Endpoint Extendible Paths in Dense Graphs

Guantao Chen *
Department of Mathematics and Statistics
Department of Computer Science
Georgia State University
Atlanta, GA 30303
Faculty of Mathematics and Statistics
Huazhong Normal University
Wuhan, China

Zhiquan $\mathrm{Hu}{ }^{\dagger}$
Faculty of Mathematics
Central China Normal University
Wuhan 430079, P. R. China
Hao Li ${ }^{\ddagger}$
L.R.I., UMR 8623 du CNRS-UPS
Bât. 490, Universite de Paris-sud 91405-Orsay CEDEX, France

November 30, 2005

Abstract

Let G be a graph of order n. A path P of G is extendible if it can be extended to a longer path from one of its two endvertices, otherwise we say P is non-extendible. Let G be a graph of order n. We show that there exists a threshold number s such that every path of order smaller than s is extendible and there exists a non-extendible path of order t for each $t \in\{s, s+1, \cdots, n\}$ provided G satisfies one of the following three conditions:

- $d(u)+d(v) \geq n$ for any two of nonadjacent vertices u and v.
- G is a P_{4}-free 1-tough graph.
- G is a connected, locally connected, and $K_{1,3}$-free graph.

1 Introduction

We generally follow the notation of Chartrand and Lesniak [1]. All graphs considered in this paper are simple finite graphs, i.e., graphs with finite number of vertices, without loops, and without multiple edges. Let G be a graph. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. We write $G=(V(G), E(G))$. For convenience, we write V instead of $V(G)$ and E instead of $E(G)$ if the referred graph G

[^0]is well understood. We call $|G|=|V(G)|$ the order of G. In this paper, we reserve n for the order of G. We define that
$$
N_{H}(v)=\{w \in V(H): v w \in E(G)\} \quad \text { and } \quad d_{H}(v)=\left|N_{H}(v)\right|,
$$
where $v \in V$ and H is a subgraph of G. For convenience, let $N(v)=N_{G}(v), d(v)=d_{G}(v)$, $\delta=\min \{d(v): v \in V\}$ the minimum degree of G, and
$$
\sigma_{2}(G)=\min \{d(u)+d(v): u v \notin E\} .
$$

Moreover, we define $N[v]:=N(v) \cup\{v\}$ and name it the close neighborhood of v for each $v \in V(G)$. A subgraph H of G is called an induced subgraph of G if there exists an $X \subseteq V(G)$ such that $H=G[X]$. Let $G-X=G[V-X]$. For any two vertices $u, v \in V$ and an induced subgraph H of G, let $u H v$ denote an arbitrary shortest path connecting u to v in $G[V(H) \cup\{u, v\}]$ if it is connected.

For any positive integer k, let P_{k} denote a path of order k. A graph G is traceable if it contains a hamiltonian path. Ore [13] proved that a graph G of order n is traceable if $\sigma_{2}(G) \geq n-1$. A graph G is path extendible if for every path P_{k} with $k<|G|$ there exists a path P_{k+1} such that $V\left(P_{k}\right) \subseteq V\left(P_{k+1}\right)$. Clearly, if a graph is path extendible then it is traceable. Hendry [6] showed that most known sufficient conditions for traceable graphs are also sufficient for extendible. In particular, he showed that a graph G of order n is path extendible if $\sigma_{2}(G) \geq n-1$.

A path P of a graph G is called a maximum path if $|P| \geq|Q|$ for all paths Q in G. However, there are two different versions of maximal paths: vertex version and edge version. A path P is vertex-maximal if there does not exist a path Q such that $V(P)$ is a proper subset of $V(Q)$. A path P is called edge-maximal if there does not exist a path Q such that $E(P)$ is a proper subset of $E(Q)$. Clearly, all vertex-maximal paths are edge-maximal paths. On the other hand, not all edge-maximal paths are vertex-maximal paths. If G is a traceable graph, all vertex-maximal paths are hamiltonian paths. However, many nontrivial problems arise naturally for edge-maximal paths. In this paper, we will only consider edge-maximal paths. To avoid cumbersome notation, we simply call them maximal paths. We notice that the following statements are equivalent:

- P is a maximal path.
- P cannot be extended from one of its two endvertices.
- No path contains P as a proper subpath.

For any graph G, we let $S(G)=\{|P|: P$ is a maximal path of $G\}$ and call it the maximal-path spectrum of G. We also say that G realizes $S(G)$. A set S of positive integers is called a path spectrum if there exists a connected graph G such that $S(G)=S$. Note that the condition of connectivity is important. Otherwise, all positive integer sets would be path spectra.

The ultimate goal is to establish an efficient algorithm to determine whether a set S of positive integers is a path spectrum. So far, there have been very little progress on this direction. Connected graphs G with $|S(G)|=1$ are investigated by Thomassen [14] and,
independently, by Jacobson et al [9, 10]. Jacobson et al [8] show that all pairs of positive integers are path spectra. Chen et al [2] show that there are infinitely many k-sets of positive integers which are not path spectra for each integer $k \geq 3$. Chen et al [3] studied path spectra for trees.

In this paper, we investigate graphs G such that $S(G)$ consists of consecutive positive integers. A graph G is called a string path spectrum graph (SPS-graph) if there exists a positive integer s such that $S(G)=\{s, s+1, \ldots, n\}$, where n is the order of G. Clearly, all $S P S$-graphs are traceable. The property of $S P S$-graphs are much stronger than traceable graphs. We will show some well-known sufficient conditions for traceable graphs are sufficient for $S P S$-graphs. The following one is an Ore-type result.

Theorem 1 Let G be a graph of order n. If $\sigma_{2}(G) \geq n$, then G is an $S P S$-graph.
A vertex set X of a graph G is a cut if $G-X$ has more components than G does. A cut X of G is minimal if there does not exist a cut Y of G such that Y is a proper subset of X. A minimal cut X of G is called a skew-cut if $G-X$ is a union of two disjoint cliques A and B such that $N(x) \supset V(B)$ for each $x \in X$ and $N_{A}(x)$'s, for all $x \in X$, form a partition of A. Notice that, in the above definition, $d(a)+d(b)=n-1$ for each $a \in A$ and $b \in B$. Clearly, if X is a skew-cut of G then it is the unique skew-cut of G. A graph G is named a skew-joint graph if it has a skew-cut. An example of a skew-joint graph is shown in Figure 1.

Figure 1: A Skew Joint Graph with $|X|=3$

Theorem 2 Let G be a graph of order n. If $\sigma_{2}(G) \geq n-1$, then G is either an SPS-graph or a skew-joint graph.

Some skew-joint graphs are $S P S$-graphs while others are not. We believe it is very difficult to character these skew-joint graphs which are $S P S$-graphs. In the following, we will discuss path spectra of some special skew-joint graphs. Let G be a skew-joint graph of order n, X be the skew-cut of G, and A and B be the two disjoint cliques of $G-X$ such that $N(x) \supset V(B)$ for each $x \in X$ and $N_{A}(x)$'s, for all $x \in X$, form a partition of A. Let $a=|A|, b=|B|$, and $s=|X|$. Clearly $a \geq s$. We will only consider the case that X is an independent set, $b \geq s+1 \geq 4$, and $\left|N_{A}(x)\right| \geq 3$ for every $x \in X$. Let $x_{1}, x_{2}, \cdots, x_{s}$ be a list of all vertices of X such that $d_{A}\left(x_{1}\right) \leq d_{A}\left(x_{2}\right) \leq \cdots \leq d_{A}\left(x_{s}\right)$. For convenience, let $a_{1}=d_{A}\left(x_{1}\right)$ and $a_{2}=d_{A}\left(x_{2}\right)$, i.e. a_{1} is the smallest value of $d_{A}(x)$ and a_{2} is the second smallest value of $d_{A}(x)$ for all $x \in X$. Notice that $a_{2}=a_{1}$ may happen. We assume that $a_{1} \geq 3$. Let $P[u, v]$ be a maximal path of G. We observe the following facts:

- If $u \in A$ and $v \in A$, then $|V(P)| \geq|N[u] \cup N[v]| \geq a+1$.
- If $u \in A$ and $v \in X$, then $V(P) \supseteq N[u] \cup N[v] \supseteq A \cup B \cup\{v\}$. Since $P-v$ is connected, $V(P) \cap X \neq\{v\}$. So, $|V(P)| \geq a+b+2$.
- If $u \in A$ and $v \in B$. then $V(P) \supseteq N[u] \cup N[v]=A \cup X \cup B=V(G)$, so that $|V(P)|=$ n.
- If $u \in X$ and $v \in X$, then $V(P) \supseteq N_{A}(u) \cup N_{A}(v) \cup B \cup\{u, v\}$. Since $P-u-v$ is connected, there exists a vertex $w \in X \cap(V(P)-\{u, v\})$ so that $N_{A}(w) \cap V(P) \neq \emptyset$. So, $|V(P)| \geq a_{1}+a_{2}+b+4$. On the other hand, since $G[A]$ is a clique and $N(x) \supseteq B$ for each $x \in X$, there exists a maximal path $P[u, v]$ such that $u \in X$ and $v \in X$ and $|V(P)|=\ell$ for each $\ell \geq a_{1}+a_{2}+b+4$ as shown in Figure 2.

Figure 2: A maximal path connecting $u \in X$ and $v \in X$

- If $u \in X$ and $v \in B$, then $V(P) \supseteq N_{A}(u) \cup X \cup B$. Since $P-u$ is connected, there exists a vertex $w \in V(P) \cap A$ that is adjacent to some vertex of $X-\{u\}$. Clearly, $w \notin N_{A}(u)$. So, $|V(P)| \geq a_{1}+s+b+1$.
- If $u \in B$ and $v \in B$, then $V(P) \supseteq N[u] \cup N[v] \supseteq X \cup B$, so that $|V(P)| \geq s+b$. Moreover, since $N(x)$'s form a partition of $A,|V(P) \cap A| \geq 2$ if $V(P) \cap A \neq \emptyset$. So, $|V(P)| \neq b+s+1$. On the other hand, there is a maximal path $P[u, v]$ such that $|V(P)|=\ell$ for $\ell=b+s$ or $\ell \geq s+b+2$ as shown in Figure 3.

Figure 3: Maximal paths connecting $u \in B$ and $v \in B$

If $a_{1}+a_{2} \leq \min \{s-4, a-b-3\}$, then $S(G)=\left\{a_{1}+a_{2}+b+4, a_{1}+a_{2}+b+5, \cdots, n\right\}$, which implies that G is an $S P S$-graph.

If $a_{1}+a_{2} \geq s+b, S(G)=\{s+b, s+b+2, s+b+3, \cdots, n\}$, which shows that G is not an $S P S$-graph.

Let F be a graph. A graph G is F-free if G does not contain F as an induced subgraph. The toughness of a non-complete graph G is defined by Chvátal [4] as

$$
t(G)=\min \left\{\frac{|S|}{\omega(G-S)} \quad: \quad S \text { is a cut of } G\right\}
$$

where $\omega(G-S)$ is the number of components of $G-S$. For a complete graph K_{n}, define $t\left(K_{n}\right)=\infty$. A graph G is t-tough if $t(G) \geq t$. Clearly, if G is hamiltonian, then G is 1-tough. However, the converse is not true. Chvátal [4] conjectured there is a universal constant t_{0} such that all t_{0}-tough graphs are hamiltonian. Although the conjecture is still open, many results have been obtained along this direction. Jung [11] proved a complicated result on hamiltonian graphs, which implies the following result.

Theorem 3 (Jung) If G is a P_{4}-free and 1-tough graph of order $n \geq 3$, then G is hamiltonian.

We will prove a similar result as follows.
Theorem 4 If G is a P_{4}-free and 1-tough graph, then G is an SPS-graph.
Another classic result for hamiltonian graphs involving forbidden subgraphs is due to Oberly and Sumner [12].

Theorem 5 (Oberly and Sumner) If G is a connected, locally connected, and $K_{1,3^{-}}$ free graph, then G is hamiltonian.

We obtain a similar result as follows.
Theorem 6 If G is a connected, locally connected, and $K_{1,3}$-free graph, then G is an SPS-graph.

Due to lengths of those proofs, the proofs of Theorems 2,4 and 6 will be placed to sections 2,3 and 4 , respectively. Let $P=P[u, v]$ be a path of G. We always assume $P[u, v]$ has an orientation from u to v. For any $x \in V(P[u, v])$, let x^{+}denote the successor of x along P if $x \neq v$, and x^{-}be the predecessor of x along P if $x \neq u$. Let $x^{++}=\left(x^{+}\right)^{+}$ if $x \neq v$, or v^{-}and $x^{--}=\left(x^{-}\right)^{-}$if $x \neq u$, or u^{+}. For an $S \subseteq V(P[u, v])$, we define

$$
\begin{array}{ll}
S^{+}=\left\{x^{+}: x \in S\right\} & \text { if } v \notin S, \\
S^{-}=\left\{x^{-}: x \in S\right\} & \text { if } u \notin S .
\end{array}
$$

2 Proof of Theorem 2

Let G be a graph of order n such that $\sigma_{2}(G) \geq n-1$. Suppose, to the contrary, G is neither an $S P S$-graph nor a skew-joint graph. Since $\sigma_{2}(G) \geq n-1, G$ is connected. If the connectivity $\kappa(G)=1$, then G is a union of two cliques with exactly one vertex in common, so it is a skew-joint graph, a contradiction. Therefore, G is 2-connected.

Since G is not an $S P S$-graph, there exists a positive integer p such that G contains a maximal path $P=P[u, v]$ of order p and G does not contain a maximal path of order $p+1$. Since G is traceable, $p \leq n-2$. Let $H=G-V(P)$ and $h=|V(H)|$. Since $h+p=n$, we have the following claim.

Claim $1 h \geq 2$.
Let

$$
\begin{aligned}
Y_{1} & =\left\{y \in V(H): d_{P}(y) \geq 1\right\} \\
Y_{2} & =\left\{y \in V(H): d_{P}(y) \geq 2\right\} \\
X_{1} & =N_{P}\left(Y_{1}\right)=\left\{x_{1}, x_{2}, \cdots, x_{s}\right\}, \quad \text { and } \\
X_{2} & =N_{P}\left(Y_{2}\right)
\end{aligned}
$$

Clearly, $Y_{2} \subseteq Y_{1}, X_{1}=N_{P}(H)$, and $X_{2} \subseteq X_{1}$. Without loss of generality, we assume that $x_{1}, x_{2}, \cdots, x_{s}$ are listed in the order along the orientation of $P[u, v]$ from u to v. We will show $Y_{2}=\emptyset$ by sequence of claims.

Since $P[u, v]$ is a maximal path, we have $N(u) \subseteq V(P[u, v])$ and $N(v) \subseteq V(P[u, v])$, so that $u, v \notin X_{1}$. By the definition of x_{1}, we have that $N_{H}\left(x_{1}^{-}\right)=\emptyset$. Let $y_{1} \in Y_{1} \subseteq V(H)$ such that $x_{1} y_{1} \in E$. We claim $N\left(x_{1}^{-}\right) \cap N_{P}^{-}\left(y_{1}\right)=\emptyset$. Otherwise, suppose there exist a $w \in N_{P}\left(y_{1}\right)$ such that $x_{1}^{-} w^{-} \in E$. Then, $P\left[u, x_{1}^{-}\right] P^{-}\left[w^{-}, x_{1}\right] y_{1} P[w, v]$ is a maximal path of order $p+1$, a contradiction. Therefore,

$$
d_{P}\left(x_{1}^{-}\right)+d_{P}\left(y_{1}\right)=\left|N_{P}\left(x_{1}^{-}\right)\right|+\left|N_{P}^{-}\left(y_{1}\right)\right|=\left|N_{P}\left(x_{1}^{-}\right) \cup N_{P}^{-}\left(y_{1}\right)\right| \leq|V(P)|
$$

Since $d_{H}\left(x_{1}^{-}\right)=0$,

$$
n-1 \leq d\left(x_{1}^{-}\right)+d\left(y_{1}\right)=d_{P}\left(x_{1}^{-}\right)+d_{P}\left(y_{1}\right)+d_{H}\left(x_{1}^{-}\right)+d_{H}\left(y_{1}\right) \leq p+h-1=n-1
$$

Then, the above equalities hold, so that $N_{P}\left(x_{1}^{-}\right)=V(P)-N_{P}^{-}\left(y_{1}\right)$ and $N_{H}\left(y_{1}\right)=V(H)-$ $\left\{y_{1}\right\}$. In particular, H is connected.

We claim that $N(u) \cap N_{P}^{-}\left(y_{1}\right) \subseteq\left\{x_{1}^{-}\right\}$. Otherwise, let $w \in N_{P}^{-}\left(y_{1}\right)-\left\{x_{1}^{-}\right\}$such that $u w \in E$. Path $P^{-}\left[x_{1}^{-}, u\right] P^{-}\left[w, x_{1}\right] y_{1} P\left[w^{+}, v\right]$ is a maximal path of order $p+1$, a contradiction. Then, similar to the previous paragraph, we can show that $N[u]-\left\{x_{1}^{-}\right\}=$ $V(P)-N_{P}^{-}\left(y_{1}\right)$.

Claim $2 h \geq 3$.
Proof: Suppose, to the contrary, $h=2$. Let $V(H)=\left\{y_{1}, y_{2}\right\}$, where $x_{1} y_{1} \in E$. Since $N\left(x_{1}^{-}\right)=V(P)-N_{P}^{-}\left(y_{1}\right)$ and $v \notin N_{P}\left(y_{1}\right)$, we have $x_{1}^{-} v^{-} \in E(G)$. If uv $\notin E(G)$, $P\left[u, x_{1}^{-}\right] P^{-}\left[v^{-}, x_{1}\right] y_{1} y_{2}$ is a maximal path of order $p+1$, a contradiction. Thus, $u v \in E(G)$.

If $d_{P}\left(y_{1}\right) \geq 2$, let $x_{k} \neq x_{1} \in N_{P}\left(y_{1}\right)$. If $v x_{k}^{-} \in E(G), G$ contains a maximal path $P\left[u, x_{1}^{-}\right] P^{-}\left[v^{-}, x_{k}\right] y_{1} P\left[x_{1}, x_{k}^{-}\right] v$ of order $p+1$, a contradiction. Thus, $v x_{k}^{-} \notin E(G)$. Since $N[u]-\left\{x_{1}^{-}\right\}=V(P)-N_{P}^{-}\left(y_{1}\right), u v^{-} \in E(G)$. So $P^{-}\left[x_{k}^{-}, u\right] P^{-}\left[v^{-}, x_{k}\right] y_{1} y_{2}$ is a maximal path of order $p+1$, a contradiction. Thus, $d_{P}\left(y_{1}\right)=1$, so that $y_{2} x_{s} \in E$. Similarly, we can show that $d_{P}\left(y_{2}\right)=1$. Since $h=2$, we have $s=2$ and $X_{1}=\left\{x_{1}, x_{2}\right\}$. Since
$d\left(y_{1}\right)=d\left(y_{2}\right)=2$ and $\sigma_{2}(G) \geq n-1, X=X_{1}$ is skew-cut of G with $A=\left\{y_{1}, y_{2}\right\}$ and $B=V(P)-X$, a contradiction.

Let $y_{s} \in Y_{1} \subseteq V(H)$ such that $x_{s} y_{s} \in E$.
Claim $3 d_{P}\left(y_{1}\right)=1$ and $d_{P}\left(y_{s}\right)=1$.
Proof: Suppose, to the contrary and without loss of generality, $d_{P}\left(y_{1}\right)>1$. Let

$$
N_{P}\left(y_{1}\right)=\left\{x_{j_{1}}\left(=x_{1}\right), x_{j_{2}}, \ldots, x_{j_{k}}\right\},
$$

where $j_{1}<j_{2}<\cdots<j_{k}$ and $k \geq 2$. Let $z_{i}=x_{j_{i}}^{-}$and $w_{i}=x_{j_{i}}^{+}$for each $i=1,2, \ldots, k$. Since P is a maximal path, $\left\{y_{1}\right\} \cup N_{P}^{-}\left(y_{1}\right)$ and $\left\{y_{1}\right\} \cup N_{P}^{+}\left(y_{1}\right)$ are independent vertex sets of G.

Since $z_{1}=x_{1}^{-}$, we restate some properties of x_{1}^{-}as follows.

$$
\begin{equation*}
d\left(z_{1}\right)+d\left(y_{1}\right)=n-1, N\left(y_{1}\right) \supseteq V(H)-\left\{y_{1}\right\}, \quad \text { and } N\left(z_{1}\right)=V(P)-N_{P}^{-}\left(y_{1}\right) . \tag{1}
\end{equation*}
$$

In particular, we have that $z_{1} v, z_{1} v^{-} \in E$.
If $u z_{i} \in E$ for some $i \geq 2$, then $P^{-}\left[z_{1}, u\right] P^{-}\left[z_{i}, x_{1}\right] y_{1} P\left[x_{j_{i}}, v\right]$ is a maximal path of order $p+1$, a contradiction. If $z_{i} v \in E$ for some $i \geq 2$, then $P\left[u, z_{1}\right] P^{-}\left[v^{-}, x_{j_{i}}\right] y_{1} P\left[x_{1}, z_{i}\right] v$ is a maximal path of order $p+1$, a contradiction. Thus, $z_{i} u \notin E$ and $z_{i} v \notin E$ for each $i \geq 2$.

For each $i \geq 2$, since $z_{i} \notin N\left(y_{1}\right)$ and $N\left(z_{1}\right)=V(P)-N_{P}^{-}\left(y_{1}\right), z_{1} z_{i}^{-} \in E$. Let $Q=P\left[u, z_{1}\right] P^{-}\left[z_{i}^{-}, x_{1}\right] y_{1} P\left[x_{j_{i}}, v\right]$. Since $z_{i} v \notin E$ and $z_{i} u \notin E, Q$ is a maximal path of order p. We claim that $N\left(z_{i}\right) \cap V\left(P\left[u, z_{1}\right]\right)=\emptyset$. Otherwise, let $w \in V\left(P\left[u, z_{1}\right]\right)$ such that $w z_{i} \in E$. Since $z_{i} u \notin E, w \neq u$. This together with $N\left(z_{1}\right)=V(P)-N_{P}^{-}\left(y_{1}\right)$ implies $w^{-} z_{1} \in E$. Hence, $P\left[u, w^{-}\right] P^{-}\left[z_{1}, w\right] P^{-}\left[z_{i}, x_{1}\right] y_{1} P\left[x_{j_{i}}, v\right]$ is a maximal path of order $p+1$, a contradiction. Thus, z_{i}^{-}is the first vertex along Q such that $N\left(z_{i}\right)-V(Q) \neq \emptyset$. Then z_{i} plays the same role in $G-V(Q)$ as y_{1} does in H, so that $N\left(z_{i}\right) \supset V(H)-\left\{y_{1}\right\}$. Therefore, $N\left(y_{s}\right) \supset\left\{z_{2}, z_{3}, \cdots, z_{k}\right\}$.

Since $z_{i} y_{1} \notin E$ and $z_{i} y_{s} \in E$ for each $i \geq 2$, we have $y_{s} \neq y_{1}$. Since $z_{i} y_{s} \in E$, $x_{j_{i}} y_{s} \notin E$ for each $i=1,2, \cdots, k$. Since x_{s} is the last vertex along $P[u, v]$ such that $N\left(x_{s}\right)-V(P) \neq \emptyset, x_{s} \in P\left[w_{k}, v\right]$.

Note that $N\left(y_{s}\right) \supset\left\{z_{2}, z_{3}, \cdots, z_{k}, x_{s}\right\}$. Similarly, considering path $P^{-}[v, u]$ and y_{s}, we have $N_{H}\left(x_{j_{i}}\right)=V(H)-\left\{y_{s}\right\}$ for each $i \geq 2$. Recall $N_{H}\left(z_{i}\right)=V(H)-\left\{y_{1}\right\}$. Thus, $N_{H}\left(x_{j_{i}}\right) \cap N_{H}\left(z_{i}\right)=V(H)-\left\{y_{1}, y_{s}\right\}$. Since $h=|V(H)| \geq 3$, there exists a vertex $y^{*} \in V(H)$ such that $y^{*} x_{j_{i}} \in E$ and $y^{*} z_{i} \in E$ for each $i \geq 2$. Then, $P\left[u, z_{2}\right] y^{*} P\left[x_{j_{2}}, v\right]$ is a maximal path of order $p+1$, a contradiction.

Claim $4 Y_{2}=\emptyset$, i.e. $d_{P}(y) \leq 1$ for each $y \in V(H)$.
Proof: Suppose, to the contrary, $Y_{2} \neq \emptyset$. Let $i_{2}=\min \left\{i: x_{i} \in N_{P}\left(Y_{2}\right)\right\}$, and let $y \in Y_{2}$ such that $y x_{i_{2}} \in E$ and $y x_{i_{3}} \in E$, where $i_{3} \neq i_{2}$. By Claim $3,1<i_{2}<i_{3}<s$. Let
$z_{1}=x_{1}^{-}, z_{2}=x_{i_{2}}^{-}, z_{3}=x_{i_{3}}^{-}$, and $z_{s}=x_{s}^{-}$. Moreover, Let $P_{1}=P\left[u, z_{2}\right], P_{2}=P\left[z_{2}^{+}, z_{3}\right]$, and $P_{3}=P\left[z_{3}^{+}, v\right]$.

Since there does not exist a maximal path of order $p+1$, we have the following equalities.

$$
N_{P_{1}}^{+}\left(z_{2}\right) \cap N_{P_{1}}\left(z_{3}\right)=N_{P_{2}}\left(z_{2}\right) \cap N_{P_{2}}^{+}\left(z_{3}\right)=N_{P_{3}}\left(z_{2}\right) \cap N_{P_{3}}^{-}\left(z_{3}\right)=\emptyset
$$

Note that $N_{P_{1}}^{+}\left(z_{2}\right) \subseteq V\left(P_{1}\right), N_{P_{2}}^{+}\left(z_{3}\right) \subseteq V\left(P_{2}\right)$, and $N_{P_{3}}^{-}\left(z_{3}\right) \subseteq V\left(P_{3}\right) \cup\left\{z_{3}\right\}$.

$$
\begin{aligned}
& d_{P}\left(z_{2}\right)+d_{P}\left(z_{3}\right) \\
= & \left|N_{P_{1}}^{+}\left(z_{2}\right)\right|+\left|N_{P_{2}}\left(z_{2}\right)\right|+\left|N_{P_{3}}\left(z_{2}\right)\right|+\left|N_{P_{1}}\left(z_{3}\right)\right|+\left|N_{P_{2}}^{+}\left(z_{3}\right)\right|+\left|N_{P_{3}}^{-}\left(z_{3}\right)\right| \\
\leq & \left|\left(N^{+}\left(z_{2}\right) \cup N\left(z_{3}\right)\right) \cap V\left(P_{1}\right)\right|+\left|\left(N\left(z_{2}\right) \cup N^{+}\left(z_{3}\right)\right) \cap V\left(P_{2}\right)\right|+ \\
& +\left|\left(N\left(z_{2}\right) \cup N^{-}\left(z_{3}\right)\right) \cap V\left(P_{3}\right)\right|+\left|\left\{z_{3}\right\}\right| \\
\leq & |V(P)|+1=p+1
\end{aligned}
$$

From the definition of $x_{i_{2}}$, we have $z_{2} \notin X_{2}$, so that $\left(N\left(z_{2}\right) \cap N\left(z_{3}\right)\right) \cap V(H)=\emptyset$. Since $d\left(z_{2}\right)+d\left(z_{3}\right) \geq n-1$, we have $d_{H}\left(z_{2}\right)+d_{H}\left(z_{3}\right) \geq h-2$. Combining this inequality and the fact that $y, y_{s} \notin N\left(z_{2}\right) \cup N\left(z_{3}\right)$, we obtain that $N\left(z_{2}\right) \cup N\left(z_{3}\right) \supseteq V(H)-\left\{y, y_{s}\right\}$. Thus, $y_{1} \in N\left(z_{2}\right) \cup N\left(z_{3}\right)$. Since $d_{P}\left(y_{1}\right)=1, z_{2}=x_{1}$. Moreover, we have $N\left(x_{s}\right) \cap V(H)=\left\{y_{s}\right\}$. Similarly, $N\left(x_{1}\right) \cap V(H)=\left\{y_{1}\right\}$.

For each $w \in V(P)-X_{1}$, since $d\left(y_{1}\right)+d(w) \geq n-1$ and $d_{P}\left(y_{1}\right)=1, N[w]=V(P)$. So $N[u]=N\left[z_{1}\right]=N[v]=V(P)$. In particular, $z_{1} z_{3} \in E$ and $v x_{1} \in E$.

If $x_{1} v^{-} \in E$, then $P\left[u, z_{1}\right] P^{-}\left[z_{3}, x_{i_{2}}\right] y P\left[x_{i_{3}}, v^{-}\right] x_{1} v$ is a maximal path of order $p+1$, a contradiction. Thus, $x_{1} v^{-} \notin E$. Since $d\left(x_{1}\right)+d\left(y_{s}\right) \geq n-1$ and $d_{P}\left(y_{s}\right)=1=d_{H}\left(x_{1}\right)$, we have $d_{P}\left(x_{1}\right) \geq|V(P)|-2$, so that $x_{1} x_{i_{2}}^{+} \in E$. Then $P\left[u, z_{1}\right] P^{-}\left[z_{3}, x_{i_{2}}^{+}\right] x_{1} x_{i_{2}} y P\left[x_{i_{3}}, v\right]$ is a maximal path of order $p+1$, a contradiction.

Since each vertex in H has at most one neighbor on $P[u, v]$, we have $d_{P}(y) \leq 1$ for each $y \in V(H)$. On the other hand, since $d(u)+d(y) \geq n-1$ and $N_{H}(u)=\emptyset$, we have $d_{P}(y) \geq 1$. Thus, $d_{P}(y)=1$ for each $y \in V(H)$. Applying $\sigma_{2}(G) \geq n-1$ again, we get both $V(H)$ and $V(P)-N_{P}(H)$ are cliques, and $N[w]=V(P)$ for each $w \in V(P)-X_{1}$. Then, X_{1} is a skew-cut of G and G is a skew-joint graph, a contradiction.

3 Proof of Theorem 4

3.1 A Lemma

Let G be a traceable graph and let $B \subseteq V(G)$. It is not difficult to see that $\omega(G-B) \leq$ $|B|+1$, where $\omega(G-B)$ is the number of components of $G-B$. We call $B \subseteq V(G)$ a cutter if $\omega(G-B)=|B|+1$. Note that \emptyset is a cutter of G by the definition. A cutter B is maximum if $|A| \leq|B|$ for every cutter A. A hamiltonian path P of G is called an $x-H$-path if x is one of two endvertices of P. If G is hamiltonian, then G contains an x-H-path for each $x \in V(G)$.

Lemma 1 Let G be a P_{4}-free traceable graph and B be a maximum cutter of G. Then, for every $x \notin B$
(2) if $B \neq \emptyset$, then for any hamiltonian path $P[u, v], G$ contains an x - H-path such that the other end-vertex is either u or v.

Proof: If $B=\emptyset$, then G is 1-tough. By Theorem $3, G$ is hamiltonian. Then, G contains an x-H-path. So we assume $B \neq \emptyset$.

Let $P[u, v]$ be a hamiltonian path of G and let $B=\left\{b_{1}, b_{2}, \ldots, b_{s}\right\}$. Assume that $b_{1}, b_{2}, \ldots, b_{s}$ are listed in the order along the orientation of $P[u, v]$. Since $\omega(G-B)=$ $|B|+1, B$ does not contain two consecutive vertices of $P[u, v], u \notin B$, and $v \notin B$. Let $A_{0}=V\left(P\left[u, b_{1}\right)\right], A_{i}=V\left(P\left(b_{i}, b_{i+1}\right)\right)$ for each $i=1,2, \ldots, s-1$, and $A_{s}=V\left(P\left(b_{s}, v\right]\right)$. Since $\omega(G-B)=|B|+1, G_{i}:=G\left[A_{i}\right]$ is a component of $G-B$ for each $i=0, \ldots, s$. So, $E\left(A_{i}, A_{j}\right)=\emptyset$, for all $0 \leq i \neq j \leq s$, where $E\left(A_{i}, A_{j}\right)=\left\{a b: a \in A_{i}, b \in A_{j}\right\}$. Assume $x \in A_{i_{0}}$, where $0 \leq i_{0} \leq s$. Since B is a maximum cutter, $G\left[A_{i_{0}}\right]$ is 1 -tough. By Theorem 3, $G\left[A_{i_{0}}\right]$ contains an x-H-path $Q[x, y]$.

We claim that $N\left(b_{i}\right) \supseteq A_{j}$ if $N_{A_{j}}\left(b_{i}\right) \neq \emptyset$ for each pair i and j. Otherwise, since $G\left[A_{j}\right]$ is connected, there exist $u_{j}, v_{j} \in A_{j}$ such that $u_{j} v_{j} \in E$ and $b_{i} u_{j} \in E$ and $b_{i} v_{j} \notin E$. Then, either $b_{i}^{-} b_{i} u_{j} v_{j}$ (if $i \leq j$) or path $b_{i}^{+} b_{i} u_{j} v_{j}($ if $i>j)$ is an induced P_{4}, a contradiction. In particular, we have $N\left(b_{i}\right) \supseteq A_{i} \cup A_{i-1}$ for each $1 \leq i \leq s$.

If $i_{0}=0$ then $Q[x, y] P\left[b_{1}, v\right]$ is a hamiltonian path of G. If $i_{0}=s$ then $Q[x, y] P^{-}\left[b_{s}, u\right]$ is a hamiltonian path. We assume $0<i_{0}<s$.

We will recursively define a sequence of vertices $b_{i_{0}}, b_{i_{1}}, \cdots, b_{i_{t}} \in B$ which will help us to find an x-H-path. If $N\left(b_{i_{0}}\right) \supseteq \cup_{i \geq i_{0}} A_{i}$, let $t=0$ and stop. Otherwise, let i_{1} be the smallest i such that $N_{A_{i}}\left(b_{i_{0}}\right)=\emptyset$. Since G is P_{4}-free, $N_{A_{i_{0}-1}}\left(b_{i_{1}}\right) \neq \emptyset$. If $N\left(b_{i_{1}}\right) \supseteq \cup_{i<i_{0}} A_{i}$, let $t=1$ and stop. Otherwise, let $A_{i_{2}}$ be the largest $i<i_{0}$ such that $N_{A_{i-1}}\left(b_{i_{1}}\right)=\emptyset$. Since G is P_{4}-free, $N_{A_{i_{1}+1}}\left(b_{2}\right) \neq \emptyset$. If $N\left(b_{i_{2}}\right) \supseteq \cup_{i \geq i_{1}} A_{i}$, let $t=2$ and stop. Otherwise, let i_{3} be the smallest i such that $N_{A_{i}}\left(b_{i_{2}}\right)=\emptyset$. Since G is P_{4}-free, $N_{A_{i_{2}-1}}\left(b_{3}\right) \neq \emptyset$. Continuing in this manner, since G is finite, we obtain a finite sequence $i_{0}, i_{1}, i_{2}, \cdots, i_{t}$ with $i_{0}<i_{1}<i_{3}<\cdots<i_{2 \ell+1}<\cdots$ and $i_{0}>i_{2}>i_{4}>\cdots>i_{2 \ell}>\cdots$ such that

$$
\begin{aligned}
N\left(b_{i_{0}}\right) & \supseteq A_{i_{0}} \cup A_{i_{0}+1} \cup \cdots \cup A_{i_{1}-1} \\
N\left(b_{i_{1}}\right) & \supseteq A_{i_{0}-1} \cup A_{i_{0}-2} \cup \cdots \cup A_{i_{2}} \\
N\left(b_{i_{2}}\right) & \supseteq A_{i_{1}} \cup A_{i_{1}+1} \cup \cdots \cup A_{i_{3}-1} \\
N\left(b_{i_{3}}\right) & \supseteq A_{i_{2}-1} \cup A_{i_{2}-2} \cup \cdots \cup A_{i_{4}} \\
\vdots & \vdots
\end{aligned}
$$

and

$$
N\left(b_{i_{t}}\right) \supseteq \begin{cases}\cup_{i \geq i_{t-1}} A_{i} & \text { if } t \text { is even } \\ \cup_{i<i_{t-1}} A_{i} & \text { if } t \text { is odd }\end{cases}
$$

If $t=0, Q[x, y] P\left[b_{i_{0}+1}, v\right] P^{-}\left[b_{i_{0}}, u\right]$ is a hamiltonian path from x to u in G.
If $t>0$ is even, G contains a hamiltonian path from x to u as follows.

$$
Q[x, y] P\left[b_{i_{0}+1}, b_{i_{1}}^{-}\right] P^{-}\left[b_{i_{0}}, b_{i_{2}}^{+}\right] P\left[b_{i_{1}}, b_{i_{3}}^{-}\right] \cdots P\left[b_{i_{t-1}}, v\right] P^{-}\left[b_{i_{t}}, u\right]
$$

Figure 4: The case of $t=2$
The case $t=2$ is illustrated in Figure 4.
If t is odd, G contains a hamiltonian path from x to v as shown below:

$$
Q[x, y] P\left[b_{i_{0}+1}, b_{i_{1}}^{-}\right] P^{-}\left[b_{i_{0}}, b_{i_{2}}^{+}\right] \cdots P^{-}\left[b_{i_{t-1}}, u\right] P\left[b_{i_{t}}, v\right] .
$$

The case $t=3$ is illustrated in Figure 5. So, in each case, G has an x-H-path.

Figure 5: The case of $t=3$

3.2 Proof of Theorem 4

Suppose, to the contrary, there is a P_{4}-free and 1-tough graph G such that G contains a maximal path $P=P[u, v]$ of order p and G does not contain a maximal path of order $p+1$, for some $p \leq n-2$. Let H be a component in $G-V(P[u, v])$.

Claim 5 For each $x \in V(P[u, v])$, either $N_{H}(x)=\emptyset$ or $N_{H}(x)=V(H)$.
Proof: Suppose, to the contrary, there is a vertex $x \in V(P)$ such that $\emptyset \neq N_{H}(x) \neq$ $V(H)$. Clearly, $x \neq u$. Further, we assume that x is the one closest to u on P with the above property. Since H is connected, there are $y, z \in V(H)$ such that $y z \in E, x y \in E$, and $x z \notin E$. Since G does not contain a maximal path of order $p+1, x^{-} y \notin E$. By our choice of x, we have $N_{H}\left(x^{-}\right)=\emptyset$. So, $x^{-} x y z$ is an induce P_{4}, a contradiction.

Claim $6 N_{P}(H)$ does not contain two consecutive vertices of P for each component H of $G-V(P)$.

Proof: Suppose, to the contrary, there are two consecutive vertices $w, x \in V(P)$ such that $N_{H}(w) \neq \emptyset$ and $N_{H}(x) \neq \emptyset$. By Claim 5, $N(w) \cap N(x) \supset V(H)$. Then, $P[u, w] y P[x, v]$ is a maximal path of order $p+1$, where $y \in V(H)$, a contradiction.

Since G is P_{4}-free, Claim 6 implies the following claim.

Claim $7 N_{P}(G-V(P))$ does not contain two consecutive vertices of P for each maximal path P of order p.

Let $N_{P}(H)=\left\{x_{1}, x_{2} \ldots, x_{s}\right\}$, where $x_{1}, x_{2}, \ldots, x_{s}$ are listed in the order along the orientation of $P[u, v]$. Since G is 1 -tough, G is 2 -connected, so that $s \geq 2$. Since $P[u, v]$ is a maximal path, $x_{1} \neq u$ and $x_{s} \neq v$. Let

$$
\begin{aligned}
& A_{0}=V\left(P\left[u, x_{1}\right)\right) \quad \text { and } \quad G_{0}=G\left[A_{0}\right], \\
& A_{i}=V\left(P\left(x_{i}, x_{i+1}\right)\right) \quad \text { and } \quad G_{i}=G\left[A_{i}\right] \quad \text { for } i=1,2, \cdots, s-1, \\
& A_{s}=V\left(P\left(x_{s}, v\right]\right) \text { and } \quad G_{s}=G\left[A_{s}\right] .
\end{aligned}
$$

Let y denote an arbitrary vertex of H in the remainder of the proof. Since G does not contain an induced P_{4}, the following results hold.

Claim 8 For any two integers $i=1,2, \ldots, s$ and $j=0,1, \ldots, s$,

1. $N\left(x_{i}\right) \supset A_{i-1}$ and $N\left(x_{i}\right) \supset A_{i}$, and
2. $N\left(x_{i}\right) \supseteq A_{j}$ if $N_{A_{j}}\left(x_{i}\right) \neq \emptyset$.

For each G_{i}, let B_{i} be a maximum cutter of G_{i} and $C_{i}=A_{i}-B_{i}$. Note that $B_{i}=\emptyset$ may happen. By the definition of cutter, $G_{i}-B_{i}$ contains exactly $\left|B_{i}\right|+1$ components.

Claim 9 For each $v_{i} \in C_{i}$, there exists a vertex $w_{i} \in A_{i}$ such that G_{i} contains a hamiltonian path from v_{i} to w_{i} and $N\left(v_{i}\right) \cup N\left(w_{i}\right) \subseteq V(P[u, v])$.

Proof: By Lemma 1, G_{i} contains a $v_{i}-H$-path $Q\left[v_{i}, w_{i}\right]$. We only need to show that $N\left(v_{i}\right) \cup N\left(w_{i}\right) \subseteq V(P[u, v])$. Suppose, to the contrary, there exists an integer i such that $N\left(v_{i}\right) \cup N\left(w_{i}\right) \nsubseteq V(P[u, v])$.

If $i \neq 0$ and $i \neq s, P^{*}=P\left[u, x_{i}\right] Q\left[v_{i}, w_{i}\right] P\left[x_{i+1}, v\right]$ is a maximal path of order p. By Claim 7, $N_{P^{*}}(G-V(P))$ does not contain two consecutive vertices of P^{*}. Since $x_{i}, x_{i+1} \in N_{P^{*}}(H)$, we have $N\left(v_{i}\right) \subseteq V(P)$ and $N\left(w_{i}\right) \subseteq V(P)$, a contradiction. Thus, we may assume either $i=0$ or $i=s$, say, without loss of generality, $i=0$.

If G_{0} is not 1-tough, by Lemma 1 , we may assume that $w_{0} \in\left\{u, x_{1}^{-}\right\}$. Since P is a maximal path, $N(u) \subseteq V(P)$. Since $N\left(x_{1}\right) \cap V(H) \neq \emptyset, N\left(x_{1}^{-}\right) \subseteq V(P)$ by Claim 7. Thus, $N\left(w_{0}\right) \subseteq V(P)$ regardless $w_{0}=u$ or $w_{0}=x_{1}^{-}$. Applying Claim 7 to the maximal path $Q_{0}^{-}\left[w_{0}, v_{0}\right] P\left[x_{1}, v\right]$, we have $N\left(v_{0}\right) \subseteq V(P[u, v])$, a contradiction. Thus, G_{0} is 1-tough.

By Theorem 3, G_{0} contains a hamiltonian cycle C. For each $x \in V(C)$, let $x^{-}(C)$ denote the predecessor of x on C. Then, $P^{\prime}=C\left[u, u^{-}(C)\right] P\left[x_{1}, v\right]$ is a maximal path. Note that $V(P)=V\left(P^{\prime}\right)$. By Claim 7, either $N\left(v_{0}\right) \subseteq V(P)$ or $N\left(v_{0}^{-}(C)\right) \subseteq V(P)$. Suppose $N\left(v_{0}^{-}(c)\right) \subseteq V(P)$. Applying Claim 7 to maximal path $C^{-}\left[v_{0}^{-}(C), v_{0}\right] P\left[x_{1}, v\right]$, we have $N\left(v_{0}\right) \subseteq V(P)$. which implies Claim 9 is true with $w_{0}=v_{0}^{-}(C)$.

Claim $10 E\left(C_{i}, C_{j}\right)=\emptyset$ for each $0 \leq i<j \leq s$.

Proof: Suppose, to the contrary, there exist $v_{i} \in C_{i}$ and $v_{j} \in C_{j}$ with $0 \leq i<j \leq s$ such that $v_{i} v_{j} \in E$. For each $\ell=i, j$, by Claim 9 , there exists a hamiltonian path $Q_{\ell}\left[v_{\ell}, w_{\ell}\right]$ such that $N\left(v_{\ell}\right) \cup N\left(w_{\ell}\right) \subseteq V(P[u, v])$. Since $x_{1} \in N_{P}(H), N\left(x_{1}^{+}\right) \subseteq V(P[u, v])$ by Claim 7 . Let y be an arbitrary vertex of H. By Claim $5, N_{P}(y)=N_{P}(H)=\left\{x_{1}, x_{2} \ldots, x_{s}\right\}$. Set

$$
P^{\prime}= \begin{cases}P\left[u, x_{i}\right] y P^{-}\left[x_{j}, x_{i+1}\right] Q_{i}^{-}\left[w_{i}, v_{i}\right] Q_{j}\left[v_{j}, w_{j}\right] P\left[x_{j+1}, v\right], & \text { if } i \neq 0 \text { and } j \neq s \\ Q_{0}^{-}\left[w_{0}, v_{0}\right] Q_{j}\left[v_{j}, w_{j}\right] P^{-}\left[x_{j}, x_{1}\right] y P\left[x_{j+1}, v\right], & \text { if } i=0 \text { and } j \neq s \\ P\left[u, x_{i}\right] y P^{-}\left[x_{s}, x_{i+1}\right] Q_{i}^{-}\left[w_{i}, v_{i}\right] Q_{s}\left[v_{s}, w_{s}\right], & \text { if } i \neq 0 \text { and } j=s \\ P\left[x_{1}^{+}, x_{s}\right] y x_{1} Q_{0}^{-}\left[w_{0}, v_{0}\right] Q_{s}\left[v_{s}, w_{s}\right], & \text { if } i=0 \text { and } j=s .\end{cases}
$$

Clearly, P^{\prime} is a maximal path of order $p+1$, a contradiction.
Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \cup B_{0} \cup B_{1} \cup \cdots \cup B_{k}$, where B_{i} is a maximum cutter of G_{i} for each $i=0,1, \cdots, s$. By Claim 9 , we have $N(V(P[u, v]-S)) \subseteq V(P[u, v])$. This together with Claim 10 implies that every segment of $P[u, v]-S$ induces a connected component in $G-S$. These components and the component H show that $G-S$ has at least $|S|+2$ components, which contradicts the assumption that G is 1-tough. This completes the proof of Theorem 4.

4 Proof of Theorem 6

Suppose, to the contrary, there exists a connected, locally connected, and $K_{1,3}$-free graph G such that G contains a maximal path $P=P[u, v]$ of order p and G does not contain a maximal path of order $p+1$. Since G is traceable, $p \leq n-2$. Let $H=G-V(P)$ and let y be a vertex of H with $N_{P}(y) \neq \emptyset$. Let $N_{P}(y)=\left\{x_{1}, x_{2} \cdots, x_{s}\right\}$, where $x_{1}, x_{2}, \ldots, x_{s}$ are listed in the order along the orientation of $P[u, v]$. Choose y so that $\min \left\{\left|P\left[u, x_{1}\right)\right|,\left|P\left[x_{s}, v\right]\right|\right\}$ achieves the minimum. Without loss of generality, assume $\left|P\left[u, x_{1}\right]\right| \leq\left|P\left[x_{s}, v\right]\right|$. Since $P[u, v]$ is a maximal path, $x_{1} \neq u, x_{s} \neq v$ and $\left(\left\{x_{1}^{-}, x_{2}^{-}, \cdots, x_{s}^{-}\right\} \cup\left\{x_{1}^{+}, x_{2}^{+}, \cdots, x_{s}^{+}\right\}\right) \cap$ $N_{P}(y)=\emptyset$.

Since G is $K_{1,3}-$ free, $x_{i}^{-} x_{i}^{+} \in E(G)$ for all $i=1,2, \cdots, s$. Let $x=x_{1}, A=V(P)-$ $N_{P}(y)$, and $B=V(H) \cup N_{P}(y)$.

Claim $11 N_{H}\left(x^{-}\right)=\emptyset$ and $N_{P}\left(x^{-}\right) \cap N_{P}(y)=\{x\}$.
Proof: $\quad N_{H}\left(x^{-}\right)=\emptyset$ directly comes from the definition of P and y. If $x^{-} x_{i} \in E$ for some $i>1, P\left[u, x^{-}\right] x_{i} y P\left[x, x_{i}^{-}\right] P\left[x_{i}^{+}, v\right]$ is a maximal path of order $p+1$, a contradiction.

Claim 12 Both $G\left[N_{A}(x)\right]$ and $G\left[N_{B}(x)\right]$ are complete.
Proof: Since $G\left[N_{A}[x] \cup\{y\}\right]$ contains no induced $K_{1,3}$, we have $G\left[N_{A}(x)\right]$ is complete. Since $G\left[N_{B}[x] \cup\left\{x^{-}\right\}\right]$contains no induced $K_{1,3}, G\left[N_{B}(x)\right]$ is complete.

Since G is locally connected, there exist $a \in N_{A}(x)$ and $b \in N_{B}(x)$ such that $a b \in E$.

Claim $13 b \notin V(H)$.

Proof: Suppose, to the contrary, that $b \in V(H)$. Then, $a \in N_{P}(H)$. Since G is $K_{1,3^{-}}$ free, $a^{-} a^{+} \in E$. By the choice of y, we have $a \in V\left(P\left[x^{+}, v\right]\right)$. Since $x^{-}, a \in N_{A}(x)$, $x^{-} a \in E(G)$ from Claim 12. Then, $P\left[u, x^{-}\right] a b P\left[x, a^{-}\right] P\left[a^{+}, v\right]$ is a maximal path of order $p+1$, a contradiction.

Assume $b=x_{i}$ for some $i \geq 2$. Since $x^{-} x^{+} \in E$ and $x_{i}^{-} x_{i}^{+} \in E$, we have $x_{i}^{-}, x_{i}^{+} \notin N(x)$ and $x^{-}, x^{+} \notin N\left(x_{i}\right)$. Otherwise, for example, $x x_{i}^{-} \in E$, then $P\left[u, x^{-}\right] P\left[x^{+}, x_{i}^{-}\right] x y P\left[x_{i}, v\right]$ id s maximal path of order $p+1$, a contradiction. Since $a x \in E$ and $a b=a x_{i} \in E$, $a \notin\left\{x^{-}, x^{+}, x_{i}^{-}, x_{i}^{+}\right\}$. Since $a, x^{-} \in N_{A}(x), a x^{-} \in E$ by Claim 12 . We will consider the following two cases to finish the proof.

Case $1 a \neq u, v$.
Since $G\left[\left\{a, a^{-}, a^{+}, x\right\}\right]$ is not an induced $K_{1,3},\left\{a^{-} a^{+}, a^{-} x, a^{+} x\right\} \cap E \neq \emptyset$. We will derive a contradiction by showing that G has a $u-v$ path P^{\prime} of order $p+1$ with $V\left(P^{\prime}\right) \supseteq$ $V(P)$, which is equivalent to that $G \cup\{u v\}$ contains a cycle C^{\prime} of order $p+1$ with $u v \in E\left(C^{\prime}\right)$ and $V\left(C^{\prime}\right) \supseteq V(P)$. Set $C=P[u, v] u$. Then, C is a cycle of order p in $G \cup\{u v\}$. Then, either $a \in C\left(x^{+}, x_{i}^{-}\right)$or $a \in C\left(x_{i}^{+}, x^{-}\right)$. Assume, without loss of generality, that $a \in C\left(x^{+}, x_{i}^{-}\right)$(the case of $a \in C\left(x_{i}^{+}, x^{-}\right)$is similar). Let

$$
C^{\prime}= \begin{cases}x^{-} a x_{i} y C\left[x, a^{-}\right] C\left[a^{+}, x_{i}^{-}\right] C\left[x_{i}^{+}, x^{-}\right] & \text {if } a^{-} a^{+} \in E, \\ x^{-} C\left[x^{+}, a^{-}\right] x y x_{i} C\left[a, x_{i}^{-}\right] C\left[x_{i}^{+}, x^{-}\right] & \text {if } a^{-} x \in E, \\ x^{-} C\left[x^{+}, a\right] x_{i} y x C\left[a^{+}, x_{i}^{-}\right] C\left[x_{i}^{+}, x^{-}\right] & \text {if } a^{+} x \in E .\end{cases}
$$

In each case, C^{\prime} is a cycle in $G \cup\{u v\}$ with $u v \in E\left(C^{\prime}\right)$ and $V\left(C^{\prime}\right)=V(C) \cup\{y\}$. So, $C^{\prime}-u v$ is a maximal path of order $p+1$, a contradiction.

Case $2 a \in\{u, v\}$.
Recall $x=x_{1}$. From the minimality of $\left|P\left[u, x_{1}\right]\right|$, we obtain that $N\left(x^{-}\right) \subseteq V(P)$. If $a=u$, then $P^{-}\left[x^{-}, u\right] x_{i} y P\left[x, x_{i}^{-}\right] P\left[x_{i}^{+}, v\right]$ is a maximal path of order $p+1$, a contradiction. Hence, $a=v$.

Recall $x^{-} a \in E(G)$. If $N\left(v^{-}\right) \subseteq V(P)$, then $P\left[u, x^{-}\right] v x_{i} y P\left[x, x_{i}^{-}\right] P\left[x_{i}^{+}, v^{-}\right]$is a maximal path of order $p+1$. Hence, $N\left(v^{-}\right) \nsubseteq V(P)$. From the minimality of $\left|C\left[u, x_{1}\right]\right|$, we have $|P[u, x]| \leq\left|P\left[v^{-}, v\right]\right|$. So, $u=x^{-}$. This together with Claim 11 implies $u x_{i} \notin E$. Since $u, v \in N_{A}(x)$, by Claim 12, we have $u v \in E$. Note that $a \neq x_{i}^{+}$implies that $x_{i} \neq v^{-}$. Hence, v, u, x_{i} and v^{-}are distinct vertices of G. Since $G\left[\left\{v, u, x_{i}, v^{-}\right\}\right]$is not an induced $K_{1,3}$ and $u x_{i} \notin E$, either $u v^{-} \in E$ or $x_{i} v^{-} \in E$. Let

$$
P^{\prime}= \begin{cases}u P^{-}\left[v^{-}, x_{i}^{+}\right] P^{-}\left[x_{i}^{-}, x\right] y x_{i} v, & \text { if } u v^{-} \in E, \\ u P\left[x^{+}, x_{i}^{-}\right] P\left[x_{i}^{+}, v^{-}\right] x_{i} y x v, & \text { if } x_{i} v^{-} \in E .\end{cases}
$$

Then, P^{\prime} is a maximal path of order $p+1$, a contradiction. This completes the proof of Theorem 6.

Acknowledgements

We are very grateful to the referees for their many valuable suggestions and comments.

References

[1] Chartrand, G.; Lesniak, L. Graphs \& Digraphs, 3rd Edition, Chapman and Hall, London, 1996.
[2] Chen, G.; Faudree R.J.; Li, X.; Schiermeyer, I. Graph with all maximal paths are odd length, preprint.
[3] Chen, G.; Faudree R.J.; Hu, Z.; Ma, J.; Soltes, L., Path Spectra for Trees, preprint.
[4] Chvátal, V. Tough graphs and circuits, Discret Math. 5 (1973), 215-228.
[5] Hendry, G.R.T. Extending Cycles in Bipartite Graphs, J. Combin. Theory Ser. B 51(1991), no 2, 292-313
[6] Hendry, G.R.T, Extending Cycles in Graphs, Discrete Math 85 (1990) 1 59-72
[7] Hendry, G.R.T, Extending Cycles in Directed Graphs, J. Combin. Theory Ser. B 46 (1989), no 2, 162-172.
[8] Jacobson, M.S.; Kézdy, A.; Kubicki, E.; Kubicki, G.; Lehel, J.; Wang, C.; West D.B. The path spectrum of a graph, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995). Congr. Numer. 112 (1995), 49-63.
[9] Jacobson, M.S.; Kézdy, A.E.; Lehel, J. Scenic Graphs I: Traceable Graphs, Ars Combin. 49 (1998), 79-96.
[10] Jacobson, M.S.; Kézdy, A.E.; Lehel, J. Scenic Graphs II: Non-traceable Graphs, Australas. J. Combin. 19 (1999), 287-307.
[11] Jung, H.A. Note on hamiltonian graphs, Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), 315-321.
[12] Oberly D.J.; Sumner, D.P. Every connected, locally connected nontrivial graph with no induved claw is hamiltonian, J. Graph Theory 3 (1979), 351-356.
[13] Ore, O. A note on hamiltonian circuit. Amer. Math. Monthly 67(1960), 93-105.
[14] Thomassen, C. Graphs in which every maximal path is contained in a Hamiltonian path, J. Reine Angew. Math. 268-269 (1974), 271-282.

[^0]: *Partially supported by NSA grant H98230-04-1-0300, NSF grant DMS-0500951, and the work was partially done during his visiting L.R.I.
 ${ }^{\dagger}$ Supported by NSFC grant 10371048,10571071 and by Post-doctorial Grant 350074 H of France, the work was partially done during his visiting in L.R.I..
 ${ }^{\ddagger}$ Partially supported by NSFC grant 60373012 , the work was partially done during his visiting Georgia State University.

