ABOUT b-COLOURING OF REGULAR GRAPHS

EL SAHILI A / KOUIDER M

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI
02/2006
Rapport de Recherche $\mathbf{N}^{\circ} 1432$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

About b-colouring of regular graphs

Amine El Sahili and Mekkia Kouider

Abstract

Is the b-chromatic number of a d-regular graph of girth 5 equal to $d+1$? We study this problem by giving some partial answers.

Keywords: graph colouring, b-chromatic number, girth

1. Introduction

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least a vertex in each other color class, such a vertex is called a dominating vertex. The b-chromatic number of a graph G, denoted by $b(G)$, is the maximal integer k such that G may have a b-coloring by k colors. This parameter has been defined by Irving and Manlove [2]. They proved that determining $b(G)$ for an arbitrary graph G is an NP-complete problem.

For a given graph G, it may be easily remarked that $\chi(G) \leq b(G) \leq$ $\Delta(G)+1$.

In [5]) Hoang and Kouider characterize all bipartite graphs G and all P_{4}-sparse graphs G such that each induced subgraph H of G satisfies $b(H)=\chi(H)$, where $\chi(H)$ is the chromatic number of H. They also prove that every $2 K_{2}$-free and $\overline{P_{5}}$-free graph G has $b(G)=\chi(G)$.

An important problem is to characterize those graphs G such that $b(G)=\Delta(G)+1$. If we are limited to regular graphs, Kratochvil et al. proved in $[\mathbf{3}]$ that for a d-regular graph G with at least d^{4} vertices, $b(G)=d+1$. In [4] one of us proved that for every graph G with girth at least $6, b(G)$ is at least the minimum degree of the graph, and if this graph is d-regular then $b(G)=d+1$.

Two examples show that the result is not extendable to every regular graph. The simpler one is the cycle C_{4}, we have $b\left(C_{4}\right)=2<3$. An other example containing triangles is the graph G consisting of two
triangles $x_{1} x_{2} x_{3}$ and $y_{1} y_{2} y_{3}$ such that $x_{i} y_{i}$ is an edge $1 \leq i \leq 3$. It is not difficult to show that $b(G)<4$. If cycles of order less than or equal 4 are not allowed, then we are leaded to study regular graphs of girth 5 , the subject of this note.
By putting a supplementary condition, we do a step in the hoped direction.

Theorem 1. Let G be a d-regular graph with girth 5 and containing no cycles of order 6 . Then the b-chromatic number of G is $d+1$.

Proposition 1. Let G be a d-regular graph. If $V(G)$ can be decomposed into $d+1$ stables $S_{1}, S_{2}, \cdots, S_{d+1}$ such that for each i, j there is a perfect matching between S_{i} and S_{j}, then $b(G)=d+1$.

By forbidding P_{7} we get a lower bound for arbitrary graphs.
Proposition 2. For a P_{7}-free graph G of girth 5 we have $b(G)>$ $\frac{\delta-3}{4}$ where δ is minimal degree of G.

2. Proof of Theorem1

The following proposition on regular graphs of girth greater than 5 was proved in [4].

Proposition 3. Any d-regular graph with girth 6 has a b-chromatic number equal to $d+1$

Proof. Consider a vertex v and its d neighbors $v_{1}, v_{2}, \cdots, v_{d}$. We start our coloring by giving v the color $d+1$ and each vertex v_{i} the color i. v is then a dominating vertex. Note that no neighbor of v_{s} other than v is equal nor joined to a neighbor of v_{t} where $1 \leq s<t \leq d$. Then neighborhoods of the vertices v_{i} can be colored in such a way that v_{i} becomes a dominating vertex for all $i, 1 \leq i \leq d$. We may easily complete to obtain a b-coloring of G by $d+1$ colors

Lemma 1. Let f be a non constant mapping from E into F where E and F are two finite sets such that $|E|=|F| \geq 2$. Then there is a bijection g from E to F such that $f(x) \neq g(x)$ for all x in E.

Proof. We argue by induction on the cardinal of the set E. If $|E|=2$, then a non constant mapping is a bijection. Simply g will be the other possible bijection from E to F. Suppose that the property holds for n and let E be a set containing $n+1$ elements. Set $E=$ $\left\{x_{1}, x_{2}, \cdots, x_{n+1}\right\}, F=\left\{y_{1}, y_{2}, \cdots, y_{n+1}\right\}$. If f is a bijection, say for
example that $f\left(x_{i}\right)=y_{i}, 1 \leq i \leq n+1$. Then the bijection g defined by $f\left(x_{i}\right)=y_{i+1}, 1 \leq i \leq n$, and $f\left(x_{n+1}\right)=y_{1}$, is a hoped bijection. Otherwise, there is an element in F which is not in $f(E)$. We may suppose that y_{n+1} is such a point. Consider the restriction of f on $E^{\prime}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, it is a mapping from E^{\prime} to $F^{\prime}=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$. If this mapping is constant, that is there exists $s \in[1, n]$ such that $f\left(x_{i}\right)=y_{s}, 1 \leq i \leq n$. then $f\left(x_{n+1}\right) \neq y_{s}$ since f is not constant on E. Consider any bijection g from E^{\prime} to $F \backslash\left\{y_{s}\right\}$ and extend g to E by putting $g\left(x_{n+1}\right)=y_{s}$. Otherwise we apply induction to get a bijection g from E^{\prime} to F^{\prime} verifying $f\left(x_{i}\right) \neq g\left(x_{i}\right), 1 \leq i \leq n$, We extend g to E by putting $g\left(x_{n+1}\right)=y_{n+1}$. A convenient bijection is then constructed.

Proof of the theorem. The cases $d=1,2$ are easily checked. So we prove the theorem for $d \geq 3$. Consider a vertex v and its d neighbors $v_{1}, v_{2}, \cdots, v_{d}$. We start our coloring by giving v the color $d+1$ and each vertex v_{i} the color i. The vertex v is then a dominating vertex. Now we will color the neighborhoods of the vertices v_{i} in such a way that v_{i} becomes a dominating vertex for all $i, 1 \leq i \leq d$. The $d-1$ neighbors of v_{1} other than v are taken colors $2, \cdots, d$. Suppose that all the neighbors of $v_{1}, \cdots, v_{k-1}, k-1<d$ are colored such that v_{i} is a dominating vertex for all $i, 1 \leq i \leq k-1$, and let us color the neighbors of v_{k}. First we remark that no colored vertex is a neighbor of v_{k} other than v; and, no two distinct colored vertices, different from v, are joined to the same vertex in the neighborhood of v_{k} since in all these cases, we have either a cycle of order less than 5 or a cycle of order 6 . Let E be the set of all the neighbors of v_{k} other than v and let F be the set of the colors i such that $1 \leq i \leq d$ and $i \neq k$. We define from E to F the mapping as follows:

If $u \in E$ is joined to a vertex of color $i \in F$, then put $f(u)=i$. We give arbitrary images of non used colors in F to the other vertices in such a way that f is not a constant mapping. It will be not so even if all the vertices in E are joined to colored one. In fact, if $f(u)=$ $s \neq k$ for all $u \in E$, then... $k=d$ and v_{i} has a neighbor of color s for all $i \in\{1, \cdots, d-1\}$ since two distinct neighbors of v_{i} have always two distinct colors. In particular v_{s} has a neighbor of color s, a contradiction. Hence may apply the lemma to construct a bijection g from E to F such that $f(u) \neq g(u)$ for all $u \in E$. We color the vertices in E by putting $c(u)=g(u)$ for all $u \in E$. Once all the neighbors of v_{i} are colored we complete by giving to each other vertex a convenient color. It may be easily verified that the obtained coloring is a b-coloring. So $b(G)=d+1$

3. Proof of Proposition 2

Proof. Suppose to the contrary that $b(G)=m \leq \frac{\delta-3}{4}$ and consider an m-coloration with m dominating vertices $x_{1}, x_{2}, \cdots, x_{m}$. Set $X=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$. For all $1 \leq t \leq m, t \neq i$ let $y_{i t}$ be a vertex of color t in $N\left(x_{i}\right)$. Set $Y_{t}=\left\{y_{i t}, 1 \leq i \leq m\right\}$. We will introduce a new color $m+1$. For every $x \in V(G)$, we define the following sets: $S_{1}(x)$ is a maximal subset of $N(x)$ containing $N(x) \cap X$ in which each two vertices have different colors, $S_{2}(x)=\{y \in N(x),(N(y)-\{x\}) \cap X \neq \phi\}$,
$S(x, t)=\left\{y \in N(x), N(y) \cap Y_{t} \neq \phi\right\}$. First remark that, as the girth is at least 5 , each one of these sets contains at most m elements. Since $m \leq \frac{\delta-3}{4}$, then x_{1} has a neighbor which is not in any one of those sets relative to x_{1}, we give the color $m+1$ to this neighbor. By supposing that at a step $i \leq m$ the set $N\left(x_{j}\right) j<i$ contains exactly one vertex of color $m+1$, we color a neighbor of x_{i} as we have done for x_{1}. We get an $(m+1)$-coloring in which $x_{i}, 1 \leq i \leq m$, is a dominating vertex such that $N\left(x_{i}\right)$ contains exactly one vertex of color $m+1$. Let $S_{3}(x)=\{y \in N(x), N(y)$ contains a vertex of color $m+1\}$, We consider a vertex x of color $m+1$ such that $\left|S_{1}(x)\right|$ is maximum. If $\left|S_{1}(x)\right|=m$ then we get a dominating vertex of the color $m+1$; this contradicts the definition of $b(G)$. Then we suppose that there is a color t not used by a vertex in $S_{1}(x)$, since $m \leq \frac{\delta-3}{4}$ then x has at least 3 neighbors y_{1}, y_{2} and y_{3} which are not in any one of the sets $S_{i}(x)$ or $S(x, t)$. The vertex y_{1} is joined to a vertex z of color t since otherwise we give to it the color t which is a contradiction. Suppose that the vertex z is not joined to a vertex of color $m+1$. If we have a missing color $j \neq m+1$ in $N(z)-\left\{y_{1}\right\}$, then we give the color j to z and similarly we may change the color of all the neighbors of y_{1} having the color t and we are leaded to the first case. Else we give the color $m+1$ to z, t to y_{1}. We get a dominating vertex of the color $m+1$, a contradiction. Then z is joined to a vertex w of color $m+1$. By definition, the vertex w is joined to a dominating vertex x_{i}. Let $j \in\{2,3\}$ be such that $x_{i} y_{j} \notin E(G)$. It can be easily verified that there is no edge between two non consecutive vertices on the path $y_{j} x y_{1} z w x_{i} y_{i t}$. Thus G contains an induced path P_{7}.

4. Proof of Proposition 1

An other parameter of graphs closed to the b-coloring which is deeply investigated is the chromatic number of the square graph, see for instance $[\mathbf{1}]$ and $[\mathbf{6}]$. Given a graph G, the square of G is the graph G^{2} obtained by adding edges to G between any two vertices of G of distance 2 . Clearly we may verify that $\chi\left(G^{2}\right) \geq \Delta(G)+1$. If we have the equality in the case of a d-regular graph, we get obviously $b(G)=d+1$. We will establish this equality under some particular conditions. First we give the following characterization of a d-regular graph G with $\chi\left(G^{2}\right)=d+1$.

Proposition 4. Let G be a d-regular graph. Then $\chi\left(G^{2}\right)=d+1$ if and only if $V(G)$ can be decomposed into $d+1$ stables $S_{1}, S_{2}, \cdots, S_{d+1}$ such that for each i, j there is a perfect matching between S_{i} and S_{j}.

Proof. For the necessary condition, consider a $(d+1)$-coloring of G^{2} and let $S_{1}, S_{2}, \cdots, S_{d+1}$ be the stables defined be the colors. For any two of them, say S_{i} and S_{j}, it is sufficient to remark that $\left|N\left(x_{i}\right) \cap S_{j}\right|=\left|N\left(x_{j}\right) \cap S_{i}\right|=1$ for all $x_{i} \in S_{i}$ and $x_{j} \in S_{j}$. For the sufficient condition, give color i to vertices in $S_{i}, 1 \leq i \leq d+1$. we have $\left|N\left(x_{i}\right) \cap S_{j}\right| \geq 1$ for all $i \neq j$ with $x_{i} \in S_{i}$. If $\left|N\left(x_{i}\right) \cap S_{j}\right| \geq 2$ then $d\left(x_{i}\right)>d+1$, a contradiction. We get a $(d+1)$-coloring of G^{2}.

The proposition 1 is then a corollary.

References

[1] N. Alon and B. Mohar, The chromatic number of graph power, Combinatorics Probability and Computing 11 (1993), 1-10.
[2] I. W. Irving and D. F. Manlove, The b-chromatic number of a graph, Discrete Applied Math.,91 (1999), 127-141.
[3] J. Kratochvil, Zs Tuza, and M. Voigt, On the b-chromatic number of graphs, Lectures Notes in Computer Science, Springer, Berlin, 2573 (2002), 310-320.
[4] M.Kouider,b-chromatic number of a graph, subgraphs and degrees Rapport interne LRI 1392.
[5] C.T. Hoang, Kouider, M., On the b-dominating coloring of graphs, Discrete Applied Maths, 152 (2005) no.1-3, 176-186
[6] K. W. Lih, W. F. Wang, X. Zhu, Coloring the square of a K_{4}-minor free graph, Discrete Math., 269 (2003), 303-309

