A DEGREE CONDITION IMPLYING THAT EVERY MATCHING IS CONTAINED IN A HAMILTONIAN CYCLE

AMAR D / FLANDRIN E / GANCARZEWICZ G
Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI
03/2006
Rapport de Recherche $\mathbf{N}^{\circ} 1435$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

A degree condition implying that every matching is contained in a hamiltonian cycle

March 24, 2006

Denise AMAR
LaBRI, Bordeaux I, France, amar@labri.u-bordeaux.fr
Evelyne FLANDRIN
LRI Université Paris-Sud Orsay, France, fe@lri.fr

Grzegorz GANCARZEWICZ ${ }^{1}$

AGH UST, Kraków, Poland, gancarz@uci.agh.edu.pl

Abstract

We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian cycle. We can show that the bound for the degree sum is almost best possible.

Résumé
Nous obtenons une condition portant sur la somme des degrés de trois sommets indépendants pour que tout couplage d'un graphe soit contenu dans un cycle hamiltonien. Nous prouvons que la borne obtenue sur la somme des degrés est presque la meilleure possible.

Keywords: hamiltonian graphs, cycles, matchings.

1991 Mathematics Subject Classification: 05C38, 05C45, 05C70.

[^0]
1 Introduction

Let G be a graph, $\mathrm{V}(G)$ denotes the vertex set of G and $\mathrm{E}(G)$ denotes the edge set of G. By $\mathrm{d}(x)$ or $\mathrm{d}_{G}(x)$ we denote the degree of the vertex x in the graph G.

In 1960 O. Ore [8] proved the following:
Theorem 1 Let G be a graph on $n \geqslant 3$ vertices. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have:

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n
$$

then G is hamiltonian.
Later many Ore type theorems dealing with degree-sum conditions were proved.

In particular J.A. Bondy [2] proved:

Theorem 2 Let G be a 2-connected graph on $n \geqslant 3$ vertices. If for any independent vertices $x, y, z \in \mathrm{~V}(G)$ we have:

$$
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant \frac{3 n-2}{2}
$$

then G is hamiltonian.

Let G be a graph and let $k \geqslant 1$. We shall call a set of k independent edges a k-matching or simply a matching. Sometimes the number of edges of a k matching M we will denote by $|M|$.

About cycles through matchings in general graphs K.A. Berman proved in [1] the following result conjectured by R. Häggkvist in [6].

Theorem 3 Let G be a graph on $n \geqslant 3$ vertices. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have:

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n+1
$$

then every matching lies in a cycle.
Theorem 3 has been improved by B. Jackson and N.C. Wormald in [7]. R. Häggkvist [6] gave also a sufficient condition for a general graph to contain any matching in a hamiltonian cycle. We give this theorem below in a slightly improved version obtained in [10] by A.P. Wojda.

Let \mathcal{G} be the family of graphs $G=\bar{K}_{\underline{n+2}} * H$, where H is any graph of order $\frac{2 n-3}{3}$ containing a perfect matching if $\frac{n+2}{3}$ is an integer, and $\mathcal{G}_{n}=\emptyset$ otherwise (* denotes the join of graphs).

Theorem 4 Let G be a graph on $n \geqslant 3$ vertices. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have:

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant \frac{4 n-4}{3}
$$

then every matching of G lies in a hamiltonian cycle, unless $G \in \mathcal{G}_{n}$.
M. Las Vergnas [9] have proved a similar result, but the bound for degree sum depends on the number of edges of the matching M.

Theorem 5 Let G be a graph on $n \geqslant 3$ vertices and let k be an integer $0 \leqslant$ $k \leqslant \frac{n}{2}$. If for any pair of independent vertices $x, y \in \mathrm{~V}(G)$ we have:

$$
\mathrm{d}(x)+\mathrm{d}(y) \geqslant n+k
$$

then every k-matching of G lies in a hamiltonian cycle.

We have tried to find new conditions dealing with degree sum of three independent vertices under which every matching from a graph G is contained in a hamiltonian cycle.

First we have obtained the following extension theorem:
Theorem 6 Let G be a 3-connected graph on $n \geqslant 3$ vertices such that for any independent vertices $x, y, z \in \mathrm{~V}(G)$, we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant 2 n \tag{1}
\end{equation*}
$$

Let M be a matching in G. If there exists a cycle of G containing M, then there exists a hamiltonian cycle of G containing M.

Theorem 6 shows that if a graph G satisfies (1) and a matching of G lies in a cycle, then this cycle can be extended to a hamiltonian cycle.

Using Theorem 6 we prove the following analog of Theorem 2, about hamiltonian cycles through matchings:

Theorem 7 Let G be a 3-connected graph on $n \geqslant 3$ vertices and let M be a matching in G such that for any independent vertices $x, y, z \in \mathrm{~V}(G)$ we have:

$$
\begin{equation*}
\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant 2 n \tag{2}
\end{equation*}
$$

then there exists a hamiltonian cycle containing every edge of M or G has a minimal odd M-edge cut-set.

A minimal odd M-edge cut-set is a subset of M such that its suppression disconnects the graph G and which has no proper subset being an H-edge cutset.

Theorem 7 is an analog of Theorem 2, about hamiltonian cycles through matchings.

Note that the bound $2 n$ in Theorem 7 is almost best possible. Let $p \geqslant 2$ and consider a complete graph $K_{2 p}$ with a perfect p-matching. We define the graph $G=(p+1) K_{1} * K_{2 p},(*$ denotes the join of graphs). In this graph $n=3 p+1$ and G is 3-connected. For any independent $x, y, z \in \mathrm{~V}(G)$ we have $\mathrm{d}(x)+\mathrm{d}(y)+\mathrm{d}(z) \geqslant 2 n-2$ and there is no hamiltonian cycle containing the p-matching from $K_{2 p}$. So the bound $2 n$ is almost best possible.

Let G be a graph. We define $\alpha(G)$, the stability number of G, as the cardinal of a maximum independent set of vertices of G.

From Theorem 7 we have the following Corollary:
Corollary 8 Let G be a 3-connected graph on $n \geqslant 6$ vertices and let M be a matching of G. If $\alpha(G)=2$, then there is a hamiltonian cycle of G containing M or G has a minimal odd M-edge cut-set.

2 Notation and preliminary results

For any $A \subset G$ and $x \in \mathrm{~V}(G)$, we denote by $\mathrm{N}_{A}(x)$ the set of all neighbors of the vertex x in A. Note that A can be a subgraph or a set of vertices. For $\mathrm{N}_{G}(x)$ we will sometimes write shortly $\mathrm{N}(x)$.

We will only use oriented cycles and paths. Let C be a cycle with a given orientation and $x \in \mathrm{~V}(C)$, then x^{-}is the predecessor of x and x^{+}is its successor according to the orientation of C. For any subest $A \subset \mathrm{~V}(C)$ we denote by A^{+} the set of successors of vertices from A and by A^{-}the set of predecessors of vertices from A.

Let $C: c_{1} \ldots c_{l}$ be a cycle (or a path) in G with a given orientation. For any pair of vertices $c_{i}, c_{j} \in \mathrm{~V}(C)$ with $i<j$ we can define four intervals:

- $] c_{i}, c_{j}\left[\right.$ is the path $c_{i+1} \ldots c_{j-1}$.
- $\left[c_{i}, c_{j}\left[\right.\right.$ is the path $c_{i} \ldots c_{j-1}$.
- $] c_{i}, c_{j}$] is the path $c_{i+1} \ldots c_{j}$.
- $\left[c_{i}, c_{j}\right]$ is the path $c_{i} \ldots c_{j}$.

Observe that these four intervals are subgraphs of the cycle (or the path) C.
Let u and v be two vertices of a graph G. We shall define $\epsilon(u v): \epsilon(u v)=1$ if $u v \in \mathrm{E}(G)$ and $\epsilon(u v)=0$ if $u v \notin \mathrm{E}(G)$.

Let W be a property defined for all graphs of order n and let k be a nonnegative integer. The property W is said to be k-stable if whenever $G+x y$ has property W and $\mathrm{d}_{G}(x)+\mathrm{d}_{G}(y) \geqslant k$ then G itself has property W.

Let $k, s_{1}, \ldots s_{l}$ be positive integers. We call S a path system of length k if the components of S are paths:

$$
\begin{array}{cc}
P_{1}: & x_{0}^{1} x_{1}^{1} \ldots x_{s_{1}}^{1}, \\
& \vdots \\
P_{l}: & x_{0}^{l} x_{1}^{l} \ldots x_{s_{l}}^{l}
\end{array}
$$

and $\sum_{i=1}^{l} s_{i}=k$.
Note that a k-matching is a path system of length k.
J.A. Bondy and V. Chvátal [3] proved the following theorem, which we shall need in the proof:

Theorem 9 Let n and k be positive integers with $k \leqslant n-3$. Then the property of being k-edge-hamiltonian is $(n+k)$-stable.

For a matching M, we denote by $\mathrm{V}(M)$ the set of all end vertices of the edges from M.

For notation and terminology not defined above a good reference should be [4].

3 Proof of Theorem 6

Let $k=|M|$ and let C be a longest cycle of G containing every edge of M. We assume that C is not hamiltonian. We denote by $R=\mathrm{V}(G) \backslash \mathrm{V}(C)$ the set of vertices of G not in C. Let $u \in R$. Since G is 3 -connected, we have $P_{1}[u, a]$, $P_{2}[u, b], P_{3}[u, c]$ three internally disjoint paths from u to C, where $a, b, c \in \mathrm{~V}(C)$. If at least two edges between $a^{-} a, b^{-} b, c^{-} c$ are edges of the matching M, at least two between $a a^{+}, b b^{+}, c c^{+}$are not in M. Without loss of generality we may assume that $a a^{+} \notin M, b b^{+} \notin M$.

The three vertices u, a^{+}, b^{+}are independent, so from (1) we have:

$$
\begin{equation*}
\mathrm{d}(u)+\mathrm{d}\left(a^{+}\right)+\mathrm{d}\left(b^{+}\right) \geqslant 2 n \tag{3}
\end{equation*}
$$

3.1 Neighbors of u, a^{+}, b^{+}in R and C

Since the vertices a^{+}, b^{+}and u don't have common neighbors in R and are independent, we have: $\mathrm{d}_{R}\left(a^{+}\right)+\mathrm{d}_{R}\left(b^{+}\right)+\mathrm{d}_{R}(u) \leqslant|\mathrm{V}(R)|-1$.

As C is a longest cycle containing M, if $x \in \mathrm{~V}(C)$ is a neighbor of u and x^{+} is a neighbor of a^{+}or b^{+}, then $x x^{+} \in M$ and hence

$$
\left(\mathrm{N}_{C}(u)\right)^{+} \cap\left[\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right] \subset\left\{\alpha \in \mathrm{V}(C), \alpha^{-} \alpha \in M\right\}
$$

and

$$
\left|\left(\mathrm{N}_{C}(u)\right)^{+} \cap\left[\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right]\right| \leqslant k
$$

As $\left|\mathrm{N}_{C}(u)^{+} \cup \mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right| \leqslant|\mathrm{V}(C)|$, we have:

$$
\left|\mathrm{N}_{C}(u)\right|+\left|\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right| \leqslant|\mathrm{V}(C)|+k
$$

Moreover

$$
\left|\mathrm{N}_{C}\left(a^{+}\right) \cup \mathrm{N}_{C}\left(b^{+}\right)\right|=\left|\mathrm{N}_{C}\left(a^{+}\right)\right|+\left|\mathrm{N}_{C}\left(b^{+}\right)\right|-\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right|
$$

To find an upper bound for $\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right|$we shall study vertices of $\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.

Let $C_{1}=C[a, b]$ and $C_{2}=C[b, a]$ be the two intervals on the cycle with endvertices a and b. Let $x \in C_{1}, x \in \mathrm{~N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.

If $x x^{+} \notin M$ and $x^{+} \in \mathrm{N}_{C}\left(a^{+}\right)$, then the cycle:

$$
P_{1}[u, a] a^{-} \ldots b^{+} x x^{-} \ldots a^{+} x^{+} \ldots P_{2}[b, u]
$$

is a cycle containing M longer then C, a contradiction.
Hence $x^{+} \notin \mathrm{N}_{C}\left(a^{+}\right)$.
Similarly if $x^{-} x \notin M$ then $x^{-} \notin \mathrm{N}_{C}\left(b^{+}\right)$.
In both cases $x^{+} \notin \mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right), x^{-} \notin \mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.
Using similar arguments for the interval C_{2}, we have no two consecutive vertices of $C \backslash \mathrm{~V}(M)$ in the set $\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)$.

3.2 Relations on degrees of a^{+}, b^{+}, u

If we consider any path P_{i} of C between two edges of M, we have:

$$
\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right) \cap \mathrm{V}\left(P_{i}\right)\right| \leqslant\left\lceil\frac{\left|\mathrm{V}\left(P_{i}\right)\right|}{2}\right\rceil
$$

Let for $i \geqslant 2, n_{i}$ be the cardinality of the set of the paths on C of length $i-1$, between two edges of M. The following relations must be satisfied:

$$
\begin{aligned}
|\mathrm{V}(C)| & =\sum_{i \geqslant 2} i n_{i} \\
|\mathrm{~V}(M)| & =\sum_{i \geqslant 2} n_{i} \\
\left|\mathrm{~N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right| & \leqslant \sum_{i \geqslant 2}\left\lceil\frac{i}{2}\right\rceil n_{i} .
\end{aligned}
$$

As

$$
\mathrm{d}_{C}\left(a^{+}\right)+\mathrm{d}_{C}\left(b^{+}\right)+\mathrm{d}_{C}(u) \leqslant|\mathrm{V}(C)|+k+\left|\mathrm{N}_{C}\left(a^{+}\right) \cap \mathrm{N}_{C}\left(b^{+}\right)\right|,
$$

we have:

$$
\begin{array}{r}
\mathrm{d}_{C}\left(a^{+}\right)+\mathrm{d}_{C}\left(b^{+}\right)+\mathrm{d}_{C}(u) \leqslant \sum_{j \geqslant 1}\left(2 j n_{2 j}+(2 j+1) n_{2 j+1}\right)+ \\
\sum_{j \geqslant 1}\left(n_{2 j}+n_{2 j+1}\right)+\sum_{j \geqslant 1}\left(j n_{2 j}+(j+1) n_{2 j+1}\right) \leqslant \\
\sum_{j \geqslant 1}(3 j+1) n_{2 j}+\sum_{j \geqslant 1}(3 j+3) n_{2 j+1} \leqslant \\
\sum_{j \geqslant 1} 4 j n_{2 j}+\sum_{j \geqslant 1}(4 j+2) n_{2 j+1} .
\end{array}
$$

Hence $\mathrm{d}_{C}\left(a^{+}\right)+\mathrm{d}_{C}\left(b^{+}\right)+\mathrm{d}_{C}(u) \leqslant 2|\mathrm{~V}(C)|$
and
$\mathrm{d}\left(a^{+}\right)+\mathrm{d}\left(b^{+}\right)+\mathrm{d}(u) \leqslant 2|\mathrm{~V}(C)|+|\mathrm{V}(R)|-1 \leqslant$
$2(|\mathrm{~V}(C)|+|\mathrm{V}(R)|)-|\mathrm{V}(R)|-1=2 n-|\mathrm{V}(R)|-1$,
a contradiction with (3).
This contradiction ends the proof of Theorem 6 .

4 Proof of Theorem 7

Let $k=|M|$.

4.1 Preliminary Remarks

Remark 1 For two independent vertices $x, y \in \mathrm{~V}(G)$ two cases can occur:

1. If there exists a vertex z such that x, y, z are independent, then $\mathrm{d}(x)+$ $\mathrm{d}(y) \geqslant 2 n-\mathrm{d}(z) \geqslant n+3$.
2. If there is no vertex in G independent with x and y, then $\mathrm{N}(x) \cup \mathrm{N}(y) \cup$ $\{x, y\}$ covers $\mathrm{V}(G)$ and $\mathrm{d}(x)+\mathrm{d}(y) \geqslant n-2$.

Remark 2 If x and y are independent vertices satisfying $\mathrm{d}(x)+\mathrm{d}(y)=n-2+\epsilon$, with $0 \leqslant \epsilon \leqslant 3$ we are in the second case. We may assume $\mathrm{d}(y) \leqslant \mathrm{d}(x)$. If u_{1} and u_{2} are independent vertices in $\mathrm{N}(x) \backslash \mathrm{N}(y)$, then $\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geqslant 2 n-\mathrm{d}(y) \geqslant$ $\frac{3 n-1}{2}=n+\frac{n-1}{2}$. If n is even, then $\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geqslant n+\frac{n}{2} \geqslant n+k$. If n is odd, then any matching of G has at most $\frac{n-1}{2}$ edges, then we have again $\mathrm{d}\left(u_{1}\right)+\mathrm{d}\left(u_{2}\right) \geqslant n+k$. In any case $u_{1} u_{2}$ is in the $(n+k)$-closure of G. From Theorem 9 we can assume that $\mathrm{N}(x) \backslash \mathrm{N}(y)$ is a complete graph.

4.2 Definition of a θ-graph through a matching in the graph G

Definition $1 A \theta$-graph through a matching M is the union of two cycles C_{1} and C_{2} whose intersection is a path of length at least one and such that $M \subset$ $\mathrm{E}\left(C_{1}\right) \cup \mathrm{E}\left(C_{2}\right)$ and every edge of M incident with a vertex of $C_{1} \cap C_{2}$ lies in $C_{1} \cap C_{2}$.

This notion has been introduced by Berman [1].

4.3 Strategy of the proof

We will prove the theorem by contradiction. We assume that for a matching M there is no hamiltonian cycle containing M. We consider a cycle C in G which satisfies the following conditions:

1. $|\mathrm{E}(C) \cap M|$ is maximum.
2. Up to condition (1) the length of C is maximum, so by Theorem $6, C$ is a hamiltonian cycle.

Existence of a θ-graph

Let $M^{\prime}=\mathrm{E}(C) \cap M$. By assumption $M^{\prime} \neq M$ and then there exists an edge $e=x y \in M, e \notin \mathrm{E}(C)$. The edge $e=x y$ is a chord of the hamiltonian cycle. Let $C_{1}=x x^{+} \ldots y x$ and $C_{2}=x x^{-} \ldots y x$. Note that $\left(C_{1} \cup C_{2}\right)$ satisfies the definition of a θ-graph through $M^{\prime} \cup\{e\}$.

Maximality conditions for a θ-graph

Let $\Gamma\left(C_{1}, C_{2}\right)$ be a θ-graph through $M^{\prime} \cup\{e\}$ satisfying moreover:

1. The intersection $C_{1} \cap C_{2}$ is maximum.
2. Under condition (1) $\left|\mathrm{V}\left(\Gamma\left(C_{1}, C_{2}\right)\right)\right|$ is maximum.

In $\Gamma\left(C_{1}, C_{2}\right)$, we denote by P, Q, R^{\prime}, R the paths defined respectively by: $R^{\prime}=C_{1} \cap C_{2}=x r_{1} r_{2} \ldots r_{\gamma} y, R=r_{1} r_{2} \ldots r_{\gamma}, P=C_{1} \backslash C_{2}=p_{1} p_{2} \ldots p_{\alpha}$ with $x p_{1} \in \mathrm{E}\left(C_{1}\right), Q=C_{2} \backslash C_{1}=q_{1} q_{2} \ldots q_{\beta}$ with $x q_{1} \in \mathrm{E}\left(C_{2}\right)$.

Sometimes we will write Γ instead of $\Gamma\left(C_{1}, C_{2}\right)$.

Inequalities and consequences

Remark 3 The edges $x p_{1}, x q_{1}, y p_{\alpha}, y q_{\beta}$ are not in M, then p_{1} and q_{β} are independent and and q_{1} and p_{α} are independent.

Remark 4 We can apply the same arguments as Berman [1] (see inequalities (4) - (12) in [1]) and we have the following inequality:

$$
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right)+\mathrm{d}\left(q_{\beta}\right) \leqslant 2 n
$$

Since the graph G satisfies the condition (2) (i.e. for any independent vertices $w_{1}, w_{2}, w_{3} \in \mathrm{~V}(G)$ we have $\mathrm{d}\left(w_{1}\right)+\mathrm{d}\left(w_{2}\right)+\mathrm{d}\left(w_{3}\right) \geqslant 2 n$) and by Remark 1 we have the following inequalities:

$$
\begin{aligned}
& \mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \geqslant n-2 \\
& \mathrm{~d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right) \geqslant n-2 .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right) & \leqslant n+2, \\
\mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) & \leqslant n+2
\end{aligned}
$$

and there is no vertex independent of p_{1} and q_{β} and no vertex independent of q_{1} and p_{α}.

Remark 5 Without loss of generality we may assume that $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \leqslant$ $n, \mathrm{~d}\left(q_{\beta}\right) \leqslant \frac{n}{2}$ and by Remark 2, $\mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ is a complete graph.

4.3.1 Basic Lemmas

The following lemmas involve the neighbors of the vertices p_{1}, q_{1}, p_{α}, and q_{β} on the paths R, P, Q :

Lemma 1

1. If $u v$ is an edge of R not in M, then two cases can occur:
(a) Vertices p_{1} and q_{1} are both adjacent to u and v and p_{α} and q_{β} are independent of u and v and even there is no path internally disjoint with Γ, from u and v to p_{α} and q_{β}.
(b) Vertices p_{α} and q_{β} are both adjacent to u and v and vertices p_{1} and q_{1} are independent of u and v and even there is no path internally disjoint with Γ, from u or v to p_{1} or q_{1}.
2. Consequently for any $r \in \mathrm{~V}(R)$ we have two possibilities:
(a) Vertices p_{1} and q_{1} are both adjacent to r and p_{α} and vertices q_{β} are independent of r.
(b) Vertices p_{α} and q_{β} are both adjacent to r and vertices p_{1} and q_{1} are independent of r.
3. If $x r_{1} \notin M$, then $r_{1} p_{1}, r_{1} q_{1} \in \mathrm{E}(G)$ and $r_{1} p_{\alpha}, r_{1} q_{\beta} \notin \mathrm{E}(G)$ and respectively if $y r_{\gamma} \notin M$, then $r_{\gamma} p_{\alpha}, r_{\gamma} q_{\beta} \in \mathrm{E}(G)$ and $r_{\gamma} p_{1}, r_{\gamma} q_{1} \notin \mathrm{E}(G)$.

Proof of Lemma 1:

We shall prove first 1. As $\mathrm{N}\left(p_{1}\right) \cup \mathrm{N}\left(q_{\beta}\right)=\mathrm{V}(G) \backslash\left\{p_{1}, q_{\beta}\right\}$ and $\mathrm{N}\left(q_{1}\right) \cup$ $\mathrm{N}\left(p_{\alpha}\right)=\mathrm{V}(G) \backslash\left\{q_{1}, p_{\alpha}\right\}$, the vertex u is adjacent to at least one of the vertices p_{1} or q_{β}. The assumption of the proof is that no cycle contains every edge of $M \cap \mathrm{E}(\Gamma)$. If we assume $u p_{1} \in \mathrm{E}(G)$, then $p_{\alpha} v \notin \mathrm{E}(G)$ and $q_{\beta} v \notin \mathrm{E}(G)$, that implies $q_{1} v \in \mathrm{E}(G)$ and $p_{1} v \in \mathrm{E}(G)$. Hence $q_{\beta} u \notin \mathrm{E}(G)$ and $p_{\alpha} v \notin \mathrm{E}(G)$, that implies $q_{1} v \in \mathrm{E}(G)$. If we assume $u p_{1} \notin \mathrm{E}(G)$, then $q_{\beta} u \in \mathrm{E}(G)$, that implies $q_{1} v \notin \mathrm{E}(G)$, then $p_{\alpha} v \in \mathrm{E}(G)$ that implies $q_{1} u \notin \mathrm{E}(G)$, then $p_{\alpha} u \in \mathrm{E}(G)$ that implies $p_{1} v \notin \mathrm{E}(G)$ then $q_{\beta} v \in \mathrm{E}(G)$. Moreover we can replace the condition $w t \notin \mathrm{E}(G)$ by no path from w to t, internally disjoint of Γ exists, where w may be u or v, and t may be $p_{1}, p_{\alpha}, q_{1}, q_{\beta}$.

Using similar arguments we can show 2 and 3.

Note that from Lemma 1 we have $\mathrm{d}_{R}\left(p_{1}\right)=\mathrm{d}_{R}\left(q_{1}\right)$ and similarly $\mathrm{d}_{R}\left(p_{\alpha}\right)=$ $\mathrm{d}_{R}\left(q_{\beta}\right)$.

Lemma 2 If $p_{i} p_{i+1}$ is an edge from $\mathrm{E}(P) \backslash M$, then $q_{\beta} p_{i+1} \notin \mathrm{E}(G), q_{1} p_{i} \notin$ $\mathrm{E}(G), q_{\beta} p_{i} \notin \mathrm{E}(G) q_{1} p_{i+1} \notin \mathrm{E}(G)$ and $p_{1} p_{i}, p_{1} p_{i+1}, p_{\alpha} p_{i}, p_{\alpha} p_{i+1}$ are edges of G. Similarly if $q_{i} q_{i+1}$ is an edge from $\mathrm{E}(Q) \backslash M$, then $p_{1} q_{i} \notin \mathrm{E}(G), p_{\alpha} q_{i+1} \notin$ $\mathrm{E}(G), p_{1} q_{i+1} \notin \mathrm{E}(G), p_{\alpha} q_{i} \notin \mathrm{E}(G)$ and $q_{1} q_{i}, q_{1} q_{i+1}, q_{\beta} q_{i}, q_{\beta} q_{i+1}$ are edges of G.

Proof of Lemma 2:

The hypothesis of maximality of $C_{1} \cap C_{2}$ implies that the edges $q_{1} p_{i}, q_{\beta} p_{i+1}$, $p_{1} q_{i}, p_{\alpha} q_{i+1}$ are not in $\mathrm{E}(G)$. As $\mathrm{N}\left(p_{1}\right) \cup \mathrm{N}\left(q_{\beta}\right) \cup\left\{p_{1}, q_{\beta}\right\}$ or $\mathrm{N}\left(q_{1}\right) \cup \mathrm{N}\left(p_{\alpha}\right) \cup$ $\left\{q_{1}, p_{\alpha}\right\}$ cover $\mathrm{V}(G)$ the edges $p_{1} p_{i+1}, p_{\alpha} p_{i}, q_{1} q_{i+1}, q_{\beta} q_{i}$ are in $\mathrm{E}(G)$. If $p_{1} p_{i+1} \in$ $\mathrm{E}(G), q_{\beta} p_{i} \notin \mathrm{E}(G)$ elsewhere

$$
x r_{1} \ldots r_{\gamma} y p_{\alpha} \ldots p_{i+1} p_{1} p_{2} \ldots p_{i} q_{\beta} \ldots q_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction. Hence $p_{1} p_{i} \in \mathrm{E}(G)$.
The proofs for the other vertices are similar.

4.3.2 Steps of the proof

We will first study the case where $\alpha=\beta=2$ and obtain the existence of a minimal odd M-edge cut-set. Then we will assume that $\alpha \geqslant 3$ or $\beta \geqslant 3$, we will use the structure of the neighborhood of the vertices $p_{1}, q_{1}, p_{\alpha}, q_{\beta}$ and obtain a contradiction.

4.4 Proof of Theorem 7 for $\alpha=\beta=2$.

4.4.1 Claims and Corollaries

Let $S=G \backslash \Gamma$.
Claim 1 The vertex p_{1} has no neighbor in S.

Proof of Claim 1:

Assume that $w \in \mathrm{~V}(S)$ is adjacent to p_{1}. Let $\pi[w, t]$, with $t \in \mathrm{~V}(\Gamma)$, denote a path from p_{1} to Γ, internally disjoint of Γ. First $t \neq q_{2}$ elsewhere we obtain a cycle through $M^{\prime} \cup\{e\}$. Because of the maximality of $|\mathrm{V}(\Gamma)|, t \neq x$. If $t=q_{1}$, $x q_{2} \notin \mathrm{E}(G)$, then $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right), w \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$, then $w x \in \mathrm{E}(G)$, a contradiction with the hypothesis of maximality of $|\mathrm{V}(\Gamma)|$. Then $w q_{1} \notin \mathrm{E}(G)$, and $w p_{2} \in \mathrm{E}(G)$. We can deduce that $t \neq y$ because of the maximality of $|\mathrm{V}(\Gamma)|$.

At last, as G is 3 -connected, there exists an other path (than the edges $w p_{1}$ and $w p_{2}$), say $\pi[w, r]$ from w to Γ, with $r \in \mathrm{~V}(R)$. At least one of the edges $r r^{+}$ or $r^{-} r$ is not in M, r^{+}in the first case, r^{-}in the second case is adjacent to p_{1} or p_{2}, a contradiction with Lemma 1.

Claim 2 The edge $p_{2} q_{2}$ is in $\mathrm{E}(G)$.

Proof of Claim 2:

Case 1: $p_{1} q_{1} \in \mathrm{E}(G)$ or there exists a path $\pi\left[p_{1}, q_{1}\right]$ internally disjoint with Γ.

Then $x p_{2} \notin \mathrm{E}(G), x q_{2} \notin \mathrm{E}(G)$ elsewhere we obtain a cycle through $M^{\prime} \cup\{e\}$. The conditions $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right), x p_{2} \notin \mathrm{E}(G)$ imply $p_{2} \in \mathrm{~N}\left(q_{2}\right)$ i.e. $p_{2} q_{2} \in \mathrm{E}(G)$.

Case 2: $p_{1} q_{1} \notin \mathrm{E}(G)$ and there exists no path $\pi\left[p_{1}, q_{1}\right]$ internally disjoint with Γ.

We assume $p_{2} q_{2} \notin \mathrm{E}(G)$. Then $p_{2} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$. We have: $\mathrm{N}\left(p_{1}\right) \subset$ $\mathrm{V}(R) \cup\left\{x, y, p_{2}\right\}$.

Let $r \in \mathrm{~V}(R)$ be a neighbor of p_{1}. We have $r \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right), p_{2} \in \mathrm{~N}\left(p_{1}\right) \backslash$ $\mathrm{N}\left(q_{2}\right)$, that implies $r p_{2} \in \mathrm{E}(G)$, a contradiction with Lemma 1. So $\mathrm{N}_{R}\left(p_{1}\right)=\emptyset$, and $\mathrm{N}\left(p_{1}\right) \subset\left\{x, y, p_{2}\right\}$.

Since G is 3 -connected $\mathrm{N}\left(p_{1}\right)=\left\{x, y, p_{2}\right\}$. The condition $\mathrm{d}\left(p_{1}\right) \geqslant \mathrm{d}\left(q_{2}\right)$ implies that $|V(R)| \leqslant 1$.

If $R=\emptyset$, it is easy to see that $x y$ is a minimal odd M-edge cut-set, a contradiction.

If $R=\left\{r_{1}\right\}$ and $y r_{1} \in M$, then $C^{\prime}: \quad x p_{1} p_{2} r_{1} y q_{2} q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

If $R=\left\{r_{1}\right\}$ and $x r_{1} \in M$, then $C^{\prime}: \quad x r_{1} p_{2} p_{1} y q_{2} q_{1} x$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction and Claim 2 is proved.

Note that we have also the following Corollaries from Claim 2:

Corollary 1 Both pairs of vertices $\left\{y, p_{1}\right\}$ and $\left\{y, q_{1}\right\}$ are independent and have no common neighbors in S.

Corollary 2 If vertices $\left\{y, p_{1}\right\}$ (or $\left\{y, q_{1}\right\}$) have no common neighbors on R, then $p_{1} q_{1} \in \mathrm{E}(G)$ and y is adjacent to every neighbor of p_{2} (or q_{2}) on R.

Proof of Corollary 2:

If there exists a set of three independent vertices containing y and p_{1} (or q_{1}), then $\mathrm{d}(y)+\mathrm{d}\left(p_{1}\right) \geqslant n+3$. Note that we have: $\mathrm{N}\left(p_{1}\right) \cap \mathrm{N}(y) \subset \mathrm{V}(R) \cup\left\{x, p_{2}\right\}$, $\left|\mathrm{N}_{R}\left(p_{1}\right) \cap \mathrm{N}_{R}(y)\right| \geqslant 3$.

Hence, if $\mathrm{N}_{R}\left(p_{1}\right) \cap \mathrm{N}_{R}(y)=\emptyset$, then there is no independent set of three vertices containing p_{1} and y, and $p_{1} q_{1} \in \mathrm{E}(G)$. As $\mathrm{N}_{R}(y) \cup \mathrm{N}_{R}\left(p_{1}\right)=\mathrm{V}(R)$, by Lemma $1, y$ is adjacent to every vertex of $\mathrm{N}_{R}\left(p_{2}\right)=\mathrm{N}_{R}\left(q_{2}\right)$.

4.4.2 Proof of the Theorem 7

We recall that we consider the case $\alpha=\beta=2$.
By Lemma 1 the sets $\mathrm{N}_{R}\left(p_{1}\right)=\mathrm{N}_{R}\left(q_{1}\right)$ and $\mathrm{N}_{R}\left(p_{2}\right)=\mathrm{N}_{R}\left(q_{2}\right)$ define a partition of the set of the vertices of R and by Remark 2 we may assume that $\mathrm{N}_{R}\left(p_{1}\right)$ is a complete graph. If an edge $a b \in \mathrm{E}(R)$ is such that a is adjacent to p_{1} (and q_{1}) and b is adjacent to p_{2} (and q_{2}), then by Lemma $1 a b \in M$. Let $\left\{e_{j}=a_{j} b_{j}, a_{j} \in \mathrm{~N}_{R}\left(p_{1}\right), b_{j} \in \mathrm{~N}_{R}\left(p_{2}\right)\right\}$ be the set of these edges. The path R can be partitioned into subpaths: $R_{0}=R\left[x, a_{1}\right]\left(=\{x\}\right.$ if $\left.a_{1}=x\right), R_{1}=$ $R\left[b_{1} \ldots b_{2}\right], \ldots R_{s}=R\left[b_{s}, y\right]\left(=\{y\}\right.$ if $\left.b_{s}=y\right)$. Every vertex of $R_{0}, R_{2}, \ldots, R_{2 j} \ldots$ is adjacent to p_{1} (and q_{1}), and every vertex of $R_{1}, R_{3}, \ldots, R_{s}$ is adjacent to p_{2} (and q_{2}). Note that s is odd. If no other edge exists between $\mathrm{N}\left(p_{1}\right) \cup\left\{p_{1}, q_{1}\right\}$ and $\mathrm{N}\left(p_{2}\right) \cup\left\{p_{2}, q_{2}\right\}$, then the set

$$
\left\{e_{j}=a_{j} b_{j}, a_{j} \in \mathrm{~N}\left(p_{1}\right), b_{j} \in \mathrm{~N}\left(p_{2}\right), 1 \leqslant j \leqslant s\right\} \cup\left\{p_{1}, p_{2}\right\} \cup\left\{q_{1}, q_{2}\right\}
$$

is an odd minimal M-edge cut-set.
Otherwise there exists an edge $c d \in \mathrm{E}(G)$, with $c \in \mathrm{~N}\left(p_{1}\right), d \in \mathrm{~N}\left(p_{2}\right)$.
Case 1: There is an edge $r_{t} y$, with $r_{t} \in \mathrm{~N}_{R}\left(p_{1}\right)$

Subcase 1.1

If $r_{t} r_{t+1} \notin M$, then

$$
x r_{1} \ldots r_{t} y r_{\gamma} \ldots r_{t+1} q_{1} q_{2} p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Subcase 1.2

If $r_{t} r_{t+1} \in M, r_{t+1} \in \mathrm{~N}_{R}\left(p_{1}\right)$, then $r_{t-1} \in \mathrm{~N}_{R}\left(p_{1}\right), r_{t+2} \in \mathrm{~N}_{R}\left(p_{1}\right)$ and $r_{t-1} r_{t+2} \in \mathrm{E}(G)$.

In this case

$$
x r_{1} \ldots r_{t-1} r_{t+2 \ldots} r_{\gamma} y r_{t} r_{t+1} q_{1} q_{2} p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Subcase 1.3

If $r_{t} r_{t+1} \in M, r_{t+1} \in \mathrm{~N}_{R}\left(p_{2}\right)$, then

$$
x r_{1} \ldots r_{t-1} p_{1} p_{2} r_{t+2} \ldots r_{\gamma} y r_{t} r_{t+1} q_{2} q_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Case 2: The vertex y is not adjacent to any vertex of $\mathrm{N}_{R}\left(p_{1}\right)$.

By Corollary 2, y is adjacent to any vertex of $\mathrm{N}_{R}\left(p_{2}\right)$. Let $c=r_{t} \in \mathrm{~N}_{R}\left(p_{1}\right), d=$ $r_{m} \in \mathrm{~N}_{R}\left(p_{2}\right)$ such that $c d \in \mathrm{E}(G)$.

Subcase 2.1: $r_{t} r_{t+1}, r_{m} r_{m+1} \notin M$ or $r_{t-1} r_{t}, r_{m-1} r_{m} \notin M$.
If $t<m$, then

$$
x r_{1} \ldots r_{t} r_{m} r_{m-1} \ldots r_{t+1} q_{1} q_{2} r_{m+1} \ldots y p_{2} p_{1} x
$$

or

$$
x r_{1} \ldots r_{t-1} q_{1} q_{2} y r_{\gamma \ldots} r_{m} r_{t} r_{t+1} \ldots r_{m-1} p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
If $t>m$, then

$$
x r_{1} \ldots r_{m} r_{t} r_{t-1} \ldots r_{m+1} q_{2} q_{1} r_{t+1} \ldots r_{\gamma} y p_{2} p_{1} x
$$

or

$$
x r_{1} \ldots r_{m-1} q_{2} q_{1} r_{t-1} \ldots r_{m} r_{t} \ldots y p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 2.2 : $r_{t} r_{t+1} \in M$ and $r_{m-1} r_{m} \in M$ if $t<m, r_{t-1} r_{t} \in M$ and $r_{m} r_{m+1} \in M$ if $t>m$.

There exists i, i between t and m, such that $r_{i} r_{i+1} \notin M$. The vertices r_{i} and r_{i+1} are both adjacent to p_{1} and q_{1} or to p_{2} and q_{2}.

Subcase 2.2.1: The vertices r_{i} and r_{i+1} are both adjacent to p_{1} and q_{1}.

If $t<m$, then since $r_{t-1}, r_{i+1} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{2}\right)$ we have $r_{t-1} r_{i+1} \in \mathrm{E}(G)$ and

$$
x r_{1} \ldots r_{t-1} r_{i+1} \ldots r_{m} r_{t} r_{t+1} \ldots r_{i} q_{1} q_{2} r_{m+1} \ldots y p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
If $t>m$, then

$$
x r_{1} \ldots r_{m-1} q_{2} q_{1} r_{i} r_{i-1} \ldots r_{m} r_{t} \ldots r_{i+1} r_{t+1} \ldots y p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Subcase 2.2.2 : The vertices r_{i} and r_{i+1} are both adjacent to p_{2} and q_{2}.

In this case r_{i} and r_{i+1} are adjacent to y.

If $t<m$, then

$$
\left.x r_{1} \ldots r_{t-1} q_{1} q_{2} r_{i} r_{i-1} \ldots r_{t} r_{m} r_{m-1} \ldots r_{i+1} y r_{\gamma} \ldots r_{m+1} p_{2} p_{1} x\right)
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
If $t>m$, then

$$
\left(x r_{1} \ldots r_{m-1} p_{2} p_{1} r_{t+1} \ldots y r_{i+1} \ldots r_{t} r_{m} \ldots r_{i} q_{2} q_{1} x\right)
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 2.3: $r_{t-1} r_{t} \in M$ and $r_{m} r_{m+1} \in M$ if $t<m$ or $r_{t} r_{t+1} \in$ M and $r_{m-1} r_{m} \in M$ if $t>m$.

So if $t<m, r_{m-1} y \in \mathrm{E}(G)$, if $t>m, r_{m+1} y \in \mathrm{E}(G)$.
Hence if $t<m$, then

$$
x r_{1} \ldots r_{t} r_{m \ldots y r_{m-1} \ldots r_{t+1} q_{1} q_{2} p_{2} p_{1} x}
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
If $t>m$,

$$
x r_{1} \ldots r_{m} r_{t} r_{t+1} y r_{m+1} \ldots r_{t-1} q_{1} q_{2} p_{2} p_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
The proof of Theorem 7 for $\alpha=\beta=2$ is complete.

4.5 Proof of Theorem 7 for $\alpha \geqslant 3$ or $\beta \geqslant 3$

Case 1: $\quad p_{1} q_{1} \in \mathrm{E}(G)$

Remark 6 : The hypothesis of maximality of the intersection $C_{1} \cap C_{2}$ implies that the edges $p_{1} p_{2}$ and $q_{1} q_{2}$ are in M.

Remark 7 : $x q_{\beta} \notin \mathrm{E}(G), x p_{\alpha} \notin \mathrm{E}(G)$ and there is no path $\pi\left[x q_{\beta}\right]$ or $\pi\left[x p_{\alpha}\right]$ internally disjoint of Γ, elsewhere we obtain a cyle through $M^{\prime} \cup\{e\}$.

Remark 8 : Since $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right), p_{\alpha} \in \mathrm{N}\left(p_{1}\right) \cup \mathrm{N}\left(q_{\beta}\right)$ and $x p_{\alpha} \notin \mathrm{E}(G), p_{\alpha} \notin$ $\mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$, we have $p_{\alpha} q_{\beta} \in \mathrm{E}(G)$, that implies $p_{\alpha} p_{\alpha-1} \in M, q_{\beta} q_{\beta-1} \in M$ and $y p_{1} \notin \mathrm{E}(G), y q_{1} \notin \mathrm{E}(G)$.

Remark 9 : If $w \in \mathrm{~N}_{S}\left(p_{1}\right)$ and $w \notin \mathrm{~N}\left(q_{\beta}\right)$, then $w \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$, that implies $w x \in \mathrm{E}(G)$, a contradiction with the hypothesis of maximality of $|\mathrm{V}(\Gamma)|$. Hence $\mathrm{N}_{S}\left(p_{1}\right)=\emptyset$.

By Lemma 2 and the property that $p_{1} p_{2}, q_{1} q_{2}, p_{\alpha} p_{\alpha-1}, q_{\beta-1} q_{\beta}$ are in M, we deduce the following Lemma:

Lemma 3

1. The vertex p_{1} is independent of $q_{2},, \ldots, q_{\beta}$ and adjacent to $p_{2}, \ldots, p_{\alpha-1}$.
2. The vertex q_{1} is independent of $p_{2}, \ldots, p_{\alpha}$ and adjacent to $q_{2}, \ldots, q_{\beta-1}$.
3. The vertex p_{α} is independent of $q_{1}, \ldots, q_{\beta-1}$ and adjacent to $p_{2}, \ldots, p_{\alpha-1}$.
4. The vertex q_{β} is independent of $p_{1}, \ldots, p_{\alpha-1}$ and adjacent to $q_{2}, \ldots, q_{\beta-1}$.

We recall that we consider the case $\alpha \geqslant 3, \beta \geqslant 3$.
Subcase 1.1: $\alpha \geqslant 3$
By Lemma 2, $p_{\alpha-1} \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$. As $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right), x p_{\alpha-1} \in \mathrm{E}(G)$, the edges $p_{1} p_{2}$ and $p_{\alpha-1} p_{\alpha}$ are in M, then the condition $\alpha>2$ implies $\alpha \geqslant 4$. By Lemma $3 p_{\alpha-2} p_{\alpha} \in \mathrm{E}(G)$, and then

$$
x r_{1} \ldots r_{\gamma} y q_{\beta} \ldots q_{1} p_{1} p_{2} \ldots p_{\alpha-2} p_{\alpha} p_{\alpha-1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
Subcase 1.2: $\alpha=2, \beta \geqslant 3$
The vertex p_{2} is a common neighbor of p_{1} and q_{β}, then $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) \geqslant n-1$ that implies $\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{2}\right) \leqslant n+1$ and $\min \left\{\mathrm{d}\left(q_{1}\right), \mathrm{d}\left(p_{2}\right)\right\} \leqslant \frac{n+1}{2}$.

So, in case $\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{2}\right)$ the $(n+k)$-closure of $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{2}\right)$ is a complete graph, elsewhere $\mathrm{d}\left(p_{2}\right) \geqslant \mathrm{d}\left(q_{1}\right)$. We shall examine both cases.

Subcase 1.2.1: $\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{2}\right)$
In this Case $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{2}\right)$ is a complete graph. As $\beta \geqslant 3, q_{2} q_{3} \notin M, q_{3} \in$ $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{2}\right)$ and $x q_{3} \in \mathrm{E}(G)$. Then $\left(x \ldots y p_{2} p_{1} q_{1} q_{2} q_{\beta} \ldots q_{3} x\right)$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Subcase 1.2.2 : $\mathrm{d}\left(p_{2}\right) \geqslant \mathrm{d}\left(q_{1}\right)$.
The following inequalities are satisfied:

$$
\begin{array}{clc}
\mathrm{d}\left(p_{1}\right) & \geqslant & \mathrm{d}\left(q_{\beta}\right), \\
\mathrm{d}\left(p_{2}\right) & \geqslant & \mathrm{d}\left(q_{1}\right), \\
\mathrm{d}\left(p_{2}\right)+\mathrm{d}\left(q_{1}\right) & \geqslant \mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right) .
\end{array}
$$

They imply that:

$$
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(p_{2}\right) \geqslant n-1
$$

We have: $\mathrm{N}\left(p_{1}\right)=\mathrm{N}_{R}\left(p_{1}\right) \cup\left\{p_{2}, x, q_{1}\right\}$ and $\mathrm{N}\left(p_{2}\right)=\mathrm{N}_{R}\left(p_{2}\right) \cup\left\{p_{1}, y, q_{\beta}\right\} \cup$ $\mathrm{N}_{S}\left(p_{1}\right)$

By Lemma $1 \mathrm{~d}_{R}\left(p_{1}\right)+\mathrm{d}_{R}\left(p_{2}\right)=|\mathrm{V}(R)|=\gamma . \mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(p_{2}\right)=\mathrm{d}_{R}\left(p_{1}\right)+$ $\mathrm{d}_{R}\left(p_{2}\right)+6+\mathrm{d}_{S}\left(p_{1}\right)+\mathrm{d}_{S}\left(p_{2}\right) \leqslant \gamma+6+|\mathrm{V}(S)|$. Since $n=\gamma+\beta+4+|\mathrm{V}(S)|$, we obtain:
$n-1=\gamma+\beta+4+|\mathrm{V}(S)|-1 \leqslant \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(p_{2}\right) \leqslant \gamma+6+|\mathrm{V}(S)|$ that implies $\beta \leqslant 3$. We have $q_{1} q_{2} \in M$ and $q_{\beta-1} q_{\beta} \in M$, then if $\beta \leqslant 3, q_{1} q_{2}=q_{\beta-1} q_{\beta}, \beta=2$, a contradiction.

Case 2: $p_{1} q_{1} \notin \mathrm{E}(G)$

Lemma 4

1. The vertex p_{1} is independent of $q_{1}, q_{2}, \ldots, q_{\beta}$ and adjacent to $p_{2}, \ldots, p_{\alpha}$.
2. The vertex q_{1} is independent of $p_{1}, \ldots, p_{\alpha}$ and adjacent to q_{2}, \ldots, q_{β}.
3. The vertex p_{α} is independent of $q_{1}, \ldots, q_{\beta-1}$ and adjacent to $p_{1}, \ldots, p_{\alpha-1}$.
4. The vertex q_{β} is independent of $p_{1}, \ldots, p_{\alpha-1}$ and adjacent to $q_{1}, \ldots, q_{\beta-1}$.

Proof of Lemma 4:

The condition $q_{1} \notin \mathrm{~N}\left(p_{1}\right)$ implies that $q_{1} \in \mathrm{~N}\left(q_{\beta}\right)$, the condition $p_{1} \notin \mathrm{~N}\left(q_{1}\right)$ implies that $p_{1} \in \mathrm{~N}\left(p_{\alpha}\right)$ i.e. the edges $p_{1} p_{\alpha}$ and $q_{1} q_{\beta}$ are in $\mathrm{E}(G)$. Let i be a minimal integer such that $p_{1} q_{i} \in \mathrm{E}(G)$. For $1 \leqslant j \leqslant i-1, p_{1} q_{j} \notin \mathrm{E}(G)$, then $q_{\beta} q_{j} \in \mathrm{E}(G)$. The hypothesis of maximality of $C_{1} \cap C_{2}$ implies that $q_{i} q_{i+1} \in M$ and then $q_{i-1} q_{i} \notin M$.

The cycle

$$
\left(x r_{1} \ldots r_{\gamma} y p_{\alpha} \ldots p_{1} q_{i} \ldots q_{\beta} q_{i-1} \ldots q_{1} x\right)
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
The vertex p_{1} is independent of $q_{1}, q_{2}, \ldots, q_{\beta}$, hence q_{β} is adjacent to $q_{1}, q_{2}, \ldots, q_{\beta-1}$. The proofs for the other vertices are similar.

Subcase 2.1 : $p_{\alpha} q_{\beta} \notin \mathrm{E}(G)$

Claim 3 If $p_{\alpha} q_{\beta} \notin \mathrm{E}(G)$, then $\mathrm{N}_{R}\left(p_{1}\right)=\mathrm{N}_{R}\left(q_{1}\right)=\emptyset$.

Proof of Claim 3:

If $p_{\alpha} \in \mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ and $u \in \mathrm{~N}_{R}\left(p_{1}\right)$, then $u q_{\beta} \notin \mathrm{E}(G), u \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ then $u \in \mathrm{~N}_{R}\left(p_{1}\right) \cap \mathrm{N}_{R}\left(p_{\alpha}\right)$, a contradiction with Lemma 1.

Claim 4 At least one of the edges $x p_{\alpha}$ or $x q_{\beta}$ is in $\mathrm{E}(G)$.

Proof of Claim 4:

If $x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right), x$ is adjacent to every vertex of $\mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$, then $x p_{\alpha} \in \mathrm{E}(G)$.

Corollary $3 \mathrm{~N}_{S}\left(p_{1}\right) \cap \mathrm{N}_{S}\left(q_{1}\right)=\emptyset$.

Claim 5 At least one of the edges $y p_{1}$ or $y q_{1}$ is in $\mathrm{E}(G)$.

Proof of Claim 5:

Vertices p_{1} and q_{1} have no common neighbor in S. The following inequality is satisfied:

$$
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant \alpha+\beta+|\mathrm{V}(S)|+\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right)
$$

and since

$$
n=\alpha+\beta+\gamma+2+|\mathrm{V}(S)|
$$

we have:

$$
\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant n
$$

The vertices p_{1} and q_{1} are not in any set of three independent vertices and so Claim 5 is proved.

Subcase 2.1.1 : $\gamma=|\mathrm{V}(R)|=0$.
In this case $x y \in M$. As G is 3 -connected, $G \backslash\{x, y\}$ is connected. The conditions $\epsilon\left(x p_{\alpha}\right)+\epsilon\left(x q_{\beta}\right) \geqslant 1, \epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right) \geqslant 1$ imply that there is no
path $\pi\left[p_{1}, q_{1}\right], \pi\left[p_{1}, q_{\beta}\right], \pi\left[p_{\alpha}, q_{1}\right], \pi\left[p_{\alpha}, q_{\beta}\right]$ elsewhere there is a cycle through $M^{\prime} \cup\{e\}$. As G is 3 -connected, there exists a path $\pi\left[p_{i}, q_{j}\right]$, with $2 \leqslant i \leqslant \alpha-1$, $2 \leqslant j \leqslant \beta-1$. We can easily construct a cycle through $M^{\prime} \cup\{e\}$.

Subcase 2.1.2 : $\gamma \geqslant 1, \mathrm{~d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{\alpha}\right)$.
By Claims 4 and $5, \epsilon\left(x p_{\alpha}\right)+\epsilon\left(x q_{\beta}\right) \geqslant 1$ and $\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right) \geqslant 1$, then:
$\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right)+\mathrm{d}\left(q_{\beta}\right) \geqslant 2 n-2$ that implies $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \geqslant n-1$ We have $\mathrm{N}\left(p_{1}\right) \subset\{x, y\} \cup\left\{p_{2} \ldots, p_{\alpha}\right\} \cup S, \mathrm{~N}\left(q_{1}\right) \subset\{x, y\} \cup\left\{q_{2} \ldots, q_{\beta}\right\} \cup S, \mathrm{~N}_{S}\left(p_{1}\right) \cap$ $\mathrm{N}_{S}\left(q_{1}\right)=\emptyset$ and so $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant \alpha+\beta+|\mathrm{V}(S)|+\epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right)$. Moreover $n=\alpha+\beta+\gamma+2+|\mathrm{V}(S)|$.

The inequality $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \geqslant n-1$ gives: $\gamma+1 \leqslant \epsilon\left(y p_{1}\right)+\epsilon\left(y q_{1}\right)$. Hence $\gamma=1=\epsilon\left(y p_{1}\right)=\epsilon\left(y q_{1}\right)$. If $x r_{1} \in M,\left(x r_{1} q_{\beta} \ldots q_{1} y p_{\alpha} \ldots p_{1} x\right)$ is a cycle through $M^{\prime} \cup\{e\}$, if $r_{1} y \in M,\left(x p_{1} \ldots p_{\alpha} r_{1} y q_{\beta} \ldots q_{1} x\right)$ is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.

Subcase 2.1.3: $\gamma \geqslant 1, \mathrm{~d}\left(p_{\alpha}\right)>\mathrm{d}\left(q_{1}\right)$
Note that $\mathrm{d}\left(p_{\alpha}\right)+\mathrm{d}\left(q_{1}\right)=\alpha+\beta+\gamma+|\mathrm{V}(S)|+\epsilon\left(y q_{1}\right)+\epsilon\left(x p_{\alpha}\right) \leqslant n$. Hence the $(n+k)$-closure of $\mathrm{N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$ is a complete graph. Let $u \in \mathrm{~N}_{R}\left(p_{\alpha}\right)$, $u \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$ and $p_{1} \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$. This imply $u p_{1} \in \mathrm{E}(G)$, a contradiction with Lemma 1. Hence $\mathrm{N}_{R}\left(p_{1}\right)=\mathrm{N}_{R}\left(p_{\alpha}\right)=\emptyset, \gamma=0$, a contradiction with the hypothesis of Subcase 2.1.3.

Subcase 2.2 : $p_{\alpha} q_{\beta} \in \mathrm{E}(G)$

Claim 6 If $p_{\alpha} q_{\beta} \in \mathrm{E}(G), y p_{1} \notin \mathrm{E}(G), y q_{1} \notin \mathrm{E}(G)$.

$$
\begin{gathered}
\text { By Claim } 6 \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(q_{\beta}\right)=\alpha+\beta+\gamma+\epsilon\left(x q_{\beta}\right)+1+|\mathrm{V}(S)|=n-1+\epsilon\left(x q_{\beta}\right) \leqslant n . \\
\mathrm{d}\left(q_{1}\right)+\mathrm{d}\left(p_{\alpha}\right)=\alpha+\beta+\gamma+\epsilon\left(x p_{\alpha}\right)+1+|\mathrm{V}(S)|=n-1+\epsilon\left(x p_{\alpha}\right) \leqslant n .
\end{gathered}
$$

Subcase 2.2.1: $\mathrm{d}\left(q_{1}\right) \geqslant \mathrm{d}\left(p_{\alpha}\right)$
The $(n+k)$-closure of $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{\alpha}\right)$ is a complete graph, we may assume that $\mathrm{N}\left(q_{1}\right) \backslash \mathrm{N}\left(p_{\alpha}\right)$ is complete. Vertices p_{1}, q_{1}, y are independent and thus $\mathrm{d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \geqslant n+3$. Recall that $\mathrm{d}_{R}\left(q_{1}\right)=\mathrm{d}_{R}\left(p_{1}\right)$.

The inequalities:

$$
\begin{aligned}
\mathrm{d}\left(p_{1}\right) & =\alpha+\mathrm{d}_{R}\left(p_{1}\right)+\mathrm{d}_{S}\left(p_{1}\right) \\
\mathrm{d}\left(q_{1}\right) & =\beta+\mathrm{d}_{R}\left(q_{1}\right)+\mathrm{d}_{S}\left(q_{1}\right)
\end{aligned}
$$

imply that:

$$
\alpha+\beta+2 \mathrm{~d}_{R}\left(p_{1}\right)+\mathrm{d}_{S}\left(p_{1}\right)+\mathrm{d}_{S}\left(q_{1}\right) \geqslant n+3
$$

If $x p_{\alpha} \in \mathrm{E}(G)$ or $x q_{\beta} \in \mathrm{E}(G), \mathrm{N}_{S}\left(p_{1}\right) \cap \mathrm{N}_{S}\left(q_{1}\right)=\emptyset$.
If $x p_{\alpha} \notin \mathrm{E}(G)$ and $x q_{\beta} \notin \mathrm{E}(G), x \in \mathrm{~N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$.; if $w \in \mathrm{~N}_{S}\left(p_{1}\right), w \in$ $\mathrm{N}\left(p_{1}\right) \backslash \mathrm{N}\left(q_{\beta}\right)$ and $x w \in \mathrm{E}(G)$ a contradiction with the hypothesis of maximality of $|\mathrm{V}(\Gamma)|$.

Then $\mathrm{d}_{S}\left(p_{1}\right)+\mathrm{d}_{S}\left(q_{1}\right) \leqslant|\mathrm{V}(S)|$.
Note that $n+3 \leqslant \mathrm{~d}\left(p_{1}\right)+\mathrm{d}\left(q_{1}\right) \leqslant \alpha+\beta+|\mathrm{V}(S)|+2 \mathrm{~d}_{R}\left(p_{1}\right)$, this imply that $\alpha+\beta+\gamma+|\mathrm{V}(S)|+5 \leqslant \alpha+\beta+|\mathrm{V}(S)|+2 \mathrm{~d}_{R}\left(p_{1}\right)$. Since $2 \mathrm{~d}_{R}\left(p_{1}\right) \geqslant \gamma+5$ we have $\mathrm{d}_{R}\left(p_{1}\right) \geqslant 5$.

If $\alpha>2, p_{\alpha-1} p_{\alpha} \in M, p_{\alpha-2} p_{\alpha-1} \notin M$.
Let $r_{i} r_{i+1}$ be an edge of R not in M, with r_{i} and r_{i+1} adjacent to p_{1}. Vertices r_{i} and r_{i+1} are adjacent to $p_{\alpha-1}$ and $p_{\alpha-2}$.

$$
x r_{1} \ldots r_{i} p_{\alpha-2} \ldots p_{1} p_{\alpha} p_{\alpha-1} r_{i+1} \ldots r_{\gamma} y q_{\beta} \ldots q_{1} x
$$

is a cycle through $M^{\prime} \cup\{e\}$, a contradiction.
If $\beta>2$, the argument is similar.
Subcase 2.2.2: $\mathrm{d}\left(p_{\alpha}\right)>\mathrm{d}\left(q_{1}\right)$
$y \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right), p_{1} \in \mathrm{~N}\left(p_{\alpha}\right) \backslash \mathrm{N}\left(q_{1}\right)$, then $y p_{1} \in \mathrm{E}(G)$, a contradiction with Claim 6.

The proof of Theorem 7 is complete.

References

[1] K.A. Berman, Proof of a conjecture of Häggkvist on cycles and independent edges, Discrete Mathematics 46 (1983), 9 - 13.
[2] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Raport CORR (1980) 80-16.
[3] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111—135.
[4] J.A. Bondy and U.S.R. Murty, Graph theory with applications, The Macmillan Press LTD London, 1976.
[5] V. Chvátal and P.Erdős, A note on hamiltonian circuits, Discrete Mathematics 2 (1972), 111 - 113.
[6] R. Häggkvist, On F-hamiltonian graphs, in: Graph Theory and Related Topics, ed. J.A. Bondy and U.S.R. Murty, Academic Press New-York (1979), $219-231$.
[7] B. Jackson and N.C. Wormald, Cycles containing matchings and pairwise compatible Euler tours, J. Graph Theory 14 (1990), 127 - 138.
[8] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960), 55.
[9] M. Las Vergnas, Problèmes de couplages et problemes hamiltoniens en théorie des graphes, Ph.D. thesis, Université Paris XI, 1972.
[10] A.P. Wojda, Hamiltonian cycles through matchings, Demonstratio Mathematica XXI (1983), no. 2, $547-553$.

[^0]: ${ }^{1}$ Research partially supported by the UST - AGH grant 1142004 - This work was carried out in part while GG was visiting LRI UPS, Orsay, France

