Algorithms for long paths in graphs

Zhao ZHANG*
College of Mathematics and System Sciences
Xinjiang University
Urumqi, Xinjiang, 830046, CHINA
e-mail: zhzhao@xju.edu.cn

Hao LI ${ }^{\dagger}$
Laboratoire de Recherche en Informatique
UMR 8623, C.N.R.S.-Université de Paris-sud
91405-Orsay cedex, FRANCE
e-mail: \quad li@lri.fr

Abstract

We obtain a polynomial algorithm in $O(\mathrm{~nm})$ time to find a long path in any graph with n vertices and m edges. The length of the path is bounded by a parameter defined on neighborhood condition of any three independent vertices of the path. Example is given to show that this bound is better than several classic results.

1 Introduction and notation

It is a classic problem to find a long path or cycle in a graph. Since finding a hamiltonian path/cycle in graphs is NP-hard, we are interested in finding a path with large length.

All graphs considered in this paper are undirected and simple. We follow the notation and terminology in [4]. For a graph $G=(V(G), E(G))$ and a subgraph H of G, the neighborhood of a vertex u in H is $N_{H}(u)=\{v \in V(H): u v \in E(G)\}$. The degree of u in H is $d_{H}(u)=\left|N_{H}(u)\right|$. In the case $H=G$, we use $N(u)$ and $d(u)$ instead of $N_{G}(u)$ and $d_{G}(u)$. For simplicity, the graph itself is used to denote its set of vertices.

For a path $P=u_{1} u_{2} \ldots u_{p}$ and two indices $i<j$, denote by $P\left[u_{i}, u_{j}\right]=u_{i} u_{i+1} \ldots u_{j}$, and $\bar{P}\left[u_{j}, u_{i}\right]=u_{j} u_{j-1} \ldots u_{i}$. Define $P\left(u_{i}, u_{j}\right]=P\left[u_{i+1}, u_{j}\right], P\left[u_{i}, u_{j}\right)=P\left[u_{i}, u_{j-1}\right]$ and $P\left(u_{i}, u_{j}\right)=P\left[u_{i+1}, u_{j-1}\right]$. For any $i, u_{i}^{+}=u_{i+1}$ and $u_{i}^{-}=u_{i-1}$. For $A \subseteq P, A^{+}=\left\{v^{+} \mid v \in\right.$ $A\}, A^{-}=\left\{v^{-} \mid v \in A\right\}$.

[^0]We use $|P|$ to denote the number of vertices in a path P. Denote by $\sigma_{2}(G)=$ $\min \{d(u)+d(v): u v \notin E(G)\}$ and $\bar{\sigma}_{3}(G)=\min \left\{\sum_{i=1}^{3} d\left(u_{i}\right)-\left|\bigcap_{i=1}^{3} N\left(u_{i}\right)\right|:\left\{u_{1}, u_{2}, u_{3}\right\}\right.$ is an independent set of $G\}$.

A Hamiltonian cycle (path, resp.) is a cycle (path, resp.) containing all vertices of the graph. A graph G is Hamiltonian if it has a Hamiltonian cycle. For an integer k, a graph is called k-connected if any two vertices can not be separated by deleting less than k vertices in the graph.

We begin with the following basic results in Hamiltonian graph theory, which are due to Dirac, Ore and Flandrin, Jung and Li, respectively.

Theorem 1. [5] Let G be a graph on $n \geq 3$ vertices. If the minimum degree δ is at least $n / 2$, then G is Hamiltonian.

Theorem 2. [10] Let G be a graph on $n \geq 3$ vertices. If $\sigma_{2}(G) \geq n$, then G is Hamiltonian.

Theorem 3. [6] If G is a 2-connected graph of order n such that $\bar{\sigma}_{3}(G) \geq n$, then G is hamiltonian.

These results are generalized to circumferences of the graphs. The circumference $c(G)$ is the length of a longest cycle in G.

Theorem 4. [5] If G is a 2-connected graph on $n \geq 3$ vertices, then $c(G) \geq \min \{n, 2 \delta\}$.
Theorem 5. [1] Let G be a 2-connected graph on $n \geq 3$ vertices. Then $c(G) \geq \min \left\{n, \sigma_{2}(G)\right\}$.
Theorem 6. [11] Let G be a 3-connected graph with n vertices. Then $c(G) \geq \min \left\{n, \bar{\sigma}_{3}(G)\right\}$.
As a consequence of Theorem 6, we have the following
Corollary 1. Let G be a 2-connected graph with n vertices. Then there exists a path of at least $\min \left\{n, \bar{\sigma}_{3}(G)+1\right\}$ vertices.

Proof. Let D to be a graph obtained from G by adding a new vertex w which is adjacent to every vertex of G. Then D is 3 -connected. By Theorem $6, c(D) \geq \min \left\{n, \bar{\sigma}_{3}(D)\right\}$. Since $\bar{\sigma}_{3}(D) \geq \bar{\sigma}_{3}(G)+2$, we see that G has a path of at least $c(D)-1 \geq \min \left\{n, \bar{\sigma}_{3}(G)+1\right\}$ vertices.

Since $\bar{\sigma}_{3}(G) \geq \sigma_{2}(G) \geq 2 \delta$, we have the following two results:
Corollary 2. Let G be a 2-connected graph with n vertices. Then there exists a path of at least $\min \left\{n, \sigma_{2}(G)+1\right\}$ vertices.

Corollary 3. Let G be a 2-connected graph with n vertices. Then there exists a path of at least $\min \{n, 2 \delta+1\}$ vertices.

In this paper, we will generalize the above corollaries by giving a new lower bound for the length of a longest path, using neighborhood condition of three independent vertices, one of which is an end of the path!

Since the problem of deciding whether a graph has a Hamiltonian path is NPcomplete, it is interesting to find a long path in a network which can be realized by a polynomial algorithm. Such an algorithm with time complexity $O(n m)$ is given in this paper, by which we can find a long path with a length related with an end vertex of the path.

Some notation will be used in this paper. For a subgraph H and three vertices x, y, z, denote by

$$
\Gamma_{H}(x, y, z)=d_{H}(x)+d_{H}(y)+d_{H}(z)-\left|N_{H}(x) \cap N_{H}(y) \cap N_{H}(z)\right|
$$

For $x \in H$, denote by

$$
\Gamma_{3}(x, H)=\min \left\{\Gamma_{H}(x, y, z) \mid: y, z \in H \text { and } x, y, z \text { are independent }\right\} .
$$

Clearly $\Gamma_{3}(x, H) \geq \bar{\sigma}_{3}(G)$.
The main result is the following:
Theorem 7. Let G be a 2-connected graph of order $n \geq 3$. Then there exists a vertex x and a path P such that x is one end vertex of P and P contains at least $\min \left\{n, \Gamma_{3}(x, P)+\right.$ 1\} vertices. Furthermore, P can be found in $O(n m)$ time.

Theorem 7 is best possible in the following sense. Suppose d, f, r are three integers with $d \geq 8,3 \leq f \leq d-5$, and $r \geq 2$. Let G be the graph obtained from d disjoint graphs $G_{i}(1 \leq i \leq d)$ with $G_{i} \cong K_{r}(1 \leq i \leq f)$ and $G_{j} \cong K_{1}(f+1 \leq i \leq d)$, by adding edges from G_{d-1} and G_{d} to all the other vertices. It is easy to see that there is a path P containing all the vertices in $G_{i}(i=1,2,3, d-1, d)$ with two end vertices $x_{1} \in G_{1}$ and $x_{2} \in G_{2}$ respectively. Clearly, P is a longest path with $3 r+2=d\left(x_{1}\right)+d\left(x_{2}\right)+$ $d\left(x_{3}\right)-\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap N\left(x_{3}\right)\right|+1$ vertices, where x_{3} is a vertex in G_{3}. So the bound in Theorem 7 is sharp. Furthermore, the same example shows that our result is better than the corollaries since $\bar{\sigma}_{3}(G)=4<|P|+1$.

2 Proof of the main theorem

The idea of our proof of Theorem 7 is as follows. Let $P_{1}=u_{0} u_{1} \ldots u_{p}$ be a maximal path (in the sense of inclusion of vertices), and $P_{2}=v_{0} v_{1} \ldots v_{q}$ with
(a) $P_{1} \cap P_{2}=\left\{v_{0}\right\}=\left\{u_{c}\right\}$,
(b) subject to (a), c is as large as possible, and
(c) subject to (a) and (b), q is as large as possible.

Then a cycle P_{V} called vine of P_{1} (which will be defined later) is found. Based on P_{1}, P_{2} and P_{V}, a path P is constructed such that

$$
\begin{align*}
& v_{q}, u_{p}, u_{0} \text { are three independent vertices on } P \text { with } \tag{1}\\
& v_{q} \text { or } u_{0} \text { being one end of } P \text {, and } \tag{2}\\
& N\left(v_{q}\right) \cup N\left(u_{p}\right) \cup N\left(u_{0}\right) \subseteq P \tag{3}\\
& \Gamma_{P}\left(v_{q}, u_{p}, u_{0}\right) \leq|P|-1 \tag{4}
\end{align*}
$$

With these properties, it is easy to see that P is a path with the desired length.

From algorithmic point of view, to find a maximal path P_{1} needs a lot of work. However, to ensure that the path P we find has the desired length in Theorem 7, we do not need all properties of a maximal path. In fact, properties (1) to (4) are essential for our purpose, and to ensure that P satisfies properties (1) to (4), only nine operations to extend P_{1} are sufficient, which are introduced in the following.

Circumstance 1: There is a vertex $v \in V(G) \backslash V\left(P_{1}\right)$ which is adjacent to one end of P_{1}. Operation 1: Extend P_{1} by adding v.

Figure 1

Circumstance 2: There is a vertex $v \in V(G) \backslash V\left(P_{1}\right)$ such that $u_{i} \in N_{P_{1}}(v)$ and u_{i+1} is connected to v by a path internally disjoint from P_{1}.
Operation 2: Reset $P_{1}=u_{0} u_{1} \ldots u_{i} v \ldots u_{i+1} \ldots u_{p}$.

Figure 2
Circumstance 3: $\quad u_{0}$ is adjacent to u_{p}, and $V(G) \backslash V\left(P_{1}\right) \neq \emptyset$.
Operation 3: Let v be a vertex in $V(G) \backslash V\left(P_{1}\right)$ which is adjacent to some vertex u_{i} on P_{1}. Reset $P_{1}=v u_{i} u_{i-1} \ldots u_{0} u_{p} u_{p-1} \ldots u_{i+1}$.

Figure 3

Circumstance 4: $\quad u_{i} \in N_{P_{1}}\left(u_{0}\right) \cap N_{P_{1}}\left(u_{p}\right)^{+} \neq \emptyset$ and $V(G) \backslash V\left(P_{1}\right) \neq \emptyset$.
Operation 4: Reset $P_{1}=u_{i-1} u_{i-2} \ldots u_{0} u_{i} u_{i+1} \ldots u_{p}$, and then extend it further by Operation 3.

Figure 4
Circumstance 5: There is a vertex $u_{i} \in N\left(u_{p}\right)$ with u_{i+1} having some neighbor v outside of P_{1}.
Operation 5: Reset $P_{1}=u_{0} u_{1} \ldots u_{i} u_{p} u_{p-1} \ldots u_{i+1} v$.

Figure 5
Circumstance 6: There is a vertex $u_{i} \in N\left(u_{0}\right)$ with u_{i-1} having some neighbor v outside of P_{1}.
Operation 6: Reset $P_{1}=v u_{i-1} u_{i-2} \ldots u_{0} u_{i} u_{i+1} \ldots u_{p}$.

Figure 6
Circumstance 7: There is a vertex $u_{i} \in N\left(u_{p}\right)$ with u_{i-1} having some neighbor v outside of P_{1}, and there is an index $j>i$ such that $u_{j} \in N\left(u_{0}\right)$.
Operation 7: Reset $P_{1}=v u_{i-1} u_{i-2} \ldots u_{0} u_{j} u_{j-1} \ldots u_{i} u_{p} u_{p-1} \ldots u_{j+1}$.

Figure 7
Circumstance 8: $\quad u_{i} \in N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{p}\right) \cap N_{P_{1}\left[u_{1}, u_{c}\right)}\left(v_{q}\right)^{+} \neq \emptyset$.
Operation 8: Reset $P_{1}=u_{0} u_{1} \ldots u_{i-1} v_{q} v_{q-1} \ldots v_{1} u_{c} u_{c+1} \ldots u_{p} u_{i} u_{i+1} \ldots u_{c-1}$.

Figure 8
Circumstance 9: $\quad u_{i} \in N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{p}\right) \cap N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{p}\right)^{+} \neq \emptyset$.
Operation 9: Reset $P_{1}=u_{0} u_{1} \ldots u_{i-1} u_{p} u_{i} u_{i+1} \ldots u_{p-1}$.

Figure 9

Note that except for Operation 9, all operations extend P_{1} by at least one vertex. And Operation 9 increases c by one.

Algorithm 1.

Input: A connected graph G.
Output: Either a hamiltonian path P_{1}, or two paths P_{1} and P_{2} sharing only one common vertex u_{c}, and P_{1} can not be extended by Operations 1 to 9 .
Step 1. Set $P_{1}=u_{0}$ where u_{0} is an arbitrary vertex in G.
Step 2. Extend P_{1} repeatedly by Operation 1 untill such operation can no longer be carried out.
Step 3. If $V(G) \backslash V\left(P_{1}\right)=\emptyset$, then output P_{1} which is a hamiltonian path; stop. Else, if one of circumstances 2 to 7 happens, then extend P_{1} by the corresponding operation; go to Step 2.
Step 4. If $V(G) \backslash V\left(P_{1}\right)=\emptyset$, then output P_{1}; stop. Else, let u_{c} be the last vertex on P_{1} which has a neighbor outside of P_{1}; set $v_{0}=u_{c}$; find a maximal path P_{2} in $G-P_{1}$ starting at v_{0}, i.e., as long as there is a vertex $v \in V(G)-V\left(P_{1} \cup P_{2}\right)$ adjacent to the other end of P_{2}, then extend P_{2} by adding v.
Step 5. If circumstance 8 or circumstance 9 happens, then extend P_{1} by the corresponding operation; go to Step 2. Else, output P_{1}, P_{2} and u_{c}; stop.

Given a path $P=u_{0} u_{1} \ldots u_{p}$, let $\mathcal{Q}:=\left\{Q_{\ell}\left[u_{i_{\ell}}, u_{j_{\ell}}\right]: 1 \leq \ell \leq m\right\}$ be a set of internally disjoint paths such that $Q_{\ell} \cap P=\left\{u_{i_{\ell}}, u_{j_{\ell}}\right\}$ and

$$
0=i_{1}<i_{2}<j_{1} \leq i_{3}<j_{2} \leq i_{4} \ldots \leq i_{m}<j_{m-1}<j_{m}=p
$$

Denote by \mathcal{P} the set of segments of P divided by $u_{i_{\ell}}$'s and $u_{j_{\ell}}$'s. A vine of P is composed of elements in $\mathcal{Q} \cup \mathcal{P}$ alternatively (see Figure 10).

Figure 10 The vine is indicated by the bold lines.
For our purpose, we will find a vine P_{V} of P in a 2-connected graph with $N_{P}\left(u_{0}\right) \cup$ $N_{P}\left(u_{p}\right) \subseteq P_{V}$, which can be realized by the following algorithm.

Algorithm 2.

Input: A path $P=u_{0} u_{1} \ldots u_{p}$.
Output: A vine P_{V} with $N\left(u_{0}\right) \cup N\left(u_{p}\right) \subseteq P_{V}$.
Step 1. Set $i_{1}=0$. Let j_{1}^{\prime} be the largest index such that $u_{j_{1}^{\prime}}$ is adjacent to u_{0}. Set $\ell=2$, $v=u_{j_{1}^{\prime}}, w=u_{0}$.
Step 2. Find a path Q_{ℓ} in $G-v$ internally disjoint with P, connecting a vertex $u_{i_{\ell}} \in$ $P\left[w, v^{-}\right]$with a vertex $u_{j_{\ell}} \in P\left[v^{+}, u_{p}\right]$, such that j_{ℓ} is as large as possible (such a path always exists since G is 2 -connected).
Step 3. If $j_{\ell}=p$, then choose i_{ℓ} as large as possible, go to Step 4. Else, set $w=v$, $v=u_{j_{\ell}}, \ell=\ell+1$, go to Step 2 .
Step 4. Set j_{1} to be the first index in the segment $\left[u_{i_{2}}^{+}, u_{j_{1}^{\prime}}\right]$ such that $u_{j_{1}} \in N_{P}\left(u_{0}\right)$.
Step 5. If ℓ is even, then let

$$
P_{V}:=\frac{Q_{1}\left[u_{i_{1}}, u_{j_{1}}\right) P\left(u_{j_{1}}, u_{i_{3}}\right) Q_{3}\left[u_{i_{3}}, u_{j_{3}}\right) P\left[u_{j_{3}}, u_{i_{5}}\right) \ldots Q_{\ell-1}\left[u_{i_{\ell-1}}, u_{j_{\ell-1}}\right) P\left[u_{j_{\ell-1}}, u_{j_{\ell}}\right)}{\overline{Q_{\ell}}\left[u_{j_{\ell}}, u_{i_{\ell}}\right) \bar{P}\left[u_{i_{\ell}}, u_{j_{\ell-2}}\right) \overline{Q_{\ell-2}}\left[u_{j_{\ell-2}}, u_{i_{\ell-2}}\right) \bar{P}\left[u_{i_{\ell-2}}, u_{j_{\ell-4}}\right) \ldots Q_{2}\left[u_{j_{2}}, u_{i_{2}}\right) \bar{P}\left[u_{i_{2}}, u_{i_{1}}\right],}
$$

and if ℓ is odd, then let

$$
\begin{aligned}
P_{V}:= & Q_{1}\left[u_{i_{1}}, u_{j_{1}}\right) P\left(u_{j_{1}}, u_{i_{3}}\right) Q_{3}\left[u_{i_{3}}, u_{j_{3}}\right) P\left[u_{j_{3}}, u_{i_{5}}\right) \ldots Q_{\ell-2}\left[u_{i_{\ell-2}}, u_{j_{\ell-2}}\right) P\left[u_{j_{\ell-2}}, u_{i_{\ell}}\right) \\
& Q_{\ell}\left[u_{i_{\ell}}, u_{j_{\ell}}\right) \bar{P}\left[u_{j_{\ell}}, u_{j_{\ell-1}}\right) Q_{\ell-1}\left[u_{j_{\ell-1}}, u_{i_{\ell-1}}\right) \bar{P}\left[u_{i_{\ell-1}}, u_{j_{\ell-3}}\right) \ldots \overline{Q_{2}}\left[u_{j_{2}}, u_{i_{2}}\right) \bar{P}\left[u_{i_{2}}, u_{i_{1}}\right] .
\end{aligned}
$$

Suppose m is the ℓ-value at the end of the algorithm. Then $u_{j_{m}}=u_{p}$. By the choice of j_{ℓ} in Step 2, we see that $N_{P}\left(u_{p}\right) \subseteq P\left[u_{j_{m-2}}, u_{p-1}\right]$. By the choice of i_{m} in Step 3, we have $N_{P}\left(u_{p}\right) \cap P\left[u_{i_{m}}^{+}, u_{j_{m-1}}^{-}\right]=\emptyset$. So

$$
\begin{equation*}
N_{P}\left(u_{p}\right) \subseteq P\left[u_{j_{m-2}}, u_{p-1}\right]-P\left[u_{i_{m}}^{+}, u_{j_{m-1}}^{-}\right] \subseteq P_{V} \tag{5}
\end{equation*}
$$

Similarly, by the choice of j_{1}^{\prime} in Step 1 and the choice of j_{1} in Step 4, we have

$$
\begin{equation*}
N_{P}\left(u_{0}\right) \subseteq P\left[u_{1}, u_{i_{3}}\right]-P\left[u_{i_{2}}^{+}, u_{j_{1}}^{-}\right] \subseteq P_{V} \tag{6}
\end{equation*}
$$

The next algorithm finds a path P satisfying conditions (1) to (4). For simplicity, we abuse the notation a little by, for example, using $P_{V}\left(u_{i_{\ell}}, u_{c}\right]$ to denote $P_{V}\left(u_{i_{\ell}}, u_{j_{\ell-1}}\right]$ $\bar{P}_{1}\left(u_{j_{\ell-1}}, u_{c}\right]$ when $u_{c} \in\left(u_{i_{\ell}}, u_{j_{\ell-1}}\right)$. The same denotation is used in the remaining of this paper when there is no danger of confusion.

Algorithm 3.

Input: A 2-connected graph G.
Output: A vertex x and a path P with length at least $\min \left\{|G|, \Gamma_{3}(x, P)+1\right\}$ such that x is one end vertex of P.
Step 1. Use Algorithm 1 to find P_{1}, P_{2} and u_{c}. If P_{1} is hamiltonian, then set $P=P_{1}$; stop.
Step 2. Use Algorithm 2 to find P_{V}.
Step 3. Let ℓ be the largest integer such that $u_{c} \in\left(u_{i_{\ell}}, u_{j_{\ell}}\right)$. If $\left(u_{i_{\ell}}, u_{c}\right) \cap N\left(v_{q}\right)=\emptyset$, then set $u_{g}=u_{c}, \operatorname{tag}=0$. Else, let u_{g} be the first vertex in $\left(u_{i_{\ell}}, u_{c}\right) \cap N\left(v_{q}\right)$, set tag=1.
Step 4. If $\ell=1$, then set $x=v_{q}$ and $P=\overline{P_{1}}\left[u_{c-1}, u_{0}\right] P_{V}\left(u_{0}, u_{c}\right] P_{2}\left(v_{0}, v_{q}\right]$ (see Figure 11 (a)), stop.

Step 5. If $\left(u_{j_{\ell-1}}, u_{g}\right) \cap N\left(u_{0}\right) \neq \emptyset$, then set $x=v_{q}$ and $P=\overline{P_{1}}\left[u_{c-1}, u_{j_{\ell-1}}\right] P_{1}\left[u_{0}, u_{i_{\ell}}\right] P_{V}\left(u_{i_{\ell}}\right.$, $\left.u_{c}\right] P_{2}\left(v_{0}, v_{q}\right]$ (see Figure $\left.11(\mathrm{~b})\right)$, stop.
Step 6. Set $x=u_{0}$. If $\left[u_{j_{\ell-1}}, u_{g}\right) \cap N\left(u_{p}\right)=\emptyset$, then set $P=P_{1}\left[u_{0}, u_{i_{\ell}}\right] P_{V}\left(u_{i_{\ell}}, u_{c}\right]$ (see Figure 11 (c) or (d)). Else, let u_{f} be the last vertex in $\left[u_{j_{\ell-1}}, u_{g}\right) \cap N\left(u_{p}\right)$ and set $P=P_{1}\left[u_{0}, u_{f}\right] \overline{P_{1}}\left[u_{p}, u_{c}\right]$ (see Figure 11 (e)).
Step 7. If $\operatorname{tag}=0$, then set $P=P P_{2}\left(v_{0}, v_{q}\right]$. Else, set $P=P \overline{P_{1}}\left(u_{c}, u_{g}\right] \overline{P_{2}}\left[v_{q}, v_{1}\right]$.

(c)

(e)

Figure 11. Path P is indicated by bold lines.
We will show that the path P found by Algorithm 3 indeed satisfies conditions (1) to (4). For this purpose, we need the following lemmas.

Lemma 1. Let $P=u_{0} u_{1} \ldots . u_{p}$ be a path in G and $y, z \in V(G)-P$ such that $N_{P}(z) \cap$ $N_{P}(y)^{+}=\emptyset$. Then

$$
\begin{equation*}
d_{P}(y)+d_{P}(z) \leq|P|+1 \tag{7}
\end{equation*}
$$

The equality holds only if $u_{p} \in N_{P}(y)$. Furthermore, if $N_{P}(y) \cap N_{P}(y)^{+}=\emptyset$, then equality holds only when $u_{p} \in N_{P}(y) \cap N_{P}(z)$.

Proof. Since $\left(N_{P}(z) \cup\left(N_{P}(y)-\left\{u_{p}\right\}\right)^{+}\right) \subseteq V(P)$ and $N_{P}(z) \cap N_{P}(y)^{+}=\emptyset$, we have $|P| \geq\left|N_{P}(z)\right|+\left|\left(N_{P}(y)-\left\{u_{p}\right\}\right)^{+}\right| \geq d_{P}(z)+d_{P}(y)-1$. Equality holds only if

$$
\begin{equation*}
V(P)=N_{P}(z) \cup\left(N_{P}(y)-\left\{u_{p}\right\}\right)^{+} \tag{8}
\end{equation*}
$$

and $u_{p} \in N_{P}(y)$. Furthermore, if $N_{P}(y) \cap N_{P}(y)^{+}=\emptyset$ and equality holds, then it follows from $u_{p} \in N_{P}(y)$ that $u_{p} \notin N_{P}(y)^{+}$. By (8), we have $u_{p} \in N_{P}(z)$.

Lemma 2. Let $P=u_{0} u_{1} \ldots . u_{p}$ be a path in G and $x, y, z \in V(G)-P$ such that $N_{P}(x) \cap$ $N_{P}(x)^{+}=\left(N_{P}(y) \cup N_{P}(z)\right) \cap N_{P}(x)^{+}=N_{P}(y) \cap N_{P}(y)^{+}=N_{P}(z) \cap N_{P}(y)^{+}=\emptyset$. Then

$$
\begin{equation*}
\Gamma_{P}(x, y, z) \leq|P|+1 \tag{9}
\end{equation*}
$$

Furthermore, if equality holds and $u_{p} \notin N_{P}(x)$, then $u_{p} \in N_{P}(y) \cap N_{P}(z)$.
Proof. If $N_{P}(x)=\emptyset$, then it follows from Lemma 1 that

$$
\begin{equation*}
\Gamma_{P}(x, y, z)=d_{P}(y)+d_{P}(z) \leq|P|+1 \tag{10}
\end{equation*}
$$

with equality only when $u_{p} \in N_{P}(y) \cap N_{P}(z)$.
So, suppose $N_{P}(x)=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{t}}\right\} \neq \emptyset$. Consider a segment $P\left(u_{i_{j}}, u_{i_{j+1}}\right], 1 \leq j<t$. By Lemma 1 , noting that $u_{i_{j}+1} \notin N_{P}(y) \cup N_{P}(z)$, we see that

$$
\begin{equation*}
\left.d_{P\left(u_{i_{j}}, u_{i_{j+1}}\right]}(y)+d_{P\left(u_{i_{j}}, u_{i_{j+1}}\right]}(z)\right) \leq\left|P\left(u_{i_{j}}, u_{i_{j+1}}\right]\right| \tag{11}
\end{equation*}
$$

with equality only when $u_{i_{j+1}} \in N(y) \cap N(z)$. Therefore

$$
\begin{align*}
\Gamma_{P\left(u_{i_{j}}, u_{i_{j+1}}\right]}(x, y, z) & \left.=1+d_{P\left(u_{i_{j}}, u_{i_{j+1}}\right]}\right](y)+d_{P\left(u_{i_{j}}, u_{i_{j+1}}\right]}(z)-\left|\left\{u_{i_{j+1}}\right\} \cap N(y) \cap N(z)\right| \\
& \leq\left|P\left(u_{i_{j}}, u_{i_{j+1}}\right]\right| . \tag{12}
\end{align*}
$$

For the first segment $P\left[u_{0}, u_{i_{1}}\right]$ and the last segment $P\left(u_{i_{t}}, u_{p}\right]$, similar to the above we may get

$$
\begin{equation*}
\Gamma_{P\left[u_{0}, u_{i_{1}}\right]}(x, y, z) \leq\left|P\left[u_{0}, u_{i_{1}}\right]\right|+1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{P\left(u_{i_{t}}, u_{p}\right]}(x, y, z) \leq\left|P\left(u_{i_{t}}, u_{p}\right]\right| . \tag{14}
\end{equation*}
$$

Then (9) follows by adding (12), (13), (14) together. If equality holds for (9), then equality also holds for (14). If furthermore $u_{p} \notin N_{P}(x)$, then similar to the deduction of (11), we have

$$
\Gamma_{P\left(u_{i_{t}}, u_{p}\right]}(x, y, z)=d_{P\left(u_{i_{t}}, u_{p}\right]}(y)+d_{P\left(u_{i_{t}}, u_{p}\right]}(z) \leq\left|P\left(u_{i_{t}}, u_{p}\right]\right|,
$$

with equality only when $u_{p} \in N_{P}(y) \cap N_{P}(z)$.
Next, we will prove the main theorem.
Proof of Theorem 7 Since each of the nine operations either extends P_{1} by at least one vertex or increases c by one, at most $O(n)$ extensions are needed. Furthermore, each extension can be completed in $O(m)$ time by graph searching (see for example [9]). For the same reason, the time complexity of Algorithm 2 and Algorithm 3 is also $O(m)$. So, P can be found in $O(n m)$ time. Next, we will prove that P satisfies conditions (1) to (4), and thus has the desired length.

Without loss of generality, we assume that G has no hamiltonian path. Let $P_{1}=$ $u_{0} u_{1} \ldots u_{p}$ and $P_{2}=v_{0} v_{1} \ldots v_{q}$ be the paths found by Algorithm 1, P_{V} the vine found by Algorithm 2, and m the ℓ-value at the end of Algorithm 2. By Operations 1 and 3, u_{0}, u_{p}, v_{q} are independent (Condition (1)). Condition (2) is obviously satisfied by the definition of the path P in Algorithm 3. Furthermore,

$$
\begin{align*}
& N_{P_{1}}\left(v_{q}\right) \cap N_{P_{1}}\left(v_{q}\right)^{+}=\emptyset \quad \text { (by Operation 2), } \tag{15}\\
& N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{p}\right) \cap N_{P_{1}\left[u_{1}, u_{c}\right)}\left(v_{q}\right)^{+}=\emptyset \quad \text { (by Operation } 8 \text {), } \tag{16}\\
& N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{0}\right) \cap N_{P_{1}\left[u_{1}, u_{c}\right)}\left(v_{q}\right)^{+}=\emptyset \quad \text { (by Operation } 6 \text {), } \tag{17}\\
& N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{p}\right) \cap N_{P_{1}\left[u_{1}, u_{c}\right)}\left(u_{p}\right)^{+}=\emptyset \quad \text { (by Operation } 9 \text {, } \tag{18}\\
& \left.N_{P_{1}}\left(u_{0}\right) \cap N_{P_{1}}\left(u_{p}\right)^{+}=\emptyset \quad \text { (by Operation } 4\right) . \tag{19}
\end{align*}
$$

By (5) and (6),

$$
\begin{align*}
& N\left(u_{0}\right) \subseteq P_{1}\left(u_{0}, u_{i_{2}}\right] \cup P_{1}\left[u_{j_{1}}, u_{i_{3}}\right], \tag{20}\\
& N\left(u_{p}\right) \subseteq P_{1}\left[u_{j_{m-2}}, u_{i_{m}}\right] \cup P_{1}\left[u_{j_{m-1}}, u_{p}\right) \tag{21}
\end{align*}
$$

By the definition in Algorithm 1,

$$
\begin{equation*}
N\left(v_{q}\right) \subseteq P_{1}\left[u_{1}, u_{c}\right] \cup P_{2} . \tag{22}
\end{equation*}
$$

Recall that ℓ is such that $u_{c} \in P_{1}\left(u_{i_{\ell}}, u_{j_{\ell}}\right)$. It follows from (22) that the only possible neighbors of v_{q} which may be missed lie in the segment $\left(u_{i_{\ell}}, u_{c}\right)$. However, this can be
compensated by the choice of u_{g} (Step 3 and Step 7 of Algorithm 3). So, $N\left(v_{q}\right) \subseteq P$. If $\ell \geq 3$, then $N\left(u_{0}\right) \subseteq P$ by (20). If $\ell \leq 2$, then by noting that $\left[u_{g}, u_{c}\right] \subseteq P$ (Step 7), we also have $N\left(u_{0}\right) \subseteq P$ by the definition of P in Step 4 and Step 5. Similarly, u_{f} is taken to ensure that $N\left(u_{p}\right) \subseteq P$ (Step 6). So, Condition (3) is satisfied. In the following, we will show Condition (4). To this end, we first prove the following three claims.

Claim 1. Suppose $Q=u_{i} u_{i+1} \ldots u_{c-1}(i>0)$. Then $\Gamma_{Q}\left(v_{q}, u_{p}, u_{0}\right) \leq|Q|$.
By taking $x=v_{q}, y=u_{p}, z=u_{0}$ in Lemma 2, and by (1) and (15) to (19), we see that

$$
\begin{equation*}
\Gamma_{Q}\left(v_{q}, u_{p}, u_{0}\right) \leq|Q|+1 \tag{23}
\end{equation*}
$$

Note that $u_{c-1} \notin N\left(v_{q}\right)$ since otherwise P_{1} can be extended by Operation 2. If equality holds in (23), then $u_{c-1} \in N\left(u_{0}\right) \cap N\left(u_{p}\right)$ by Lemma 2 , and thus P_{1} can be extended by Operation 5, a contradiction.

Claim 2. $\quad \Gamma_{P_{V}\left[u_{j_{\ell}}, u_{c}\right]}\left(v_{q}, u_{p}, u_{0}\right) \leq\left|P_{V}\left[u_{j_{\ell}}, u_{c}\right]\right|$ when $\ell \geq 2$ and $\Gamma_{P_{V}\left[u_{j_{1}}, u_{c}\right]}\left(v_{q}, u_{p}, u_{0}\right) \leq$ $\left|P_{V}\left[u_{j_{1}}, u_{c}\right]\right|+1$ when $\ell=1$.

If

$$
\left.\left.d_{P_{1}\left(u_{c}, u_{i_{\ell+1}}\right.}\right]\left(u_{0}\right)+d_{P_{1}\left(u_{c}, u_{i_{\ell+1}}\right.}\right]\left(u_{p}\right)=\left|P_{1}\left(u_{c}, u_{i_{\ell+1}}\right]\right|+1,
$$

then by Lemma $1, u_{c+1} \in N\left(u_{0}\right)$, which contradicts Operation 6. So,

$$
d_{P_{1}\left(u_{c}, u_{i_{\ell+1}}\right]}\left(u_{0}\right)+d_{P_{1}\left(u_{c}, u_{i_{\ell+1}}\right]}\left(u_{p}\right) \leq\left|P_{1}\left(u_{c}, u_{i_{\ell+1}}\right]\right| .
$$

Combining this with Lemma 1 and (20), we see that when $\ell=1$,

$$
\begin{aligned}
& d_{P_{V}\left[u_{j_{1}}, u_{c}\right)}\left(u_{0}\right)+d_{P_{V}\left[u_{j_{1}}, u_{c}\right)}\left(u_{p}\right) \\
= & \left.d_{P_{1}\left(u_{c}, u_{i_{2}}\right]}\left(u_{0}\right)+d_{P_{1}\left(u_{c}, u_{i_{2}}\right]}\left(u_{p}\right)+d_{P_{1}\left[u_{j_{1}}, u_{\left.i_{3}\right]}\right.}\left(u_{0}\right)+d_{P_{1}\left[u_{j_{1}}, u_{i_{3}}\right]}\right]\left(u_{p}\right)+d_{P_{1}\left[u_{j_{2}}, u_{p}\right) \cap P_{V}}\left(u_{p}\right) \\
\leq & \left|P_{1}\left(u_{c}, u_{i_{2}}\right]\right|+\left|P_{1}\left[u_{j_{1}}, u_{i_{3}}\right]\right|+1+\left|P_{1}\left[u_{j_{2}}, u_{p}\right) \cap P_{V}\right| \\
= & \left|P_{1}\left(u_{c}, u_{p}\right) \cap P_{V}\right|+1=\left|P_{1}\left[u_{c}, u_{p}\right] \cap P_{V}\right|-1=\left|P_{V}\left[u_{j_{1}}, u_{c}\right]\right|-1,
\end{aligned}
$$

and when $\ell \geq 2$,

$$
\begin{aligned}
& d_{P_{V}\left[u_{j_{\ell}}, u_{c}\right)}\left(u_{0}\right)+d_{P_{V}\left[u_{j_{\ell}}, u_{c}\right)}\left(u_{p}\right) \\
= & \left.\left.d_{P_{1}\left(u_{c}, u_{\ell}\right.}\right]\left(u_{0}\right)+d_{P_{1}\left(u_{c}, u_{i}\right.}\right] \\
\leq & \left|P_{1}\left(u_{p}\right)+d_{P_{1}\left[u_{j}, u_{p}\right) \cap P_{V}}\left(u_{i_{\ell+1}}\right]\right|+\left|P_{1}\left[u_{j_{\ell}}, u_{p}\right) \cap P_{V}\right| \\
= & \left|P_{1}\left(u_{c}, u_{p}\right) \cap P_{V}\right|=\left|P_{1}\left[u_{c}, u_{p}\right] \cap P_{V}\right|-2=\left|P_{V}\left[u_{j_{\ell}}, u_{c}\right]\right|-2 .
\end{aligned}
$$

Then the claim follows from

$$
\Gamma_{P_{V}\left[u_{j_{e}}, u_{c}\right]}\left(v_{q}, u_{p}, u_{0}\right)=d_{P_{V}\left[u_{j_{e}}, u_{c}\right)}\left(u_{0}\right)+d_{P_{V}\left[u_{j_{e}}, u_{c}\right)}\left(u_{p}\right)+\Gamma_{\left\{u_{c}\right\}}\left(v_{q}, u_{p}, u_{0}\right)
$$

and the fact $\Gamma_{\left\{u_{c}\right\}}\left(v_{q}, u_{p}, u_{0}\right) \leq 2$.
Claim 3. Suppose $Q=u_{0} u_{1} \ldots u_{i}$. Then $\Gamma_{Q}\left(v_{q}, u_{p}, u_{0}\right) \leq|Q|$. If furthermore $i=c-1$, then $\Gamma_{Q}\left(v_{q}, u_{p}, u_{0}\right) \leq|Q|-1$.

In fact, by Lemma 2,

$$
\Gamma_{Q}\left(v_{q}, u_{p}, u_{0}\right)=\Gamma_{Q \backslash u_{0}}\left(v_{q}, u_{p}, u_{0}\right) \leq\left|Q \backslash u_{0}\right|+1=|Q| .
$$

If furthermore $i=c-1$, then the above inequality becomes strict by Claim 1 .
Clearly,

$$
\begin{equation*}
\Gamma_{P_{2}\left(v_{0}, v_{q}\right]}\left(v_{q}, u_{p}, u_{0}\right)=d_{P_{2}\left(v_{0}, v_{q}\right)}\left(v_{q}\right) \leq\left|P_{2}\left(v_{0}, v_{q}\right]\right|-1 \tag{24}
\end{equation*}
$$

By Claim 1, Claim 2, Claim 3 and inequality (24), the theorem is proved.

References

[1] J-C. Bermond, On Hamiltonian Walks, in "Proc. Fifth British Combinatorial Conference, Aberdeen, 1975," Utilitas Math. (1975) 41-51.
[2] B. Bollobás, Extremal Graph Theory, in "Handbook of combinatorics Volume II, pages 1231-1292, Elsevier, Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo, 1995".
[3] J.A. Bondy, Basic Graph Theory: Paths and Circuits, in "Handbook of combinatorics Volume I, pages 3-110, Elsevier, Amsterdam-Lausanne-New York-Oxford-ShannonTokyo, 1995".
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press, 1976.
[5] G.A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. (3) 2 (1952) 69-81.
[6] E. Flandrin, H. A. Jung and H. Li, Degree Sum, Neighbourhood Intersections and Hamiltonism, Discrete Math. 90 (1991) 41-52.
[7] R.J. Gould, Updating the Hamiltonian Problem - A Survey, Journal of Graph Theory, Vol.15, No.2 (1991) 121-15\%.
[8] Jan Van den Heuvel, Degree and Toughness Conditions for Cycles in Graphs, ' Ph.D. Thesis, Faculty of Applied Math., University of Twente, 7500 AE Enschede, The netherland, 1993.
[9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer-Verlag-Berlin-Heidelberg-New York, 2000.
[10] O. Ore, Note on Hamilton Circuits, Amer. Math. Monthly 67 (1960) 55.
[11] B. Wei, Longest Cycles in 3-connected Graphs, Discrete Math. 170 No. 1-3 (1997) 195-201.

[^0]: *The work is partially supported by NSFC (10271101)
 ${ }^{\dagger}$ Corresponding author. The work is partially supported by NNSF of China (60373012)

