Endpoint Extendible Paths in Dense Graphs

GUANTAO CHEN * Department of Mathematics and Statistics Department of Computer Science Georgia State University Atlanta, GA 30303 Faculty of Mathematics and Statistics Huazhong Normal University Wuhan, China

ZHIQUAN HU[†] Faculty of Mathematics Central China Normal University Wuhan 430079, P. R. China HAO LI[‡] L.R.I., UMR 8623 du CNRS-UPS Bât. 490, Universite de Paris-sud 91405-Orsay CEDEX, France

November 30, 2005

Abstract

Let G be a graph of order n. A path P of G is *extendible* if it can be extended to a longer path from one of its two endvertices, otherwise we say P is *non-extendible*. Let G be a graph of order n. We show that there exists a threshold number s such that every path of order smaller than s is extendible and there exists a non-extendible path of order t for each $t \in \{s, s + 1, \dots, n\}$ provided G satisfies one of the following three conditions:

- $d(u) + d(v) \ge n$ for any two of nonadjacent vertices u and v.
- G is a P_4 -free 1-tough graph.
- G is a connected, locally connected, and $K_{1,3}$ -free graph.

1 Introduction

We generally follow the notation of Chartrand and Lesniak [1]. All graphs considered in this paper are simple finite graphs, i.e., graphs with finite number of vertices, without loops, and without multiple edges. Let G be a graph. The vertex set and the edge set of G are denoted by V(G) and E(G), respectively. We write G = (V(G), E(G)). For convenience, we write V instead of V(G) and E instead of E(G) if the referred graph G

^{*}Partially supported by NSA grant H98230-04-1-0300, NSF grant DMS-0500951, and the work was partially done during his visiting L.R.I.

[†]Supported by NSFC grant 10371048,10571071 and by Post-doctorial Grant 350074H of France, the work was partially done during his visiting in L.R.I..

[‡]Partially supported by NSFC grant 60373012, the work was partially done during his visiting Georgia State University.

is well understood. We call |G| = |V(G)| the order of G. In this paper, we reserve n for the order of G. We define that

$$N_H(v) = \{ w \in V(H) : vw \in E(G) \}$$
 and $d_H(v) = |N_H(v)|,$

where $v \in V$ and H is a subgraph of G. For convenience, let $N(v) = N_G(v)$, $d(v) = d_G(v)$, $\delta = \min\{d(v) : v \in V\}$ the minimum degree of G, and

$$\sigma_2(G) = \min\{d(u) + d(v) : uv \notin E\}.$$

Moreover, we define $N[v] := N(v) \cup \{v\}$ and name it the close neighborhood of v for each $v \in V(G)$. A subgraph H of G is called an *induced subgraph* of G if there exists an $X \subseteq V(G)$ such that H = G[X]. Let G - X = G[V - X]. For any two vertices $u, v \in V$ and an induced subgraph H of G, let uHv denote an arbitrary shortest path connecting u to v in $G[V(H) \cup \{u, v\}]$ if it is connected.

For any positive integer k, let P_k denote a path of order k. A graph G is traceable if it contains a hamiltonian path. Ore [13] proved that a graph G of order n is traceable if $\sigma_2(G) \ge n-1$. A graph G is path extendible if for every path P_k with k < |G| there exists a path P_{k+1} such that $V(P_k) \subseteq V(P_{k+1})$. Clearly, if a graph is path extendible then it is traceable. Hendry [6] showed that most known sufficient conditions for traceable graphs are also sufficient for extendible. In particular, he showed that a graph G of order n is path extendible if $\sigma_2(G) \ge n-1$.

A path P of a graph G is called a maximum path if $|P| \ge |Q|$ for all paths Q in G. However, there are two different versions of maximal paths: vertex version and edge version. A path P is vertex-maximal if there does not exist a path Q such that V(P) is a proper subset of V(Q). A path P is called edge-maximal if there does not exist a path Q such that E(P) is a proper subset of E(Q). Clearly, all vertex-maximal paths are edge-maximal paths. On the other hand, not all edge-maximal paths are vertex-maximal paths. If G is a traceable graph, all vertex-maximal paths are hamiltonian paths. However, many nontrivial problems arise naturally for edge-maximal paths. In this paper, we will only consider edge-maximal paths. To avoid cumbersome notation, we simply call them maximal paths. We notice that the following statements are equivalent:

- *P* is a maximal path.
- P cannot be extended from one of its two endvertices.
- No path contains P as a proper subpath.

For any graph G, we let $S(G) = \{|P| : P \text{ is a maximal path of } G\}$ and call it the *maximal-path spectrum* of G. We also say that G realizes S(G). A set S of positive integers is called a *path spectrum* if there exists a **connected** graph G such that S(G) = S. Note that the condition of connectivity is important. Otherwise, all positive integer sets would be path spectra.

The ultimate goal is to establish an efficient algorithm to determine whether a set S of positive integers is a path spectrum. So far, there have been very little progress on this direction. Connected graphs G with |S(G)| = 1 are investigated by Thomassen [14] and,

independently, by Jacobson et al [9, 10]. Jacobson et al [8] show that all pairs of positive integers are path spectra. Chen et al [2] show that there are infinitely many k-sets of positive integers which are not path spectra for each integer $k \ge 3$. Chen et al [3] studied path spectra for trees.

In this paper, we investigate graphs G such that S(G) consists of consecutive positive integers. A graph G is called a *string path spectrum* graph (SPS-graph) if there exists a positive integer s such that $S(G) = \{s, s+1, \ldots, n\}$, where n is the order of G. Clearly, all SPS-graphs are traceable. The property of SPS-graphs are much stronger than traceable graphs. We will show some well-known sufficient conditions for traceable graphs are sufficient for SPS-graphs. The following one is an Ore-type result.

Theorem 1 Let G be a graph of order n. If $\sigma_2(G) \ge n$, then G is an SPS-graph.

A vertex set X of a graph G is a cut if G - X has more components than G does. A cut X of G is minimal if there does not exist a cut Y of G such that Y is a proper subset of X. A minimal cut X of G is called a *skew-cut* if G - X is a union of two disjoint cliques A and B such that $N(x) \supset V(B)$ for each $x \in X$ and $N_A(x)$'s, for all $x \in X$, form a partition of A. Notice that, in the above definition, d(a) + d(b) = n - 1 for each $a \in A$ and $b \in B$. Clearly, if X is a skew-cut of G then it is the unique skew-cut of G. A graph G is named a *skew-joint* graph if it has a skew-cut. An example of a skew-joint graph is shown in Figure 1.

Figure 1: A Skew Joint Graph with |X| = 3

Theorem 2 Let G be a graph of order n. If $\sigma_2(G) \ge n-1$, then G is either an SPS-graph or a skew-joint graph.

Some skew-joint graphs are SPS-graphs while others are not. We believe it is very difficult to character these skew-joint graphs which are SPS-graphs. In the following, we will discuss path spectra of some special skew-joint graphs. Let G be a skew-joint graph of order n, X be the skew-cut of G, and A and B be the two disjoint cliques of G - X such that $N(x) \supset V(B)$ for each $x \in X$ and $N_A(x)$'s, for all $x \in X$, form a partition of A. Let a = |A|, b = |B|, and s = |X|. Clearly $a \ge s$. We will only consider the case that X is an independent set, $b \ge s + 1 \ge 4$, and $|N_A(x)| \ge 3$ for every $x \in X$. Let x_1, x_2, \dots, x_s be a list of all vertices of X such that $d_A(x_1) \le d_A(x_2) \le \dots \le d_A(x_s)$. For convenience, let $a_1 = d_A(x_1)$ and $a_2 = d_A(x_2)$, i.e. a_1 is the smallest value of $d_A(x)$ and a_2 is the second smallest value of $d_A(x)$ for all $x \in X$. Notice that $a_2 = a_1$ may happen. We assume that $a_1 \ge 3$. Let P[u, v] be a maximal path of G. We observe the following facts:

- If $u \in A$ and $v \in A$, then $|V(P)| \ge |N[u] \cup N[v]| \ge a + 1$.
- If $u \in A$ and $v \in X$, then $V(P) \supseteq N[u] \cup N[v] \supseteq A \cup B \cup \{v\}$. Since P v is connected, $V(P) \cap X \neq \{v\}$. So, $|V(P)| \ge a + b + 2$.
- If $u \in A$ and $v \in B$. then $V(P) \supseteq N[u] \cup N[v] = A \cup X \cup B = V(G)$, so that |V(P)| = n.
- If $u \in X$ and $v \in X$, then $V(P) \supseteq N_A(u) \cup N_A(v) \cup B \cup \{u, v\}$. Since P u v is connected, there exists a vertex $w \in X \cap (V(P) \{u, v\})$ so that $N_A(w) \cap V(P) \neq \emptyset$. So, $|V(P)| \ge a_1 + a_2 + b + 4$. On the other hand, since G[A] is a clique and $N(x) \supseteq B$ for each $x \in X$, there exists a maximal path P[u, v] such that $u \in X$ and $v \in X$ and $|V(P)| = \ell$ for each $\ell \ge a_1 + a_2 + b + 4$ as shown in Figure 2.

Figure 2: A maximal path connecting $u \in X$ and $v \in X$

- If $u \in X$ and $v \in B$, then $V(P) \supseteq N_A(u) \cup X \cup B$. Since P u is connected, there exists a vertex $w \in V(P) \cap A$ that is adjacent to some vertex of $X \{u\}$. Clearly, $w \notin N_A(u)$. So, $|V(P)| \ge a_1 + s + b + 1$.
- If $u \in B$ and $v \in B$, then $V(P) \supseteq N[u] \cup N[v] \supseteq X \cup B$, so that $|V(P)| \ge s + b$. Moreover, since N(x)'s form a partition of A, $|V(P) \cap A| \ge 2$ if $V(P) \cap A \neq \emptyset$. So, $|V(P)| \ne b + s + 1$. On the other hand, there is a maximal path P[u, v] such that $|V(P)| = \ell$ for $\ell = b + s$ or $\ell \ge s + b + 2$ as shown in Figure 3.

Figure 3: Maximal paths connecting $u \in B$ and $v \in B$

If $a_1 + a_2 \le \min\{s - 4, a - b - 3\}$, then $S(G) = \{a_1 + a_2 + b + 4, a_1 + a_2 + b + 5, \dots, n\}$, which implies that G is an SPS-graph.

If $a_1 + a_2 \ge s + b$, $S(G) = \{s + b, s + b + 2, s + b + 3, \dots, n\}$, which shows that G is not an SPS-graph.

Let F be a graph. A graph G is F-free if G does not contain F as an *induced subgraph*. The toughness of a non-complete graph G is defined by Chvátal [4] as

$$t(G) = \min\{\frac{|S|}{\omega(G-S)} : S \text{ is a cut of } G\},\$$

where $\omega(G-S)$ is the number of components of G-S. For a complete graph K_n , define $t(K_n) = \infty$. A graph G is *t*-tough if $t(G) \ge t$. Clearly, if G is hamiltonian, then G is 1-tough. However, the converse is not true. Chvátal [4] conjectured there is a universal constant t_0 such that all t_0 -tough graphs are hamiltonian. Although the conjecture is still open, many results have been obtained along this direction. Jung [11] proved a complicated result on hamiltonian graphs, which implies the following result.

Theorem 3 (Jung) If G is a P_4 -free and 1-tough graph of order $n \ge 3$, then G is hamiltonian.

We will prove a similar result as follows.

Theorem 4 If G is a P_4 -free and 1-tough graph, then G is an SPS-graph.

Another classic result for hamiltonian graphs involving forbidden subgraphs is due to Oberly and Sumner [12].

Theorem 5 (Oberly and Sumner) If G is a connected, locally connected, and $K_{1,3}$ -free graph, then G is hamiltonian.

We obtain a similar result as follows.

Theorem 6 If G is a connected, locally connected, and $K_{1,3}$ -free graph, then G is an SPS-graph.

Due to lengths of those proofs, the proofs of Theorems 2, 4 and 6 will be placed to sections 2, 3 and 4, respectively. Let P = P[u, v] be a path of G. We always assume P[u, v] has an orientation from u to v. For any $x \in V(P[u, v])$, let x^+ denote the successor of x along P if $x \neq v$, and x^- be the predecessor of x along P if $x \neq u$. Let $x^{++} = (x^+)^+$ if $x \neq v$, or v^- and $x^{--} = (x^-)^-$ if $x \neq u$, or u^+ . For an $S \subseteq V(P[u, v])$, we define

$$S^+ = \{x^+ : x \in S\} \text{ if } v \notin S,$$

$$S^- = \{x^- : x \in S\} \text{ if } u \notin S.$$

2 Proof of Theorem 2

Let G be a graph of order n such that $\sigma_2(G) \ge n-1$. Suppose, to the contrary, G is neither an SPS-graph nor a skew-joint graph. Since $\sigma_2(G) \ge n-1$, G is connected. If the connectivity $\kappa(G) = 1$, then G is a union of two cliques with exactly one vertex in common, so it is a skew-joint graph, a contradiction. Therefore, G is 2-connected. Since G is not an SPS-graph, there exists a positive integer p such that G contains a maximal path P = P[u, v] of order p and G does not contain a maximal path of order p+1. Since G is traceable, $p \le n-2$. Let H = G - V(P) and h = |V(H)|. Since h+p = n, we have the following claim.

Claim 1 $h \ge 2$.

Let

$$Y_{1} = \{y \in V(H) : d_{P}(y) \geq 1\},$$

$$Y_{2} = \{y \in V(H) : d_{P}(y) \geq 2\},$$

$$X_{1} = N_{P}(Y_{1}) = \{x_{1}, x_{2}, \cdots, x_{s}\}, \text{ and }$$

$$X_{2} = N_{P}(Y_{2}).$$

Clearly, $Y_2 \subseteq Y_1$, $X_1 = N_P(H)$, and $X_2 \subseteq X_1$. Without loss of generality, we assume that x_1, x_2, \dots, x_s are listed in the order along the orientation of P[u, v] from u to v. We will show $Y_2 = \emptyset$ by sequence of claims.

Since P[u, v] is a maximal path, we have $N(u) \subseteq V(P[u, v])$ and $N(v) \subseteq V(P[u, v])$, so that $u, v \notin X_1$. By the definition of x_1 , we have that $N_H(x_1^-) = \emptyset$. Let $y_1 \in Y_1 \subseteq V(H)$ such that $x_1y_1 \in E$. We claim $N(x_1^-) \cap N_P^-(y_1) = \emptyset$. Otherwise, suppose there exist a $w \in N_P(y_1)$ such that $x_1^-w^- \in E$. Then, $P[u, x_1^-]P^-[w^-, x_1]y_1P[w, v]$ is a maximal path of order p + 1, a contradiction. Therefore,

$$d_P(x_1^-) + d_P(y_1) = |N_P(x_1^-)| + |N_P^-(y_1)| = |N_P(x_1^-) \cup N_P^-(y_1)| \le |V(P)|.$$

Since $d_H(x_1^-) = 0$,

$$n-1 \le d(x_1^-) + d(y_1) = d_P(x_1^-) + d_P(y_1) + d_H(x_1^-) + d_H(y_1) \le p+h-1 = n-1.$$

Then, the above equalities hold, so that $N_P(x_1^-) = V(P) - N_P^-(y_1)$ and $N_H(y_1) = V(H) - \{y_1\}$. In particular, H is connected.

We claim that $N(u) \cap N_P^-(y_1) \subseteq \{x_1^-\}$. Otherwise, let $w \in N_P^-(y_1) - \{x_1^-\}$ such that $uw \in E$. Path $P^-[x_1^-, u]P^-[w, x_1]y_1P[w^+, v]$ is a maximal path of order p + 1, a contradiction. Then, similar to the previous paragraph, we can show that $N[u] - \{x_1^-\} = V(P) - N_P^-(y_1)$.

Claim 2 $h \ge 3$.

Proof: Suppose, to the contrary, h = 2. Let $V(H) = \{y_1, y_2\}$, where $x_1y_1 \in E$. Since $N(x_1^-) = V(P) - N_P^-(y_1)$ and $v \notin N_P(y_1)$, we have $x_1^-v^- \in E(G)$. If $uv \notin E(G)$, $P[u, x_1^-]P^-[v^-, x_1]y_1y_2$ is a maximal path of order p+1, a contradiction. Thus, $uv \in E(G)$.

If $d_P(y_1) \geq 2$, let $x_k \neq x_1 \in N_P(y_1)$. If $vx_k^- \in E(G)$, G contains a maximal path $P[u, x_1^-]P^-[v^-, x_k]y_1P[x_1, x_k^-]v$ of order p+1, a contradiction. Thus, $vx_k^- \notin E(G)$. Since $N[u] - \{x_1^-\} = V(P) - N_P^-(y_1), uv^- \in E(G)$. So $P^-[x_k^-, u]P^-[v^-, x_k]y_1y_2$ is a maximal path of order p+1, a contradiction. Thus, $d_P(y_1) = 1$, so that $y_2x_s \in E$. Similarly, we can show that $d_P(y_2) = 1$. Since h = 2, we have s = 2 and $X_1 = \{x_1, x_2\}$. Since

 $d(y_1) = d(y_2) = 2$ and $\sigma_2(G) \ge n - 1$, $X = X_1$ is skew-cut of G with $A = \{y_1, y_2\}$ and B = V(P) - X, a contradiction.

Let $y_s \in Y_1 \subseteq V(H)$ such that $x_s y_s \in E$.

Claim 3 $d_P(y_1) = 1$ and $d_P(y_s) = 1$.

Proof: Suppose, to the contrary and without loss of generality, $d_P(y_1) > 1$. Let

$$N_P(y_1) = \{x_{j_1}(=x_1), x_{j_2}, \dots, x_{j_k}\},\$$

where $j_1 < j_2 < \cdots < j_k$ and $k \ge 2$. Let $z_i = x_{j_i}^-$ and $w_i = x_{j_i}^+$ for each $i = 1, 2, \ldots, k$. Since P is a maximal path, $\{y_1\} \cup N_P^-(y_1)$ and $\{y_1\} \cup N_P^+(y_1)$ are independent vertex sets of G.

Since $z_1 = x_1^-$, we restate some properties of x_1^- as follows.

$$d(z_1) + d(y_1) = n - 1, \ N(y_1) \supseteq V(H) - \{y_1\}, \ \text{and} \ N(z_1) = V(P) - N_P^-(y_1).$$
 (1)

In particular, we have that $z_1v, z_1v^- \in E$.

If $uz_i \in E$ for some $i \geq 2$, then $P^-[z_1, u]P^-[z_i, x_1]y_1P[x_{j_i}, v]$ is a maximal path of order p+1, a contradiction. If $z_i v \in E$ for some $i \geq 2$, then $P[u, z_1]P^-[v^-, x_{j_i}]y_1P[x_1, z_i]v$ is a maximal path of order p+1, a contradiction. Thus, $z_i u \notin E$ and $z_i v \notin E$ for each $i \geq 2$.

For each $i \geq 2$, since $z_i \notin N(y_1)$ and $N(z_1) = V(P) - N_P^-(y_1)$, $z_1 z_i^- \in E$. Let $Q = P[u, z_1] P^-[z_i^-, x_1] y_1 P[x_{j_i}, v]$. Since $z_i v \notin E$ and $z_i u \notin E$, Q is a maximal path of order p. We claim that $N(z_i) \cap V(P[u, z_1]) = \emptyset$. Otherwise, let $w \in V(P[u, z_1])$ such that $wz_i \in E$. Since $z_i u \notin E$, $w \neq u$. This together with $N(z_1) = V(P) - N_P^-(y_1)$ implies $w^- z_1 \in E$. Hence, $P[u, w^-] P^-[z_1, w] P^-[z_i, x_1] y_1 P[x_{j_i}, v]$ is a maximal path of order p+1, a contradiction. Thus, z_i^- is the first vertex along Q such that $N(z_i) - V(Q) \neq \emptyset$. Then z_i plays the same role in G - V(Q) as y_1 does in H, so that $N(z_i) \supset V(H) - \{y_1\}$. Therefore, $N(y_s) \supset \{z_2, z_3, \cdots, z_k\}$.

Since $z_iy_1 \notin E$ and $z_iy_s \in E$ for each $i \geq 2$, we have $y_s \neq y_1$. Since $z_iy_s \in E$, $x_{j_i}y_s \notin E$ for each $i = 1, 2, \dots, k$. Since x_s is the last vertex along P[u, v] such that $N(x_s) - V(P) \neq \emptyset$, $x_s \in P[w_k, v]$.

Note that $N(y_s) \supset \{z_2, z_3, \dots, z_k, x_s\}$. Similarly, considering path $P^-[v, u]$ and y_s , we have $N_H(x_{j_i}) = V(H) - \{y_s\}$ for each $i \ge 2$. Recall $N_H(z_i) = V(H) - \{y_1\}$. Thus, $N_H(x_{j_i}) \cap N_H(z_i) = V(H) - \{y_1, y_s\}$. Since $h = |V(H)| \ge 3$, there exists a vertex $y^* \in V(H)$ such that $y^*x_{j_i} \in E$ and $y^*z_i \in E$ for each $i \ge 2$. Then, $P[u, z_2]y^*P[x_{j_2}, v]$ is a maximal path of order p + 1, a contradiction.

Claim 4 $Y_2 = \emptyset$, *i.e.* $d_P(y) \le 1$ for each $y \in V(H)$.

Proof: Suppose, to the contrary, $Y_2 \neq \emptyset$. Let $i_2 = \min\{i : x_i \in N_P(Y_2)\}$, and let $y \in Y_2$ such that $yx_{i_2} \in E$ and $yx_{i_3} \in E$, where $i_3 \neq i_2$. By Claim 3, $1 < i_2 < i_3 < s$. Let

 $z_1 = x_1^-, z_2 = x_{i_2}^-, z_3 = x_{i_3}^-, \text{ and } z_s = x_s^-.$ Moreover, Let $P_1 = P[u, z_2], P_2 = P[z_2^+, z_3],$ and $P_3 = P[z_3^+, v].$

Since there does not exist a maximal path of order p + 1, we have the following equalities.

$$N_{P_1}^+(z_2) \cap N_{P_1}(z_3) = N_{P_2}(z_2) \cap N_{P_2}^+(z_3) = N_{P_3}(z_2) \cap N_{P_3}^-(z_3) = \emptyset.$$

Note that $N_{P_1}^+(z_2) \subseteq V(P_1), N_{P_2}^+(z_3) \subseteq V(P_2)$, and $N_{P_3}^-(z_3) \subseteq V(P_3) \cup \{z_3\}$.

$$d_{P}(z_{2}) + d_{P}(z_{3}) = |N_{P_{1}}^{+}(z_{2})| + |N_{P_{2}}(z_{2})| + |N_{P_{3}}(z_{2})| + |N_{P_{1}}(z_{3})| + |N_{P_{2}}^{+}(z_{3})| + |N_{P_{3}}^{-}(z_{3})| \le |(N^{+}(z_{2}) \cup N(z_{3})) \cap V(P_{1})| + |(N(z_{2}) \cup N^{+}(z_{3})) \cap V(P_{2})| + +|(N(z_{2}) \cup N^{-}(z_{3})) \cap V(P_{3})| + |\{z_{3}\}| \le |V(P)| + 1 = p + 1$$

From the definition of x_{i_2} , we have $z_2 \notin X_2$, so that $(N(z_2) \cap N(z_3)) \cap V(H) = \emptyset$. Since $d(z_2) + d(z_3) \ge n - 1$, we have $d_H(z_2) + d_H(z_3) \ge h - 2$. Combining this inequality and the fact that $y, y_s \notin N(z_2) \cup N(z_3)$, we obtain that $N(z_2) \cup N(z_3) \supseteq V(H) - \{y, y_s\}$. Thus, $y_1 \in N(z_2) \cup N(z_3)$. Since $d_P(y_1) = 1$, $z_2 = x_1$. Moreover, we have $N(x_s) \cap V(H) = \{y_s\}$. Similarly, $N(x_1) \cap V(H) = \{y_1\}$.

For each $w \in V(P) - X_1$, since $d(y_1) + d(w) \ge n - 1$ and $d_P(y_1) = 1$, N[w] = V(P). So $N[u] = N[z_1] = N[v] = V(P)$. In particular, $z_1 z_3 \in E$ and $v x_1 \in E$.

If $x_1v^- \in E$, then $P[u, z_1]P^-[z_3, x_{i_2}]yP[x_{i_3}, v^-]x_1v$ is a maximal path of order p+1, a contradiction. Thus, $x_1v^- \notin E$. Since $d(x_1) + d(y_s) \ge n-1$ and $d_P(y_s) = 1 = d_H(x_1)$, we have $d_P(x_1) \ge |V(P)| - 2$, so that $x_1x_{i_2}^+ \in E$. Then $P[u, z_1]P^-[z_3, x_{i_2}^+]x_1x_{i_2}yP[x_{i_3}, v]$ is a maximal path of order p+1, a contradiction. \Box

Since each vertex in H has at most one neighbor on P[u, v], we have $d_P(y) \leq 1$ for each $y \in V(H)$. On the other hand, since $d(u) + d(y) \geq n - 1$ and $N_H(u) = \emptyset$, we have $d_P(y) \geq 1$. Thus, $d_P(y) = 1$ for each $y \in V(H)$. Applying $\sigma_2(G) \geq n - 1$ again, we get both V(H) and $V(P) - N_P(H)$ are cliques, and N[w] = V(P) for each $w \in V(P) - X_1$. Then, X_1 is a skew-cut of G and G is a skew-joint graph, a contradiction. \Box

3 Proof of Theorem 4

3.1 A Lemma

Let G be a traceable graph and let $B \subseteq V(G)$. It is not difficult to see that $\omega(G-B) \leq |B|+1$, where $\omega(G-B)$ is the number of components of G-B. We call $B \subseteq V(G)$ a *cutter* if $\omega(G-B) = |B|+1$. Note that \emptyset is a cutter of G by the definition. A cutter B is maximum if $|A| \leq |B|$ for every cutter A. A hamiltonian path P of G is called an x-H-path if x is one of two endvertices of P. If G is hamiltonian, then G contains an x-H-path for each $x \in V(G)$.

Lemma 1 Let G be a P_4 -free traceable graph and B be a maximum cutter of G. Then, for every $x \notin B$

- (1) G contains an x-H-path, and
- (2) if $B \neq \emptyset$, then for any hamiltonian path P[u, v], G contains an x-H-path such that the other end-vertex is either u or v.

Proof: If $B = \emptyset$, then G is 1-tough. By Theorem 3, G is hamiltonian. Then, G contains an x-H-path. So we assume $B \neq \emptyset$.

Let P[u, v] be a hamiltonian path of G and let $B = \{b_1, b_2, \ldots, b_s\}$. Assume that b_1, b_2, \ldots, b_s are listed in the order along the orientation of P[u, v]. Since $\omega(G - B) = |B| + 1$, B does not contain two consecutive vertices of P[u, v], $u \notin B$, and $v \notin B$. Let $A_0 = V(P[u, b_1)]$, $A_i = V(P(b_i, b_{i+1}))$ for each $i = 1, 2, \ldots, s - 1$, and $A_s = V(P(b_s, v])$. Since $\omega(G - B) = |B| + 1$, $G_i := G[A_i]$ is a component of G - B for each $i = 0, \ldots, s$. So, $E(A_i, A_j) = \emptyset$, for all $0 \le i \ne j \le s$, where $E(A_i, A_j) = \{ab : a \in A_i, b \in A_j\}$. Assume $x \in A_{i_0}$, where $0 \le i_0 \le s$. Since B is a maximum cutter, $G[A_{i_0}]$ is 1-tough. By Theorem 3, $G[A_{i_0}]$ contains an x-H-path Q[x, y].

We claim that $N(b_i) \supseteq A_j$ if $N_{A_j}(b_i) \neq \emptyset$ for each pair i and j. Otherwise, since $G[A_j]$ is connected, there exist $u_j, v_j \in A_j$ such that $u_j v_j \in E$ and $b_i u_j \in E$ and $b_i v_j \notin E$. Then, either $b_i^- b_i u_j v_j$ (if $i \leq j$) or path $b_i^+ b_i u_j v_j$ (if i > j) is an induced P_4 , a contradiction. In particular, we have $N(b_i) \supseteq A_i \cup A_{i-1}$ for each $1 \leq i \leq s$.

If $i_0 = 0$ then $Q[x, y]P[b_1, v]$ is a hamiltonian path of G. If $i_0 = s$ then $Q[x, y]P^-[b_s, u]$ is a hamiltonian path. We assume $0 < i_0 < s$.

We will recursively define a sequence of vertices $b_{i_0}, b_{i_1}, \dots, b_{i_t} \in B$ which will help us to find an x-H-path. If $N(b_{i_0}) \supseteq \bigcup_{i \ge i_0} A_i$, let t = 0 and stop. Otherwise, let i_1 be the smallest i such that $N_{A_i}(b_{i_0}) = \emptyset$. Since G is P_4 -free, $N_{A_{i_0-1}}(b_{i_1}) \ne \emptyset$. If $N(b_{i_1}) \supseteq \bigcup_{i < i_0} A_i$, let t = 1 and stop. Otherwise, let A_{i_2} be the largest $i < i_0$ such that $N_{A_{i-1}}(b_{i_1}) = \emptyset$. Since G is P_4 -free, $N_{A_{i_1+1}}(b_2) \ne \emptyset$. If $N(b_{i_2}) \supseteq \bigcup_{i \ge i_1} A_i$, let t = 2 and stop. Otherwise, let i_3 be the smallest i such that $N_{A_i}(b_{i_2}) = \emptyset$. Since G is P_4 -free, $N_{A_{i_2-1}}(b_3) \ne \emptyset$. Continuing in this manner, since G is finite, we obtain a finite sequence $i_0, i_1, i_2, \dots, i_t$ with $i_0 < i_1 < i_3 < \dots < i_{2\ell+1} < \dots$ and $i_0 > i_2 > i_4 > \dots > i_{2\ell} > \dots$ such that

$$N(b_{i_0}) \supseteq A_{i_0} \cup A_{i_0+1} \cup \dots \cup A_{i_1-1}$$

$$N(b_{i_1}) \supseteq A_{i_0-1} \cup A_{i_0-2} \cup \dots \cup A_{i_2}$$

$$N(b_{i_2}) \supseteq A_{i_1} \cup A_{i_1+1} \cup \dots \cup A_{i_3-1}$$

$$N(b_{i_3}) \supseteq A_{i_2-1} \cup A_{i_2-2} \cup \dots \cup A_{i_4}$$

$$\vdots \vdots \vdots$$

and

$$N(b_{i_t}) \supseteq \begin{cases} \cup_{i \ge i_{t-1}} A_i & \text{if } t \text{ is even,} \\ \cup_{i < i_{t-1}} A_i & \text{if } t \text{ is odd.} \end{cases}$$

If t = 0, $Q[x, y]P[b_{i_0+1}, v]P^{-}[b_{i_0}, u]$ is a hamiltonian path from x to u in G. If t > 0 is even, G contains a hamiltonian path from x to u as follows.

$$Q[x,y]P[b_{i_0+1}, b_{i_1}^-]P^-[b_{i_0}, b_{i_2}^+]P[b_{i_1}, b_{i_3}^-] \cdots P[b_{i_{t-1}}, v]P^-[b_{i_t}, u].$$

Figure 4: The case of t = 2

The case t = 2 is illustrated in Figure 4.

If t is odd, G contains a hamiltonian path from x to v as shown below:

 $Q[x,y]P[b_{i_0+1}, b_{i_1}^-]P^-[b_{i_0}, b_{i_2}^+]\cdots P^-[b_{i_{t-1}}, u]P[b_{i_t}, v].$

The case t = 3 is illustrated in Figure 5. So, in each case, G has an x-H-path.

Figure 5: The case of t = 3

3.2 Proof of Theorem 4

Suppose, to the contrary, there is a P_4 -free and 1-tough graph G such that G contains a maximal path P = P[u, v] of order p and G does not contain a maximal path of order p + 1, for some $p \le n - 2$. Let H be a component in G - V(P[u, v]).

Claim 5 For each $x \in V(P[u, v])$, either $N_H(x) = \emptyset$ or $N_H(x) = V(H)$.

Proof: Suppose, to the contrary, there is a vertex $x \in V(P)$ such that $\emptyset \neq N_H(x) \neq V(H)$. Clearly, $x \neq u$. Further, we assume that x is the one closest to u on P with the above property. Since H is connected, there are $y, z \in V(H)$ such that $yz \in E, xy \in E$, and $xz \notin E$. Since G does not contain a maximal path of order $p + 1, x^-y \notin E$. By our choice of x, we have $N_H(x^-) = \emptyset$. So, x^-xyz is an induce P_4 , a contradiction. \Box

Claim 6 $N_P(H)$ does not contain two consecutive vertices of P for each component H of G - V(P).

Proof: Suppose, to the contrary, there are two consecutive vertices $w, x \in V(P)$ such that $N_H(w) \neq \emptyset$ and $N_H(x) \neq \emptyset$. By Claim 5, $N(w) \cap N(x) \supset V(H)$. Then, P[u, w]yP[x, v] is a maximal path of order p + 1, where $y \in V(H)$, a contradiction.

Since G is P_4 -free, Claim 6 implies the following claim.

Claim 7 $N_P(G - V(P))$ does not contain two consecutive vertices of P for each maximal path P of order p.

Let $N_P(H) = \{x_1, x_2, \ldots, x_s\}$, where x_1, x_2, \ldots, x_s are listed in the order along the orientation of P[u, v]. Since G is 1-tough, G is 2-connected, so that $s \ge 2$. Since P[u, v] is a maximal path, $x_1 \ne u$ and $x_s \ne v$. Let

$$\begin{array}{rcl} A_0 &=& V(P[u,x_1)) & \text{and} & G_0 = G[A_0], \\ A_i &=& V(P(x_i,x_{i+1})) & \text{and} & G_i = G[A_i] & \text{for } i = 1,\,2,\,\cdots,s-1, \\ A_s &=& V(P(x_s,v]) & \text{and} & G_s = G[A_s]. \end{array}$$

Let y denote an arbitrary vertex of H in the remainder of the proof. Since G does not contain an induced P_4 , the following results hold.

Claim 8 For any two integers $i = 1, 2, \ldots, s$ and $j = 0, 1, \ldots, s$,

- 1. $N(x_i) \supset A_{i-1}$ and $N(x_i) \supset A_i$, and
- 2. $N(x_i) \supseteq A_j$ if $N_{A_j}(x_i) \neq \emptyset$.

For each G_i , let B_i be a maximum cutter of G_i and $C_i = A_i - B_i$. Note that $B_i = \emptyset$ may happen. By the definition of cutter, $G_i - B_i$ contains exactly $|B_i| + 1$ components.

Claim 9 For each $v_i \in C_i$, there exists a vertex $w_i \in A_i$ such that G_i contains a hamiltonian path from v_i to w_i and $N(v_i) \cup N(w_i) \subseteq V(P[u, v])$.

Proof: By Lemma 1, G_i contains a v_i -H-path $Q[v_i, w_i]$. We only need to show that $N(v_i) \cup N(w_i) \subseteq V(P[u, v])$. Suppose, to the contrary, there exists an integer i such that $N(v_i) \cup N(w_i) \not\subseteq V(P[u, v])$.

If $i \neq 0$ and $i \neq s$, $P^* = P[u, x_i]Q[v_i, w_i]P[x_{i+1}, v]$ is a maximal path of order p. By Claim 7, $N_{P^*}(G - V(P))$ does not contain two consecutive vertices of P^* . Since $x_i, x_{i+1} \in N_{P^*}(H)$, we have $N(v_i) \subseteq V(P)$ and $N(w_i) \subseteq V(P)$, a contradiction. Thus, we may assume either i = 0 or i = s, say, without loss of generality, i = 0.

If G_0 is not 1-tough, by Lemma 1, we may assume that $w_0 \in \{u, x_1^-\}$. Since P is a maximal path, $N(u) \subseteq V(P)$. Since $N(x_1) \cap V(H) \neq \emptyset$, $N(x_1^-) \subseteq V(P)$ by Claim 7. Thus, $N(w_0) \subseteq V(P)$ regardless $w_0 = u$ or $w_0 = x_1^-$. Applying Claim 7 to the maximal path $Q_0^-[w_0, v_0]P[x_1, v]$, we have $N(v_0) \subseteq V(P[u, v])$, a contradiction. Thus, G_0 is 1-tough.

By Theorem 3, G_0 contains a hamiltonian cycle C. For each $x \in V(C)$, let $x^-(C)$ denote the predecessor of x on C. Then, $P' = C[u, u^-(C)]P[x_1, v]$ is a maximal path. Note that V(P) = V(P'). By Claim 7, either $N(v_0) \subseteq V(P)$ or $N(v_0^-(C)) \subseteq V(P)$. Suppose $N(v_0^-(c)) \subseteq V(P)$. Applying Claim 7 to maximal path $C^-[v_0^-(C), v_0]P[x_1, v]$, we have $N(v_0) \subseteq V(P)$. which implies Claim 9 is true with $w_0 = v_0^-(C)$.

Claim 10 $E(C_i, C_j) = \emptyset$ for each $0 \le i < j \le s$.

Proof: Suppose, to the contrary, there exist $v_i \in C_i$ and $v_j \in C_j$ with $0 \le i < j \le s$ such that $v_i v_j \in E$. For each $\ell = i, j$, by Claim 9, there exists a hamiltonian path $Q_\ell[v_\ell, w_\ell]$ such that $N(v_\ell) \cup N(w_\ell) \subseteq V(P[u, v])$. Since $x_1 \in N_P(H), N(x_1^+) \subseteq V(P[u, v])$ by Claim 7. Let y be an arbitrary vertex of H. By Claim 5, $N_P(y) = N_P(H) = \{x_1, x_2, \ldots, x_s\}$. Set

$$P' = \begin{cases} P[u, x_i]yP^{-}[x_j, x_{i+1}]Q_i^{-}[w_i, v_i]Q_j[v_j, w_j]P[x_{j+1}, v], & \text{if } i \neq 0 \text{ and } j \neq s \\ Q_0^{-}[w_0, v_0]Q_j[v_j, w_j]P^{-}[x_j, x_1]yP[x_{j+1}, v], & \text{if } i = 0 \text{ and } j \neq s \\ P[u, x_i]yP^{-}[x_s, x_{i+1}]Q_i^{-}[w_i, v_i]Q_s[v_s, w_s], & \text{if } i \neq 0 \text{ and } j = s \\ P[x_1^+, x_s]yx_1Q_0^{-}[w_0, v_0]Q_s[v_s, w_s], & \text{if } i = 0 \text{ and } j = s. \end{cases}$$

Clearly, P' is a maximal path of order p + 1, a contradiction.

Let $S = \{x_1, x_2, \ldots, x_k\} \cup B_0 \cup B_1 \cup \cdots \cup B_k$, where B_i is a maximum cutter of G_i for each $i = 0, 1, \cdots, s$. By Claim 9, we have $N(V(P[u, v] - S)) \subseteq V(P[u, v])$. This together with Claim 10 implies that every segment of P[u, v] - S induces a connected component in G - S. These components and the component H show that G - S has at least |S| + 2components, which contradicts the assumption that G is 1-tough. This completes the proof of Theorem 4.

4 Proof of Theorem 6

Suppose, to the contrary, there exists a connected, locally connected, and $K_{1,3}$ -free graph G such that G contains a maximal path P = P[u, v] of order p and G does not contain a maximal path of order p+1. Since G is traceable, $p \leq n-2$. Let H = G - V(P) and let y be a vertex of H with $N_P(y) \neq \emptyset$. Let $N_P(y) = \{x_1, x_2 \cdots, x_s\}$, where x_1, x_2, \ldots, x_s are listed in the order along the orientation of P[u, v]. Choose y so that min $\{|P[u, x_1)|, |P[x_s, v]|\}$ achieves the minimum. Without loss of generality, assume $|P[u, x_1]| \leq |P[x_s, v]|$. Since P[u, v] is a maximal path, $x_1 \neq u, x_s \neq v$ and $(\{x_1^-, x_2^-, \cdots, x_s^-\} \cup \{x_1^+, x_2^+, \cdots, x_s^+\}) \cap N_P(y) = \emptyset$.

Since G is $K_{1,3}$ -free, $x_i^- x_i^+ \in E(G)$ for all $i = 1, 2, \dots, s$. Let $x = x_1, A = V(P) - N_P(y)$, and $B = V(H) \cup N_P(y)$.

Claim 11 $N_H(x^-) = \emptyset$ and $N_P(x^-) \cap N_P(y) = \{x\}.$

Proof: $N_H(x^-) = \emptyset$ directly comes from the definition of P and y. If $x^-x_i \in E$ for some i > 1, $P[u, x^-]x_i y P[x, x_i^-]P[x_i^+, v]$ is a maximal path of order p + 1, a contradiction. \Box

Claim 12 Both $G[N_A(x)]$ and $G[N_B(x)]$ are complete.

Proof: Since $G[N_A[x] \cup \{y\}]$ contains no induced $K_{1,3}$, we have $G[N_A(x)]$ is complete. Since $G[N_B[x] \cup \{x^-\}]$ contains no induced $K_{1,3}$, $G[N_B(x)]$ is complete.

Since G is locally connected, there exist $a \in N_A(x)$ and $b \in N_B(x)$ such that $ab \in E$.

Claim 13 $b \notin V(H)$.

Proof: Suppose, to the contrary, that $b \in V(H)$. Then, $a \in N_P(H)$. Since G is $K_{1,3}$ -free, $a^-a^+ \in E$. By the choice of y, we have $a \in V(P[x^+, v])$. Since $x^-, a \in N_A(x)$, $x^-a \in E(G)$ from Claim 12. Then, $P[u, x^-]abP[x, a^-]P[a^+, v]$ is a maximal path of order p + 1, a contradiction.

Assume $b = x_i$ for some $i \ge 2$. Since $x^-x^+ \in E$ and $x_i^-x_i^+ \in E$, we have $x_i^-, x_i^+ \notin N(x)$ and $x^-, x^+ \notin N(x_i)$. Otherwise, for example, $xx_i^- \in E$, then $P[u, x^-]P[x^+, x_i^-]xyP[x_i, v]$ id s maximal path of order p + 1, a contradiction. Since $ax \in E$ and $ab = ax_i \in E$, $a \notin \{x^-, x^+, x_i^-, x_i^+\}$. Since $a, x^- \in N_A(x)$, $ax^- \in E$ by Claim 12. We will consider the following two cases to finish the proof.

Case 1 $a \neq u, v$.

Since $G[\{a, a^-, a^+, x\}]$ is not an induced $K_{1,3}$, $\{a^-a^+, a^-x, a^+x\} \cap E \neq \emptyset$. We will derive a contradiction by showing that G has a u - v path P' of order p + 1 with $V(P') \supseteq V(P)$, which is equivalent to that $G \cup \{uv\}$ contains a cycle C' of order p + 1 with $uv \in E(C')$ and $V(C') \supseteq V(P)$. Set C = P[u, v]u. Then, C is a cycle of order pin $G \cup \{uv\}$. Then, either $a \in C(x^+, x_i^-)$ or $a \in C(x_i^+, x^-)$. Assume, without loss of generality, that $a \in C(x^+, x_i^-)$ (the case of $a \in C(x_i^+, x^-)$ is similar). Let

$$C' = \begin{cases} x^{-}ax_{i}yC[x,a^{-}]C[a^{+},x_{i}^{-}]C[x_{i}^{+},x^{-}] & \text{if } a^{-}a^{+} \in E, \\ x^{-}C[x^{+},a^{-}]xyx_{i}C[a,x_{i}^{-}]C[x_{i}^{+},x^{-}] & \text{if } a^{-}x \in E, \\ x^{-}C[x^{+},a]x_{i}yxC[a^{+},x_{i}^{-}]C[x_{i}^{+},x^{-}] & \text{if } a^{+}x \in E. \end{cases}$$

In each case, C' is a cycle in $G \cup \{uv\}$ with $uv \in E(C')$ and $V(C') = V(C) \cup \{y\}$. So, C' - uv is a maximal path of order p + 1, a contradiction.

Case 2 $a \in \{u, v\}$.

Recall $x = x_1$. From the minimality of $|P[u, x_1]|$, we obtain that $N(x^-) \subseteq V(P)$. If a = u, then $P^-[x^-, u]x_iyP[x, x_i^-]P[x_i^+, v]$ is a maximal path of order p+1, a contradiction. Hence, a = v.

Recall $x^-a \in E(G)$. If $N(v^-) \subseteq V(P)$, then $P[u, x^-]vx_iyP[x, x_i^-]P[x_i^+, v^-]$ is a maximal path of order p + 1. Hence, $N(v^-) \not\subseteq V(P)$. From the minimality of $|C[u, x_1]|$, we have $|P[u, x]| \leq |P[v^-, v]|$. So, $u = x^-$. This together with Claim 11 implies $ux_i \notin E$. Since $u, v \in N_A(x)$, by Claim 12, we have $uv \in E$. Note that $a \neq x_i^+$ implies that $x_i \neq v^-$. Hence, v, u, x_i and v^- are distinct vertices of G. Since $G[\{v, u, x_i, v^-\}]$ is not an induced $K_{1,3}$ and $ux_i \notin E$, either $uv^- \in E$ or $x_iv^- \in E$. Let

$$P' = \begin{cases} uP^{-}[v^{-}, x_{i}^{+}]P^{-}[x_{i}^{-}, x]yx_{i}v, & \text{if } uv^{-} \in E, \\ uP[x^{+}, x_{i}^{-}]P[x_{i}^{+}, v^{-}]x_{i}yxv, & \text{if } x_{i}v^{-} \in E. \end{cases}$$

Then, P' is a maximal path of order p + 1, a contradiction. This completes the proof of Theorem 6.

Acknowledgements

We are very grateful to the referees for their many valuable suggestions and comments.

References

- Chartrand, G.; Lesniak, L. Graphs & Digraphs, 3rd Edition, Chapman and Hall, London, 1996.
- [2] Chen, G.; Faudree R.J.; Li, X.; Schiermeyer, I. Graph with all maximal paths are odd length, preprint.
- [3] Chen, G.; Faudree R.J.; Hu, Z.; Ma, J.; Soltes, L., Path Spectra for Trees, preprint.
- [4] Chvátal, V. Tough graphs and circuits, Discret Math. 5 (1973), 215-228.
- [5] Hendry, G.R.T. Extending Cycles in Bipartite Graphs, J. Combin. Theory Ser. B 51(1991), no 2, 292-313
- [6] Hendry, G.R.T, Extending Cycles in Graphs, Discrete Math 85 (1990) 1 59-72
- [7] Hendry, G.R.T, Extending Cycles in Directed Graphs, J. Combin. Theory Ser. B 46 (1989), no 2, 162-172.
- [8] Jacobson, M.S.; Kézdy, A.; Kubicki, E.; Kubicki, G.; Lehel, J.; Wang, C.; West D.B. *The path spectrum of a graph*, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995). Congr. Numer. 112 (1995), 49–63.
- [9] Jacobson, M.S.; Kézdy, A.E.; Lehel, J. Scenic Graphs I: Traceable Graphs, Ars Combin. 49 (1998), 79–96.
- [10] Jacobson, M.S.; Kézdy, A.E.; Lehel, J. Scenic Graphs II: Non-traceable Graphs, Australas. J. Combin. 19 (1999), 287–307.
- [11] Jung, H.A. Note on hamiltonian graphs, Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), 315-321.
- [12] Oberly D.J.; Sumner, D.P. Every connected, locally connected nontrivial graph with no induved claw is hamiltonian, J. Graph Theory 3 (1979), 351-356.
- [13] Ore, O. A note on hamiltonian circuit. Amer. Math. Monthly 67(1960), 93-105.
- [14] Thomassen, C. Graphs in which every maximal path is contained in a Hamiltonian path, J. Reine Angew. Math. 268-269 (1974), 271-282.