Daemon ADV1 {
node 1:

before(main) -> continue, !ok(G1[1]), !go(G1), goto 2;
node 2:
}

Daemon ADV2 {
node 1:

before(main) -> stop, goto 2;
node 2:

?ok -> continue, goto 4;
?go -> continue, goto 3;

node 3:
always int x = FAIL_RANDOM(1,100);
always time_g timer = 5;
timer && x <= 10 -> halt, goto 4;
timer && x > 10 -> continue, goto 3;

node 4:
}

Computer P1 {
program = "dummy";
daemon = ADV1;

}

Group G1 {
size = 30;
program = "WorkerStatic -i lri7-209";
daemon = ADV2;

}

We now informally describe the aforementioned source code. First, two automata are
defined: ADV1 and ADV2, then automata ADV1 is associated to one computer P1 (that will
execute dummy code), while ADV2 is associated to 30 machines (that form the G1 group),
each executing the executable file WorkerStatic with the same parameters.

ADV2 runs as follows: the daemon first wait that the program has loaded, but before the
main function is executed, the program is halted. The execution continues when the ADV1

automata sends either the ’ok’ or the ’go’ message. Now, the ADV1 simply send the ’ok’
message to a particular automata in the G1 group, and then a ’go’ messages to all automata
in the G1 group. So, one automata in the G1 group first receive a ’ok’ message, moves to a
new state (node 4), from which it simply runs the program, ignoring subsequent messages

9

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

probability for a worker to crash

crash every 5 seconds
crash every 10 seconds

Figure 4.1: Impact of workers crash on execution time

and events. So the corresponding worker process runs smoothly afterwards. In contrast, the
other processes in the G1 group receive the ’go’ message. As a result, the state is changed
(node 3) so that they now receive timer events (every five seconds). When the time expires,
with 10% probability, the process under test crashes, while with 90% probability, the process
continues its computation for another 5 seconds. Further details about the FAIL language
can be found in [1].

We carried out this test using two values for x (5 and 10 seconds) and y varying from
10% to 90% with increments of 10%. The obtained results regarding the execution time of
the total set of jobs are summarized in Figure 4.1. As can be seen in Figure 4.1, for some
settings, the calculus did not terminate, due to a malfunction of the XtremWeb dispatcher
(recall that this process was not purposely given crash order by the FAIL-FCI framework).
So, we also collected information about the dispatcher failure during the tests, and these
results are presented in Figure 4.2.

Before running the tests, one would expect that the two curves would increase, with an
extra increasing gap between them. When there are no crashes, the time used to complete
the execution of the tasks is approximately 25 seconds. Starting with a probability of failure
of 40%, the results are as expected, but for lower probabilities, the rate of fault appearance
does not significantly change the execution time. Also, when failures occur only every ten
seconds, there is some kind of equilibrium (between 40% probability and 60% probability)
where the execution time does not vary much. This equilibrium reflects the fact that if more
failures occurred so far, it means that fewer failures are likely to appear (because there are
fewer healthy machines yet) in the future.

When some tests did not finished, we detected in these cases that the dispatcher was
still running but was not available anymore (i.e. workers could not communicate with the

10

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f d
is

pa
tc

he
r

fa
ilu

re

probability for a worker to crash

Workers crash every 5 seconds
Workers crash every 10 seconds

Figure 4.2: Impact of workers crashes on dispatcher failure

dispatcher to notify they completed their task). Figure 4.2 shows that starting from a 70%
probability for a worker to crash every five seconds, the dispatcher ends up failing in 50%
of the runs. Also, from a probability of 80% for a worker to crash every five second, the
dispatcher always fail. This failure of the dispatcher probably reveals a bug that would
extremely rarely occur in a real cluster, these fault rates being pretty extreme: every 5
seconds, 80% of the nodes crash!

4.4 Qualitative Fault Injection

The quantitative evaluation that was presented in Section 4.3 could also be handled, al-
though if a more tedious and cumbersome way, through proper scripting of the distributed
application. In this section, we go one step further and provide qualitative evaluation of the
faults that could potentially hit the system. In more details, we are interested here in which
part of the XtremWeb clients the fault occur. In particular, we consider the following four
possible logical states for a particular XtremWeb worker:

1. job received : the XtremWeb worker has received a job to perform from the XtremWeb
dispatcher,

2. after calculus : the XtremWeb worker has finished to perform its task,

3. job finished : the XtremWeb worker has notified the XtremWeb dispatcher that it
completed its job,

11

4. job completed : the XtremWeb worker has sent the XtremWeb dispatcher the results of
the completed task.

Our goal in this series of tests is to fix the number of workers (30) and the crash probability
(40%), but a worker may only fail at precise points in its program code: the points that
correspond to entering the four states mentioned above. The corresponding FAIL program
(i.e. fault scenario) is as follows (considering that faults would only occur when the worker
is in the state job completed):

spyfunc main;
spyfunc Protocol::DataSaved;
spyfunc Protocol::release;

Daemon ADV1 {
node 1:

before(main) -> continue, !ok(G1[1]), !go(G1), goto 2;
node 2:
}

Daemon ADV2 {
node 1:

before(main) -> stop, goto 2;
node 2:

?ok -> continue, goto 5;
?go -> continue, goto 3;

node 3:
always int x = FAIL_RANDOM(1,100);
before(Protocol::DataSaved) && x <= 40 -> continue, goto 4;
before(Protocol::DataSaved) && x > 40 -> continue, goto 3;

node 4:
before(Protocol::release) -> stop, goto 5;

node 5:
}

Computer P1 {
program = "dummy";
daemon = ADV1;

}

Group G1 {
size = 30;
program = "WorkerStatic -i lri7-209";
daemon = ADV2;

}

As in Section 4.3, there are two automata ADV1 and ADV2 that are dispatched in the same
way as before. The same trick to get at least one working worker is also used (using the ’ok’
and ’go’ messages). the key difference is the use of breakpoints to get back control over the
processes when a particular function is reached. In this scenario, the methods DataSaved
and release of the class Protocol are watched. The state job completed is reach after the

12

 0

 20

 40

 60

 80

 100

 120

 140

 160

ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

w
ithout fault

job received

after calculus

job finished

job com
pleted

using stop
using halt

Figure 4.3: Impact of the state of a worker when crashing

call to the method DataSaved has completed and just before the call of the method release.
Note that the release method is called often and in various contexts in the XtremWeb worker
code, but only corresponds to the job completed state after the DataSaved method has been
executed.

The obtained results are summarized in Figure 4.3. In this Figure, the category without
fault refers to the test without injecting faults (for comparison purpose). For every of the
four aforementioned possible states of the workers, two kinds of faults are considered:

1. suspending the process (using stop in the FAIL language) to simulate an overloaded
machine,

2. crashing the process (using halt in the FAIL language).

We did not collect information about possible dispatcher failures, since no crashes were
observed (this was expected, because the probability of crashes was 40%).

It was expected that injecting stop faults would induce worse performance than injecting
halt faults (because in the first case, the other end of the TCP connexion, i.e. the dispatcher,
is not notified by the network layer that something bad happened, while in the second case,
it usually is). This was confirmed by the results we obtained. We also expected that the
later the injection (but yet before the results are sent to the dispatcher), the more time it
would take to complete the calculus. However, and surprisingly, if the workers crash before
even starting a calculus, the performance is worse than if it crashes after the computation.
This behavior is probably due to an misconception in the XtremWeb dispatcher, that does
not expect failures just after the job was sent (at that time, it is probably not watching the
TCP connexion with the client, while it is when the job is near to completion). We also

13

remark that if a worker crashes after a job is completed the worker notified the controller
that the results are available), then the performance is almost the same as if no faults were
injected.

4.5 Stress Testing

Sections 4.3 and 4.4 showed how FAIL-FCI can be used to obtain failure resilience capabilities
of distributed applications using a unified approach for both quantitative and qualitative
analysis. We now show that the same tool can be set up to handle stress testing as well.
For this purpose, we use a slightly different scenario. The set of tasks is the same as before,
and the XtremWeb client and dispatcher are still on the same machine. The test begin time
is the time when both the XtremWeb client and dispatcher are up and running, waiting
for workers to perform the tasks. Then, a particular XtremWeb worker is launched into
action with probability y every x seconds. When the client exits (after having received the
acknowledgement from the dispatcher), the current time is taken as the test end time.

The corresponding scenario written using the FAIL language is as follows (considering
that x = 1 and y = 10%):

spyfunc main;

Daemon ADV1 {
node 1:

before(main) -> continue, !go(G1), goto 2;
node 2:
}

Daemon ADV2 {
node 1:

before(main) -> stop, goto 2;
node 2:

?go -> stop, goto 3;
node 3:

always int x = FAIL_RANDOM(1,100);
always time_g timer = 1;
timer && x <= 10 -> continue, goto 4;
timer && x > 10 -> stop, goto 3;

node 4:
}

Computer P1 {
program = "dummy";
daemon = ADV1;

}

Group G1 {
size = 30;
program = "WorkerStatic -i lri7-209";

14

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ex
ec

ut
io

n
tim

e

Probability for a worker to start

starts evrery 1 seconds
starts evrery 3 seconds
starts evrery 5 seconds
starts evrery 7 seconds
starts evrery 9 seconds

Figure 4.4: Stress testing

daemon = ADV2;
}

We performed tests varying x from 1 to 9 seconds (with increments of 2 seconds), and
varying y from 10% to 100%. The obtained results regarding the global execution time are
summarized in Figure 4.4. We did not collect information about dispatcher failure, since
none appeared.

It was expected that the shape of the curves would have a “U” form for at least the test
with x = 1 (getting workers to the job every second): if few workers arrive at the same
time, the performance is low, if several workers arrive at the same time, this is manageable
by the dispatcher and the performance is good, if many workers arrive at the same time,
the dispatcher would be more overloaded and the overall performance would be worse that
with fewer workers. In fact, all curves are decreasing, which means that the more workers
you get, the faster is the completion of the calculus. It also means that the C++ version of
XtremWeb can handle 30 new workers arriving at the same time with no problems (this is
the case where y = 100%).

15

Chapter 5

Concluding Remarks

We proposed a unified approach for fault injection and stress testing distributed applications.
Fault injection can be made using a quantitative approach (as in most related studies) as
well as the more original qualitative approach, where precise faults are inserted at precise
logical states of the application under test. Although the set of possible fault injection is
extremely large, the language that describes the faults scenario is high level and independent
from the language used in the application. This enables decoupling between the application
programmers and the test specifiers, so that expertise is used in the proper domain.

As a proof of concept, we also showed that the same specification language and fault
injection tool could also be used as a stress test platform. While the preliminary tests we
performed caused no problem, they actually raised a number of interesting open questions.
The main one relates to the use of FAIL-FCI at a larger scale (for purpose of stress testing).
We are currently investigating using our fault injector in larger systems, typically by using
emulation schemes, within the Grid eXplorer [7] project platform. Further studies are needed
to see the effect of correlated faults injection (such as those occurring when a virus is spread
throughout the network). Finally, extra development is needed to integrate FCI with self-
distributing applications (such as those based on MPI), since our current implementation
assumes that distributed applications are launched through a ssh-like mechanism.

16

Bibliography

[1] http://www.lri.fr/~hoarau/fail.html.

[2] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders. Loki: A state-driven fault
injector for distributed systems. In In Proc. of the Int. Conf. on Dependable Systems
and Networks, June 2000.

[3] S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A fault injection environment for
distributed systems. In In 26th International Symposium on Fault-Tolerant Computing
(FTCS), pages 404–414, Sendai, Japan, June 1996.

[4] G. Fedak, C. Germain, V. Néri, and F. Cappello. Xtremweb: A generic global computing
system. In Proceedings of IEEE Int. Symp. on Cluster Computing and the Grid, 2001.

[5] M. Fisher, N.A. Lynch, and M.J. Paterson. Impossibility of consensus with one faulty
process. Journal of the ACM, 1985.

[6] S. Ghosh and A. Mathur. Issues in testing distributed component-based systems, 1999.

[7] http://www.lri.fr/~fci/GdX.

[8] S. Han, K. Shin, and H. Rosenberg. Doctor: An integrated software fault injection
environment for distributed real-time systems, 1995.

[9] W. Hoarau and Sbastien Tixeuil. A language-driven tool for fault injection in dis-
tributed applications. In In Proceedings of the IEEE/ACM Workshop GRID 2005,
November 2005. also available as LRI Research Report 1399, february 2005, at
http://www.lri.fr/~hoarau/fail.html.

[10] X. Li, R. Martin, K. Nagaraja, T. Nguyen, and B. Zhang. Mendosus: A san-based
fault-injection test-bed for the construction of highly available network services, 2002.

[11] S. Lumetta and D. Culler. The mantis parallel debugger. In Proceedings of SPDT’96:
SIGMETRICS Symposium on Parallel and Distributed Tools, pages 118–126, Philadel-
phia, Pennsylvania, May 1996.

[12] Henrique Madeira, Mario Zenha Rela, Francisco Moreira, and Joao Gabriel Silva. Rifle:
A general purpose pin-level fault injector. In European Dependable Computing Confer-
ence, pages 199–216, 1994.

17

[13] J.Xu. N. Looker. Assessing the dependability of ogsa middleware by fault-injection. In
Proc. 22nd Int. Symposium on Reliable Distributed Systems. SRDS, 2003.

[14] D.T. Stott and al. Nftape: a framework for assessing dependability in distributed
systems with lightweight fault injectors. In In Proceedings of the IEEE International
Computer Performance and Dependability Symposium, pages 91–100, March 2000.

18

