Treewidth and logical definability of graph products

Selma Djelloul
LRI, UMR 8623, Bat 490 Université de Paris-Sud
91405 Orsay Cedex, France
e-mail: djelloul@lri.fr

November 23, 2005

Abstract

In this paper we describe an algorithm that, given a tree-decomposition of a graph G and a
path-decomposition of a graph H, provides a tree-decomposition of the cartesian product of G
and H. Using this algorithm, we derive upper bounds on the treewidth and on the pathwidth of
the cartesian product of two graphs, expressed in terms of the treewidth and of the pathwidth of
the two involved graphs. In the context of graph grammars and graph logic, we prove that the
cartesian product of a class of graphs by a finite set of graphs preserves the property of being a
context-free set. Moreover, if the graphs in the finite set are all connected, then we prove that
the property of being an M S-definable set is also preserved.
keywords: Tree-decomposition, path-decomposition, graph grammars, graph logic.

1 Introduction

In this paper, we consider cartesian products of graphs. (All graphs considered here are finite
and undirected). Given two graphs G and H, their cartesian product, G ® H, is the graph whose
vertex set is the cartesian product Vg x V. Every pair of vertices of the form {(u,v), (u',v)} with
[u,u'] € Eg and every pair of vertices of the form {(u,v), (u,v")} with [v,v'] € Eg are connected
by an edge in G ® H. Grids and hypercubes are among the most popular families of cartesian
product of graphs. The interested reader is referred to the book [IK00] that is exclusively dedicated
to results on graph products.

Our research is motivated by the following:

e questions about parameters of graphs related to structural decompositions: treewidth, path-
width, etc;

e questions about grammatical descriptions of graphs;

e questions related to monadic second-order logic (MSOL) and decidability of M S-theories of
certain classes of graphs;

with application to classes of graphs obtained by natural operations such as product of graphs.
We now present in more detail the theoretical background of our contributions with its two main
motivations: (1) polynomial algorithms, and (2) decidability of logical theories.

In the early eighties, Robertson and Seymour published their first results of their Graph Minor
series of papers. They defined the concept of tree-decomposition and treewidth. This notion has come

to play an important role in recent investigations in algorithmic graph theory. Tree-decomposition
is equivalent to the notion of partial k-tree which has already been used, directly or undirectly,
in many algorithmic constructions designed independently. Courcelle [Cou90] established a unified
framework for many graph properties that were considered separately by several authors. He proved
that every graph property that can be expressed in monadic second-order logic (MSOL) is decidable
in linear time (on the number of vertices) for simple graphs of bounded treewidth. The reference
book [DF97| gives a framework to study the links between on one hand results by Robertson and
Seymour, Courcelle, and other authors, and on the other hand algorithmic parameterized complexity.
Determining whether a graph has a treewidth at most k is NP-complete if k is part of the input,
but decidable in linear time for fixed k& (Bodlaender [Bod96]). In case of a positive answer, a tree-
decomposition is even produced by the algorithm in [Bod96]. However, this linear time algorithm
is not practical because of the large size of constants depending on k.

Courcelle and Bauderon [BC87| defined operations that enable viewing the set of all finite (hyper)-
graphs as a many sorted algebra over an infinite signature. Such algebras have been extensively
studied, particularly those defined by HR-(hyperedge replacement) and VR-(verter replacement)
signatures. In this paper we are focussing on HR grammars. The key interest of HR grammars is
that, by such algebraic operations, one can generate all finite graphs of treewidth at most k, for
fixed k, from elementary graphs [Cou92|. This can be done in a way that can be compared to
context-free grammars defining words. HR-equational sets of graphs have been defined by means
of systems of recursive equations (see, e.g., [Cou97]). An equational set is defined as the least
solution (for set-inclusion) of a component (i.e., an equation) of such a system. For the reader who
is not familiar with these notions, we recall the notions of graph algebras and equational sets of
graphs in the appendix. Graphs that are members of such sets have a derivation tree according to
the grammar. This often enables to design proofs by induction on the size of the derivation tree.
HR-equational sets of graphs have another interest related to MSOL. This logic is first-order logic
on power-sets. Hence, in case of a graph considered as a relational structure with the set of vertices
as the domain, and using the binary relation of adjacency, quantified variables can denote sets of
vertices. We use the same notations as the ones introduced by Courcelle, and denote by M .S; this
variant of MSOL. In the M S, variant, quantified variables can denote sets of edges because the
domain also includes the set of edges. A set of graphs L has a decidable M S;-theory iff there exists
an algorithm that decides whether a given M S;-formula is satisfied by every graph of L. Since
this language is closed under negation, asking whether a formula is satisfied by all the graphs of
the class is the same as asking whether a formula is satisfied by some graph in the class. Hence
the decidability of M S;-theories of a graph class is equivalent to the decidability of the emptiness
problem for this class. The M Sa-theory of an HR-equational set of graphs is decidable [Cou90]. A
similar result relates decidability of M S;-theory and VR-equational sets. Sets of graphs of decidable
M So-theory are of bounded treewidth.

A set of graphs is M S;-definable iff it is the set of graphs satisfying an M S;-formula. The intersection
of an HR-equational set and an M Ss-definable set is HR-equational [Cou90]. As a consequence, if a
class of graphs with bounded treewidth is M S5-definable then its M S,-theory is decidable.

Our results

We prove a new upper bound on the treewidth of the cartesian product expressed in terms of the
treewidth and of the pathwidth of the two involved graphs. This bound is obtained by means of two
algorithmic procedures. We obtain refinements of upper bounds on the treewidth of certain classes
of cartesian products. We use Chlebikova’s result [Chl92] stating that a grid G,x4 has treewidth

min{p, ¢} to derive a graph class of cartesian products containing the class of grids, and with the
property that each of its elements has treewidth min{p, ¢} where p and ¢ are the number of vertices
of the two involved graphs. We also derive from our general construction an upper bound on the
pathwidth of the cartesian product expressed in terms of the pathwidths of the two involved graphs.

The first-order logic (FO) theory of graphs is undecidable even if we limit ourselves to finite
graphs. The FO-theory of the class of grids is decidable [FG01], whereas the MSOL-theory of grids
is undecidable [See91]|. One of the major incidence of Courcelle’s developments on graph grammars
and monadic second order logic for graphs is that, if k is fixed, the class of all graphs with treewidth
at most k has decidable M Ss-theory. A class of graphs of decidable M Ss-theory is of bounded
treewidth [See91]; the converse does not hold. It is natural to ask what kinds of compositions of
structures preserve the decidability of theories. The Feferman-Vaught theorem [FV59] concerns
decidability of the FO-theory for (infinite) disjoint union and (infinite) product of structures. Our
contribution in this context, is that the composition of an equational set of graphs by a finite set of
graphs using the cartesian product yields a class of graphs whose M Ss-theory is decidable.

Regular grammars on words generate languages that are recognized by finite state automata.
There is no convenient notion of finite automaton for graphs. Nevertheless, it follows from results
by Courcelle that a monadic second order formula is finite state for graphs of bounded treewidth.
Hence an M S-definable class of graphs can be viewed in a way comparable to a regular language
on words. Furthermore, from the aforementioned results, we deduce that an MS-formula acts, for
a fixed k, as a filter that extracts a subclass that has a decidable M Ss-theory from the class of all
graphs with treewidth at most k. Our contribution in this context, is that graph classes obtained
using the cartesian product of an M S-definable class of graphs by a finite set of connected graphs
are M S-definable.

2 Definitions and notations

Definition 2.1. Tree-decomposition, path-decomposition -. Let G = (V, E) be a graph, a tree-
decomposition of G is a pair (T, (X;)tev,) where T is a tree and (X;)ieys, a family of subsets of Vi,
with the following properties:

®1) U X; = V.
teVr

(P2) For every edge e of G there exists ¢t € V such that e has both ends in X;.
(P3) Fort, ', t",if ¢’ is on the path between ¢ and ¢ then X; N Xy C Xy.

The width of the tree-decomposition is max (| Xe] — 1).
evr

The graph G has treewidth w if w is the smallest integer such that G' has a tree-decomposition of
width w. We write twd(G) = w.

If T is a path, the decomposition is called a path-decomposition. The graph G has pathwidth w if
w is the smallest integer such that G has a path-decomposition of width w. We write pwd(G) = w.

A decomposition is said fundamental if it is of the minimum width, and with the smallest number
of nodes of T'.

We use the following notation :

TWD(= k) denotes the set of all graphs of treewidth k.
TWD(< k) denotes the set of all graphs of treewidth at most k.

Definition 2.2. Parent and descendent bags mappings -. Let (B, (Y;)) be a tree-decomposition of
a graph G rooted at Y.

i.

ii.

We define the mapping parent-bag p : Vg — P(Vg) such that, for r # ry, p(r) = Y., where
7' is the parent of r in the rooted tree B, and p(rg) =

Note that, if the decomposition is fundamental, there always exists y € Y, — p(r).
We define the mapping descendent-bags d : Vg — P(Vg) such that for every internal node
r, d(r) = U Y., and d(r) = 0 if r is a leaf.

a, o child of r

Definition 2.3. Bag types -. Let (B, (Y;)) be a rooted fundamental tree-decomposition of a graph

G.

Relaz-introduce - We say that a bag Y, is relaz-introduce if |Y,| = twd(G)+1, and there exist
two distinct vertices y € Y, — p(r) and z € Y, — d(r). Then, a bag Y, is relax-introduce if |Y; |
is tight but there exists a vertex z that comes into Y, just when another vertex will leave Y.
Such a couple (y, z) is said to be synchronized.

Furtive-introduce - We say that a bag Y, is furtive-introduce if |Y, N p(r)| = twd(G) and
Y, —p(r) ¢ d(r). Note that, |Y; Np(r)| = twd(G) implies that |Y, —p(r)| = 1. Let {y} =
Y, — p(r). This vertex is called the furtive vertex. Then, a bag Y, is furtive-introduce if
|Y, N p(r)| is tight and the leaving vertex does not come from d(r).

Child-hand-shaking - Let r be a node with at least two children. We say that Y. is rg-child-
hand-shaking if rg is a child of r, |Y;| = twd(G) + 1, |Y;| C d(r), and there exists at least one
vertex y € Y, — p(r) for which rg is the unique child such that y € Y,.;. In this case, such a
vertex y is called the single-branch-leaving vertex. Then, a bag Y, is child-hand-shaking if it
has at least two children, |Y;| is tight and at least one leaving vertex comes from a single branch
of the descendence of Y;. Since the decomposition is fundamental, there exists z € Y, — Y.
The couple (y,z) is said to be synchronized.

Blocking - A bag Y, is blocking if r has at least two children, |Y;| = twd(G) + 1, |Y;| C d(r)
and, for every vertex y € Y, — p(r) there are at least two distinct children 73, 7y of r such
that both Y;, and Y, contain y.

Remark 2.4. Let (B, (Y;)) be a rooted fundamental tree-decomposition.

i.

ii.

iii.

v.

vi.

A bag can be both relax-introduce and furtive-introduce.

Types relax-introduce (resp. furtive-introduce), child-hand-shaking and blocking are mutually
excluding.

A leaf bag cannot be blocking and cannot be child-hand-shaking.
The root bag cannot be furtive-introduce.
Every bag of size twd(G) + 1 is of (at least) one of the types described above.

If B is a path then no bag is blocking.

vii. A clique has a unique rooted fundamental tree-decomposition reduced to a single bag that is
relax-introduce.

Definition 2.5. Compounds of a tree by a path -. In the following, B denotes a rooted tree, A
denotes a rooted path (disjoint from B), and r denotes a node of B.

e The simple compound of B by A at r is the rooted tree obtained by replacing r by a copy of
A, and, if r is not the root, connecting the root of A to the parent of r and, if r is not a leaf,
connecting the leaf of A to each of the children of . We denote the resulting tree by B[r | A].

e If r has at least two children, the rg-child-hand-shaking compound of B by A at r is the rooted
tree obtained by replacing r by a copy of A, connecting the leaf of A to the child rg of r,
connecting all the other children of r to the root of A and, if r is not the root, connecting the
root of A to the parent of r. We denote the resulting tree by B[r |, AJ.

In both types of compounds, we rename each node s of the path to (r, s) in the resulting tree where
r € Vg is the node at which occurs the compound. If no compound occurs at r, it is renamed to
(r,—) in the resulting tree.

3 Treewidth and pathwidth for cartesian product of graphs

If (T,(Xt)tevy) is a tree-decomposition of G then (T, (X; X Vi)iev,) is a tree-decomposition of
G ® H. Therefore :

Fact 3.1.
i. twd(G® H) < min{ (twd(G) +1).|Vy|, (twd(H)+1).|Vg| } — 1.
it. pwd(G® H) < min { (pwd(G) +1).|Vy|, (pwd(H) +1).|Vg| } — 1.

In the following, we prove a better upper bound for pathwidth and, under certain conditions, a
better upper bound for treewidth.

Fact 3.2. A tree has a rooted fundamental tree-decomposition in which all bags are relax-introduce.

Proof. We root the tree at a fixed leaf. In the notation [u,v] used for the edges of the rooted tree,
the extremity u is the parent of v. At each edge [u,v] of the tree, we associate a bag {u,v}. Two
bags are connected iff the corresponding edges are of the form [u,v], [v, w]. The tree-decomposition
is rooted by considering each bag [u,v] the parent of all the bags of the form [v,w]. It is easy to see
that such a rooted tree-decomposition is fundamental and that its bags are all relax-introduce. [

Theorem 3.3.

i. If G has a rooted fundamental tree-decomposition with no blocking bag then, for any graph H,
twd(G ® H) < twd(G).|Vu|+ pwd(H). Moreover, there exists an infinite set of pairs of graphs
{(Gk, Hi),k > 3} such that Gy has no rooted fundamental tree-decomposition with no blocking
bag and such that twd(Gy @ Hy) > twd(Gg).|Va, | + pwd(Hy).

it. If G has a rooted fundamental tree-decomposition whose bags of size twd(G) + 1 are all relaz-
introduce or child-hand-shaking then, for any graph H, twd(G ® H) < twd(G).|Vg]|.

Proof. The graph G}, is shown below. We let o = (3k? — 3k — 2)/2. The graph H}, is any connected
graph on k > 3 vertices and with pathwidth less than |V, | — 1. The graph Gy, is a 2-tree (hence
of treewidth 2). One can check that in any rooted fundamental tree-decomposition of Gy, the bag
containing the triangle {a, b, ¢} is blocking. The graph Gy ® Hy has a minor isomorphic to Ks. To
see that, first consider the (k? — k)/2 pairs of vertices of the form (a,r), (a,s) with 7 # s. For one of
these pairs use a path in {a} ® Hy, and for each of the others use consecutively a path in {z;} ® H,
1 <i< (k?—k—2)/2. All the used paths are disjoint because their internal vertices are contained
in pairwise distinct copies of Hy. Now, consider all the pairs of vertices of the form (a,r), (b, s) with
r # s. For each of these (k? — k) pairs use consecutively a path in {z;} ® Hy, (k* —k)/2 <i < a.
We do the same for all pairs of vertices of the form (b,7), (b,s) and (b,7), (¢, s) with r # s using the
following copies of Hy: {b} ® Hy, and {y;} ® Hi, 1 <1 < . Finally, for each of the pairs of vertices
of the form (c,r), (¢, s) and of the form (c,7), (a,s) with r # s, we use the following copies of Hy:
{c} ® Hi, and {z;} ® Hg, 1 <1 < a. Now, since Gy @ Hy, has a minor isomorphic to Ksy, it cannot
have a treewidth less than 3k — 1. The pair (G, Hy) is then as claimed.

Za

Ya Y2 U1

Figure 1: The graph Gy

Now, assume that we are given a rooted fundamental tree-decomposition (B, (Y;)) for G with
no blocking bag, and a path-decomposition (A, (X)) for H. Let ry denotes the root of B. We
denote by 0,1,...,1, the nodes of A from the root down to the leaf. We give a tree-decomposition
(T,(Z;)) of G H. Let P be arooted path with ¢ = |V | nodes denoted by 0,1,...,(¢g—1) from the
root down to the leaf. The tree-decomposition of G is processed in a prefix-order by the procedure
Construct. This procedure takes as input the given tree-decomposition and path-decomposition of
G and H respectively. It then decides, at each node, which type of compound has to be applied
according to the type of the current bag. At the end of this first procedure, one obtains a tree
which is the base of a tree-decomposition for the cartesian product. A second procedure Fill-bags
processes this tree and decides, again according to the bag types of the tree-decomposition of G,
what is the content of the current bag.

Start by setting T := B and by denoting each node r of T by (r, —). The structure of 7' and its
nodes’ name are updated in a prefix-order by examining the type of each bag in (B, (Y;)).

Construct((B, (Y;)), T, r, A) {
begin
If r is such that |Y;| < twd(G) then

begin Rename (r,—) to (r,0); end

elsif Y, is relax-introduce then
begin T :=T[(r,—) | P];
{this renames the nodes of P to (r,0),...,(r,(¢—1))}.
end
elsif Y, is 7rg-child-hand-shaking then
begin T :=T[(r,—) |r; PJ;
{this renames the nodes of P to (r,0),...,(r,(g—1))}.
end;
else {this is furtive-introduce }
begin T :=T[(r,—)] A ;

{this renames the nodes of A to (r,0),...,(r,1))}.
end;
If r is not a leaf
begin

For each child 7, of r
begin Construct((B,(Y;)), T, ry, A) end;
end;
end; }

T is the tree T obtained at the end of the execution performed by calling

Construct((B,(Y;)), T, ro, A). Every node of T has a name of the form (r, k). The root is named
(‘l"(), O) .

Now, we give a procedure that, given a tree 7 produced by application of the previous procedure,
tells what is the content of each bag Z;, t € V7 according to the type of each bag of (B, (Y;)). The
vertices of H are denoted by 1,...,q. The notation [i| denotes the set {1,2,...,4i} if ¢ > 1 and,
[0] = 0.

Fill-bags((B,(Y;)), T, r, (A, (X)) {

begin
If r is such that |Y,| < twd(G) then
begin
Zrpy =Yy X Vi ;
end

elsif Y, is relax-introduce then
begin
pick a synchronized couple (y,z);
For 1:=1 to ¢q do

begin
Ziri-1) = (Y \{y,2}) x Ve U{y} x (Vi — [¢ =) U{z} x [g —i +1];
end;
end
elsif Y, is 7rg-child-hand-shaking then
begin

pick a synchronized couple (y,z)
For 2:=1 to ¢ do
begin
Zii oy = Y\ {z,y}) x Ve U{y} x (Vg — g —) U{z} x [¢ —i+1];
end;

end
else {Y, is furtive-introduce }
begin
pick a vertex y that is furtive;
For s:=1to l+1 do
begin
Z(r,s—l) =Y\ {y}) x Vg U{y} x X, 1;
end;
end;
If r is not a leaf
begin
For each child r, of r
begin Fill-bags((B,(Y;)), T, vy, (A,(Xs))) end;
end;
end; }

Property 3.4. For everyr, let G, be the subgraph of G induced by all vertices in'Y,. The subgraph of
T induced by all the bags Z; where t is of the form (r,*) and x stands for any valid integer is a path-
decomposition of the graph G, ® H. This decomposition is of width at most twd(G).|Vg| + pwd(H).

Proof.

Checking condition (P1) of the definition of a tree-decomposition.- Let (u,%) be a vertex of G, @ H.
We want to prove that (u,4) is in some bag Z, ,). If ¥; < twd(G) then, {u} x Vg C Z;). I Y;
is relax-introduce and (u, z) (resp. (y,u)) is the synchronized couple picked by the procedure then
{u} x Vi C Z (4-1)) (resp. Zp))- If u is not involved in the synchronized couple then {u} x Vy is
entirely included in all Z,.), 0 < k < (¢ — 1). If Y, is r-child-hand-shaking and u is not involved
in the synchronized couple (y, z) picked by the procedure then, {u} x Vy is contained in all Z),
0<k<(¢q—1). If u=uzthen, (u,9) isin all Z,;), 0 <k < (¢—14). Fu=y, (u,i) is in all Z),
(g—1) <k <(g-1). IfY, is furtive-introduce, y the furtive vertex picked by the procedure, and
u # y then, {u} x Vp is entirely contained in all Z,) with 0 <k <1[. If u = y, let s be such that
i € X, then, (u,i) € Z4)-

Checking condition (P2) of the definition of a tree-decomposition.- Let e be an edge of G, ® H. We
want to check that it has both ends in some Z, ,y. If it is of the form [(u, 7), (u,i")] with [i,4] € Eg,
then the only case that needs a check is that when u matches the furtive vertex of a furtive-introduce
bag. Since (A, (X)) is a path-decomposition for H, there exists s, 0 < s <[such that [z,i'] € Xj.
Therefore, e € Z,). Now, assume that e is of the form [(u,1), (u,4)] with [u,u'] € Eg,. If Y, is
relax-introduce or child-hand-shaking, (u,%) and (u,4) are together in Z ;). If Y, is furtive-
introduce, (u,i) and (u',i) are together in Z, ;) where s is such that i € Xj.

The last condition in the definition of a tree-decomposition is clearly satisfied.

If Y, is relax-introduce or child-hand-shaking, every bag of the form Z ,y is of size twd(G).|Vu |+ 1.
If Y; is furtive-introduce, every bag of the form Z, ,) is of size at most twd(G).|Vg| + pwd(H) + 1.
This ends the proof of property 3.4.

Claim.- The decomposition (7,(Z;)) obtained at the end of the execution performed by calling
Fill-bags((B,(Y;)), T, 7o) is a tree-decomposition of G ® H.

By means of the previous property, only the last condition of the definition of a tree-decomposition
has to be checked. So, let (u,h) € Zy, N Z;, and let ¢t be a node of 7 on the path between t;

and to. We want to prove that (u,h) € Z;. Also by means of property 3.4 this has to be checked
only in the case t; of the form (r1,x) and t5 of the form (rg,*), with 71 # ro. Since (B, (Y})) is a
tree-decomposition « in in all bags Y, with a on the path P[ry, 7] connecting r1 and rs.

Case r1 is an ancestor of ro9 (or inversely).- In this case, u cannot be furtive-introduce for any bag
Y, with a € P[r1,re]. Also, u cannot be involved in a synchronized couple of the form (u,z) for
any bag Y, with a € P[ry,r2] — {r1}. If Y;, is rg-child-hand-shaking, 2 and rg from the same
branch and u matches the single-branch-leaving vertex then, {u} x Vi is entirely contained in all
bags Z (4« With a € P[ry,re] — {r1,r2} and (u, h) is contained in all bags Z;, with ¢ higher then #;
and (u, h) is in all bags (r1,1) with (¢ —h) < i < (¢ — 1). This constitutes the path in 7 between
t1 and t5. If u does not match the single-branch-leaving vertex then, {u} X V is entirely contained
in all bags Z(,) with @ € P[ry,72] — {r2} and (u, k) is contained in all bags Z;, with ¢ higher then
to. This constitutes the path in 7 between t; and ts.

If Y;, is rg-child-hand-shaking, and ry and 75 are not from the same branch, and u in not involved in
the form (y, u) in the picked synchronized couple then, {u}x Vy is entirely contained in all bags Z(,)
with a € P[ry,re] —{re}, (u,h) is in all bags Z;, with ¢ higher then t5. If the synchronized couple is
of the form (y, u) then, {u} X Vj is entirely contained in all bags Z(,,) with a € Plr1,r2] — {r1, 72},
and in Z,., o) and, (u, h) is contained in all bags (r1,%) with 0 <4 < (¢ — h). This constitutes the
path in 7 between t; and t,.

Case r1 and ro are not related by the ancestor relation.- Let a be their lowest common ancestor
(lca). Since (B, (Y;)) is a tree-decomposition u € Y,. If Y, is furtive-introduce, the lca of t; and ¢,
is (a,1) and we have {u} x Vg C Z(4). If Yy is relax-introduce, the lca of t; and 5 is (a, (¢ — 1))
and we have {u} x Vi C Z 4—1))- Then, we finish by applying the previous case. If Y, is such
that |Ys| < twd(G) then the lca of ¢ and t2 is (a,0) and {u} X Vg C Z(,). Then, we also finish by
applying the previous case. If Yy, is child-hand-shaking then, the lca of t; and ¢2 is (a,0) and u cannot
be the single-branch-leaving vertex: y. Since (Y — {y}) X Vg C Z(4,0), we have {u} X Vg C Z(4,0).-
We finish by applying the previous case. This ends the proof of the claim and of theorem 3.3 O

The following corollary gives an infinite class of graphs for which the bound in Fact 3.1.i is improved.
Corollary 3.5.

i. If G is a tree (resp. a path) then, for any graph H,
twd(G ® H) < |V| (resp. pwd(G ® H) < |Vg|).

1. Let H be a fized graph that has a hamiltonian path. If K is the class of all trees that have a
path (resp. of all paths) of length at least |Vyg| — 1 then,

{G®H, Ge K} C TWD(= |Vg|) (resp. {G® H, G € K} C PWD(= |Vgl)).
#i. For any graphs G and H,

pwd(G ® H) < min {pwd(G).|Vyg| + pwd(H) , pwd(H).|Vg| + pwd(G)}

Proof. The first assertion is immediate from Fact 3.2 and ii. of theorem 3.3. The second one is
due to the fact that, G ® H has a subgraph isomorphic to the square grid |Vg| X |Vg|. The last
assertion is due to vi. of remark 2.4. O

Remainig questions

Question 1: Can one prove a bound on twd(G ® H) similar to that in theorem 3.3.i but with twd(H)
instead of pwd(H)? If the hypotheses are not strengthened (that is, if one uses only conditions on
bag types) then, the only case where such a bound might be better is when the rooted fundamental
tree-decompositions of G all have at least one furtive-introduce bag that is not relax-introduce and
H is such that twd(H) < pwd(H).

Question 2: Can one obtain a characterization for the graphs that have a rooted tree-decomposition
with no blocking bag?

4 Cartesian products by a finite set

Theorem 4.1. Let J be a finite set of graphs and T be a class of graphs. We denote by @ 7(Z) the
set of graphs {GQ H, Ge€ I, H € J}.

i. IfT is HR-equational then so is @ 7(Z).

it. Assume now that the graphs in J are all connected. If T is MS-definable then ®7(Z) is
M Ss-definable.

Proof. For each graph H in J, we denote by gy the number of vertices of H.

i. For each graph H in J we consider a set K = {1g,2p,...qu} of source labels.

Let M (resp., ® 7M) be the algebra of all graphs with source labels in a countable set C (resp.,
C x HUJICH)' For each H € J, we enlarge the set of constant symbols of ® 7M by all the
€

graphs ®pc, ¢ € C, H € J, denoting the graph H where every vertex iy is the (c,ip)-source,
and all the graphs ®pcc, ¢, ¢’ € C, H € J, obtained from the cartesian product of H by an
edge and labelling in a copy of H, each vertex iy by (c,ix) and in the other copy each vertex
ig by (¢, im).

Let us define, for each H € J, a mapping fg : M — ®7M, inductively on the form
of the terms of M. This mapping is used to transform the polynomial system from which
T is obtained to a polynomial system Sy for which a component has ®;x}(Z) as the least
solution. If ¢ is a constant symbol then, we let fy(t) = Qput. If t =r//_ ,s then, fu(t) =

THOW] e g F1(5):

Finally, if t = fg.(r) then, fu(t) = f9(c14)(F9(c2m) (- - (FIcsqm) (Fu(T))) - --)-

There exists a finite subset K of C such that Z is obtained as a component of the least solution
of a polynomial system S over Fyg(K). Let S =< u; = p1,...,up, = p, >, and assume
w.o.l.g., that Z = L((S, M), u1).

Let Sy =< u1 = ®up1,--.,un, = @upn > be the polynomial system over Fr(K x Kp) where
each @ gp; is obtained from p; by replacing each monomial t, of p; by fu(ta).

c,c!

Note that, in each Sy the sort of u; (in the algebra ® M) is C x Ky where C' is the sort (in
the algebra M) of the unknown u; of S.

Let us denote by f90®;cH the composition of mappings ceoc{fg(c’lH) o fg(c’QH) 0...0 fg(c’qH)},

and consider the monomial: p{ = f Yo, (W1)- It is of the sort: 0.

10

ii.

5

Consider any sequence of the systems Sy and rename the unknowns of the second system in the
sequence t0 Up41, - - - , Uan respectively, and the unknowns of the third system to uop41,--., U3y
respectively, etc.

Now, let S’ be the polynomial system over Fg (K x HUJIC) obtained as follows. First, merge
€

all the equations of all the sytems Sy. Then, add the equation ug = +¢ pg'.
HeJg

We have, @ 7(Z) = L((S", @ 7 M), ug).

We add 2|J| unary predicates in the signature of the relational structures. These predicates
"encode" the vertex set and the edge set of all the fixed graphs of the set J. Let ¢ be the
(closed) formula defining Z. For a graph G and a subset X C Vi, we denote by Gx the
subgraph of G induced by X. We prove that, given a fixed connected graph H, the following
property for a graph G’ is expressible in M S5 logic. "G’ is a cartesian product by the graph
H".

There exists a partition X1, Xo,... Xy, of the set of vertices of G’ such that all the following
is satisfied:

@) V (G F¢)

1<i<qp
(b) For all pairs {i,5},

edges between X; and X exist iff [4, j] is an edge of H,

and

edges between X; and X are the arcs of an isomorphism between X; and X;.

(c) For every i,1 < i < qp, for every pair {z,y} of vertices in the same X;, if z and y are
connected by a path using only edges with ends in different X ;-3, then z = y.

Since H is connected, if the two first conditions are both satisfied, the X]s induce pairwise
isomorphic subgraphs all satisfying ¢. 0

The property of being a cartesian product by a fixed template cannot be expressed in the
weaker M S1-logic. indeed, the condition of “the isomorphism between X; and X,” cannot be
expressed in M S1-logic since the property “X; and X; have the same cardinality” is not M S
[Cou97].

Conclusion

We proved that the composition of an HR set by a finite set of graphs using the cartesian product
yields an HR set. We give a concrete construction of a set of “production rules” for the resulting
class. Can one obtain an analogous result for VR sets?

The notion of clique-width is related to VR grammars (see, e.g., [Cou97|) in the same way that

treewidth is related to HR grammars. Treewidth and clique-width are also comparable measures of
complexity. Indeed, a property expressible in M S;-logic is decidable in linear time on every graph
class with bounded clique-width. It is interesting to establish upper bounds on the clique-width of
two graphs expressed in terms of related parameters of the two involved graphs as done in section 3.
Furthermore, other graph operations can be investigated relatively to these aspects, particularly the
cartesian sum that we believe to be more suitable with VR grammars. Given two graphs G and H,

11

their cartesian sum has vertex set the cartesian product of the two sets Vg and Vg and edge set
{{(way)a (wlay,)}a [l’,.’l}'l] € Eg or [yayl] € EH}

Acknowledgements:

We thank Bruno Courcelle for stimulating discussions and for the ideas that help us to define the
example of the graph Gj, in the proof of theorem 3.3 and to simplify the proof of expressibility in
M S-logic.

References

[BC87] M. Bauderon and B. Courcelle. Graph expressions and graph rewritings. Math. System
Theory, 20:83-127, 1987.

[Bod96] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305-1317, 1996.

[Chl192] J. Chlebikovéi. On the treewidth of a graph. Acta Math. Univ. Comenianae, 16(2):225-236,
1992.

[Cou90] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12-75, 1990. Presented at the International Workshop
on Graph Grammars and their application to computer Science, Warrenton, Virginia, 1986.
LNCS Comp. Sci. vol-291, 133-146.

[Cou92] B. Courcelle. The monadic second-order logic of graphs III: Tree-decompositions, minors
and complexity issues. Theoretical Informatics and Applications, 26(3):257-286, 1992.

[Cou93] B. Courcelle. Graph grammars, monadic second-order logic and the theory of graph minors,
in "Graph Structure Theory", Contemporary Mathematics 147 American Mathematical
Society, pages 565-590. 1993.

[Cou96] B. Courcelle. Tutorial. basic notions of universal algebra for language theory and graph
grammars. Theoretical Computer Science, 163:1-54, 1996.

[Cou97] B. Courcelle. The expression of graph properties and graph transformations in monadic
second-order logic., Handbook of graph grammars and computing by graph transformation:
Vol. I : Foundations, pages 313-400. G. Rozenberg ed., World Scientific Publishing Co.,
Inc., 1997.

[DF97] R. G. Downey and M. R. Fellows. Parameterized complezity. Springer, 1997.

[FG01] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struc-
tures. JACM, 48:1184-1206, 2001.

[FV59] S. Feferman and R. Vaught. The first order properties of algebraic systems. Fund. Math.,
47:57-103, 1959.

[IK0O0O] W. Imrich and S. Klavzar. Product graphs: Structure and Recognition. John Wiley and
Sons, Inc., 2000.

[See91] D. Seese. The structure of the models of decidable monadic theories of graphs. Annals of
Pure Applied Logic, 53:169-195, 1991.

12

Appendix

A Relationships between tree-decompositions and graph expres-
sions

Graphs and more generally hypergraphs can be obtained as values of terms from well defined (many
sorted) algebras (see for example, [Cou96, Cou92, BC87|). Let C be a countable set of source labels.
A graph with sources is a pair < G, srcg > where G is a graph, srcg : C — Vi is a total mapping
and C is a finite subset of C. The set C is called the type of G and is denoted by 7(G). We denote
by GS(C) the set of all graphs of type C. The set S of finite subsets of C is used as the set of sorts.
We denote by GS the set of all graphs with sources. We consider the following S-signature:

(1) Parallel composition

If G € GS(C) and G' € GS(C') we let H = G//, ,G' be the (isomorphism class of the) graph
in G§(C U C") obtained by first taking the union of two disjoint graphs K and K’ respectively
isomorphic to G and G’ and then by fusing any two vertices v and v’ that are respectively the
c-source of K and the c-source of K’ for some c € CNC".

(2) forgetting a source label

If G € GS(C) and ¢ € C, we let H = fg.(G) the graph in GS(C \ {c}) with source mapping
srcy = sTcg/(o\{c})- In words, the vertex with label ¢ in G' becomes "anonymous" in H.

(3) constant operators

For every source label ¢, we denote by c the graph with a single vertex which is the c-source, c'

the graph consisting of a single vertex which is the c¢-source and at which there is a loop and, for
every pair {c, '} of distinct source labels, the graph cc’ consisting of an egde whose extremities are
respectively the c-source and the ¢’-source.

We let Fr be the S-signature consisting of //, ., fge. ¢, " and cc’ for all relevant C, C' subsets of
C and all source labels ¢, ¢’. We obtain an Fy g-algebra. The terms in the free algebra T'(Fypg) are
called H R(graph)-expressions. Every ¢ € T(Fpr) denotes a graph val(t) called the value of t. A
term ¢ in the free algebra can be viewed as a labeled rooted tree constructed recursively as follows.
The root is labeled with the operation f such that ¢ = f(t1,...,%,)), where p(f) is the arity of f.
For each t;, we construct a labeled rooted tree in the same way and so on. Hence the leaves are the
constants.

For every finite subset C of C, every finite graph G in GS(C) is the value of some H R-expression.
Hence GS is homorphic to the Fyg-algebra so defined.

For KC C, we denote by Fir(K) the subsignature consisting of the above symbols with C, C' C K,
¢, d ek.

Other sets of H R-operations have also been considered (see [Cou96, Cou97] for example). It
may happen in some proofs, that certain signatures provide more facilities.

The following result has been proved in [Cou93]|.

twd(G) = min { |C|,C C C/ G = wval(t) for some t € T(Fgr(C)) } — 1.

13

B Equational sets of graphs

Equational sets have been defined by Courcelle in the general context of Universal Algebra in a way
comparable to context-free languages obtained by concatenation of letters from a fixed alphabet.
In order to simplify the readability of this paper, we give the definition in a less general context
by considering only what is needed to deal with HR-equational sets of graphs. Let F' be the Frypg
signature relative to a countable set of labels C. We define a signature F'* that allows to obtain the
power-set of GS as a (many sorted)-algebra. First, for every f € F, we correspond an fp(g 5) of the
same type as follows.

e If f is of type C x C' — C U’ then, for any Ac C G§(C), Acr C GS(C"), we let
f’P(g.S) (Ac, Acr) = {t//c,c'tI’ te Ac,t' € Acr}.

o If fisof type C' — C'\{c} (c € C) then, for any Ac C GS(C), fp 45 (Ac) = {fgc(t),t € Ac}.

e For each constant operator f, if ¢ is the term produced by f in GS then, the term produced
by the corresponding constant operator in P(GS) is the singleton {t}.

We add to the family of operators (fre 5)) ser two new symbol operators, for every sort C' C C:
a symbol +¢ of type C' x C — C and a constant operator Q¢ of sort C. For every C C C, Q¢ := 0,
and A+¢ A" := AU A, for any A, A’ subsets of GS(C). This ends the definition of the signature
FT.

Let F' denotes again the Fy g signature relative to a countable set C of source labels. A polynomial
system over F' is a sequence of equations S =< uj; = p1,...,Uuy = pp >, where U = {uq,...u,} is
an S-sorted set of variables called the set of the unknowns of S. Each term p; is a polynomial, that
is a term of the form Q¢ or of the form ¢; +¢ ... +¢ tm, where each term ¢; is a monomial over
F UU (that is a term in T(F U U)) of the same sort as u;.

Let Ci,...,Cy be the sorts of uy, ..., u, respectively. A mapping S, from P(GS(C1)) x ... X

P(GS(C,)) into itself is associated to S as follows. For any A; C GS(C4),...,A, C GS(Cy),
Sp(gs)(Ala e 7An) = (p17>(g.5‘) (Al, - ,An), - ’pn’P(g.S)(Al’ e ,An))

A solution of S in P(GS) is an n-tuple (44,...,A,), such that for each i,1 <7 <n, 4; C GS(C;),
and (A1,...,4,) =S (A1,...,A4,). A solution of S is also called a fized-point of S.

P(GS) P(GS)”
For set-inclusion, the least solution (in P(GS)) of such a system S is denoted by
(L((S,GS),u1),...,L((S,GS),u,)). An HR-equational set of graphs is a component of such a least

solution. It is obtained as an infinite set-union:

L((57 QS),u,) = lgOAé’

where A = 0, and (A, ... ALY =8 (AL, AL).

— MP@s)

14

