
L R I

TOWARDS A ML EXTENSION WITH
REFINEMENT : A SEMANTIC ISSUE

SIGNOLES J

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

03/2006

Rapport de Recherche N° 1440

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

Towards a ML Extension with Refinement:
a Semantic Issue

Julien Signoles

PCRI — LRI (CNRS UMR 8623), LIX, INRIA Futurs
Université Paris-Sud, 91405 Orsay Cedex, France,

Julien.Signoles@lri.fr

Abstract. Refinement is a method to derive correct programs from
specifications. A rich type language is another way to ensure program
correctness. In this paper, we propose a wide-spectrum language mix-
ing both approaches for the ML language. Mainly, base types are simply
included into expressions, introducing underdeterminism and dependent
types. We focus on the semantic aspects of such a language. We study
three different semantics: a denotational, a deterministic operational and
a nondeterministic operational semantics. We prove their equivalence.
We show that this language is a conservative extension of ML.

1 Introduction

Refinement Programming by refinement consists of getting an executable pro-
gram from an original abstract specification by an unbounded sequence of cor-
rectness preservation refinements. This programming paradigm, called stepwise
refinement, comes from the writings of Dijkstra [10] and Wirth [22]. One of the
main ideas of refinement is: as the refinement steps can be as small as wanted,
correctness preserving is easy to establish. Another characteristic of refinement
comes from the fact that it is piecewise: a large specification may be refined
one piece at a time, each piece in an independent manner. Refinement treats
programs as particular specifications: they are executable specifications. Thus
the specification language should include the programming language in a wide-
spectrum refinement-oriented language.

Historically refinement calculus was introduced for imperative programs. It
based on the Dijkstra’s weakest precondition calculus (wpc) [11]. At this day,
the most famous refinement calculus is Back’s refinement calculus [3, 4, 18]. The
B method [1] is a notable example of commercial success. Refinement calculus
for functional programs is known as “expression refinement” and was first intro-
duced by Bird [5] and Meertens [17]. It generally uses nondeterministic expres-
sions to introduce specification [21, 6, 19]. Another approach consists of refining
types instead of expressions [13, 12]. It is based on the types-as-specifications
paradigm.

Types as specifications Type checking is another way of verifying the correctness
of a program with respect to a specification: types are particular specifications
and the richer the type language is, the more sophisticated the specifications

can be. But the more difficult the type checking is: one has to choose between
powerfulness and decidability. Several approaches are possible. One can have a
semi-decidable powerful type system such as this of Cayenne [2] or a decidable
less-powerful type system such as this of Dependent ML [23]. An intermediate
approach consists of generating proof obligations when type checking cannot be
done automatically. So powerful specifications are possible and the type-checking
algorithm always terminates. But, as counterpart, some proofs of correctness are
left for the programmer who has to perform them by using other tools.

Purpose Our purpose is to extend the expressions of a ML language in order to ex-
press powerful specifications by mixing both approaches. In this paper, we focus
on a fragment of ML restricted to a simply-typed lambda-calculus with recursive
functions. We believe that the ideas described here can be further extended to
a full ML language. As types are specifications and as such a language should be
wide-spectrum, types and expressions of this language should be mixed and not
distinguished. Our extension mainly consists of including ML base types (as int or
bool) into ML expressions. In this way, we introduce Denney’s underdeterminism
[8] and dependent types. Underdeterminism is not nondeterminism: the latter is
a specificational characteristic whereas the former is computational. Underdeter-
ministic terms are only partially determined and non computable. Typing is not
our main concern in this paper: here we focus on the semantic aspects of such a
language. We introduce three different semantics: a denotational, a deterministic
operational and a nondeterministic operational semantics. Then we prove their
equivalence and show that our language is a conservative extension of ML.

Related work Denney’s λv calculus [9] is a close work to ours. Denney uses a
notion of stubs introducing underdeterminism by this way. These stubs corre-
spond to the base types we introduce in expressions. So, as ours, his calculus
mixes the refinement and the types-as-specifications approaches. Denney uses
a set-theoretic semantics similar to ours but it has no operational semantics.
Morever his calculus has no primitive notion of recursive functions, predicates
are syntactically separated from the core language and they are not first-class
values.

Outline Section 2 informally presents the syntax and the semantics of our lan-
guage. Section 3 precisely describes the syntax. In Section 4, we present three
different variants of the semantics. We prove that they are equivalent and that
the language is a conservative extension of ML. Finally, future work is discussed
in Section 5, in particular typing issues and extensions to the language.

2 Informal presentation

Syntax in short Usual ML programs contain expressions and types, syntactically
separated. Our extension mixes them by including base types into expressions.
Figure 1 presents some correct expressions. Expression 1, which contains the
base type int, represents the set of even integers. Expression 2 generalizes the

2 ∗ int (1)

(4 ∗ int : 2 ∗ int) (2)

rec f(x : int) = if x ≤ 0 then int else x ∗ (f (x− 1)) (3)

(2 ∗ int) → (2 ∗ int + 1) (4)

Fig. 1. Some correct expressions

ML type constraint (expr : type): as we do not distinguish expressions and types,
both part of this constraint are (extended) expressions. Expression 3 is a recur-
sive function generalizing the usual factorial function. We give and explain its
semantics later. Expression 4 extends the usual ML arrow types and represents
the specification of a function taking an even integer and returning an odd inte-
ger. In our language, it is syntactic sugar for a lambda-expression in which the
parameter does not appear in its body.

Semantics in short ML expressions are commonly interpreted by values. In our
framework, expressions are interpreted by sets of values. If a ML expression e is
interpreted by a value v in ML, e is interpreted by the singleton {v} in our ex-
tension. Our language is thus a conservative extension of ML. Totally-determined
expressions are programs interpreted by singletons whereas partially-determined
expressions, called underdeterministic expressions, are non-computable specifi-
cations. The interpretation of an expression e containing a type ι is intuitively
the collection of all the ML interpretations of e where ι is substituted (or refined)
for some ML value of type ι. An expression e1 is a refinement of (or refines) an ex-
pression e2 if and only if the interpretation of e1 is included in the interpretation
of e2 i.e. e1 is more determined than e2.

Some examples Following the above intuitive definition of an interpretation, the
expression 2 ∗int (resp. 2 ∗int+1) denotes the set of even (resp. odd) integers:
if one substitutes int for an integer, one gets an even (resp. odd) integer. Each
occurrence of a type may be differently refined: for example, the interpretation
of

e1 , int ∗ int
is not the set of square integers but the set of all products p ∗ q for any integers
p and q, that is Z. A valid expression denoting the set of square integers is

e2 , ((λx : int. x ∗ x) int).

So the semantics is not preserved by β-reduction: interpretations of e1 and e2 (the
redex of e1) are different. Another interesting example is the factorial function.
The interpretation of this function is, of course, the singleton containing the
mathematical factorial function. This function is a refinement of its generalized
version shown in Figure 1 and denoting the set of functions x 7→ n×x!; n ∈ Z.
More details about this are given in the paragraph “example” of Section 4.1.

Additional constructs Adding base types to expressions is however not power-
ful enough to express specification such as “to be a function from N to N” or
containing first-order logical quantifications. To express such specifications we
introduce two additional constructs. The first one is ∅τ denoting the empty set.
The annotation τ is only required for typing reasons. For example the expression

((λx : int. if x ≥ 0 then x else ∅int) int)

denotes N. The second one is (e1 @ e2), called demonic application and dual
of (e1 e2), the angelic application which corresponds to the usual application.
Informally the interpretation of the angelic application collects all possible f(x)
with f in the interpretation of e1 and x in that of e2 whereas the demonic
application only collects the f(x) giving the same result for all x fixing f . To get
the universal and existential quantifiers is the main role of this construct (see
Section 4.1). We prefer introducing this construct to introducing these quantifiers
because expressions denoting first-order propositions are thus not introduced as
a hack in our language.

3 Syntax

The abstract syntax of the considered language is defined by the grammar rule e
presented in Figure 2. The set of the expressions e is noted E . rec f(x : e1) = e2
may be shorted to λx : e1. e2 if f does not appear in e2 and λx : e1. e2 may be
shorted to e1 → e2 if x does not appear in e2. The construct (e1 : e2) is not useful
for the semantics but, as it is essential in order to provide typing constraints, we
introduce it now. This language extends a primitive functional language, called

e ::= x identifier
| o operator
| ι base type
| rec f(x : e) = e recursive function
| (e e) angelic application
| (e@ e) demonic application
| (e : e) refinement
| ∅τ empty

τ ::= ι | τ → τ
ε ::= x | o | (ε ε) | (ε : τ) | rec f(x : τ) = ε

Fig. 2. Abstract syntax

ML, defined by the grammar rule ε.ML corresponds to a simply-typed lambda-
calculus with recursive functions. We believe that this language can easily be
extended to a full ML language but this extension would unnecessarily complexify
this paper. The typing and semantics of ML are standard and are not given
here. We call Eτ (resp. Eε) the set defined by the grammar rules τ (resp. ε). Note

that Eτ and Eε are strict subsets of E . Eτ corresponds to the ML-types and Eε

corresponds to the ML-expressions (see Proposition 6).
ML is parameterized by some interfaces shown in Figure 3. Constants are

treated as 0-ary operators. Στ associates an arrow type τ1 → . . . → τn to each
(n − 1)-ary operator (n > 0). Σφ associates a set to each base type and an
element in the set Σφ(τ1) → . . . → Σφ(τn) to each (n − 1)-ary operator o such
that Στ (o) = τ1 → . . .→ τn (n > 0).

I Infinite set of identifiers x (and f)
O Set of operators o
T Set of base types ι
Στ constant and operator types
Σφ constant, operator and base type interpretations

Fig. 3. Language parameters

4 Semantics

Before defining the semantics of the language, we have to consider a typing judg-
ment Γ ` e ⇓ τ inferring that e has the ML-type τ in the typing environment
Γ . A typing environment is a partial application with a finite domain from I to
Eτ . The typing judgment is given in Figure 4 and defines an algorithm:

Proposition 1. The expression inferred by the typing judgement, if it exists, is
unique: ?

∀Γ, e, τ1, τ2, if Γ ` e ⇓ τ1 and Γ ` e ⇓ τ2 then τ1 ≡ τ2.

When it exists, we use TΓ (e) to denote this unique expression and we call it “the
ML-type of e”. This name is justified by the following proposition:

Proposition 2. The expression inferred by the typing judgement, if it exists, is
a ML-type:

∀Γ, e, τ, if Γ ` e ⇓ τ then τ ∈ Eτ .

Both these propositions are easy to prove by induction on the structure of the
expression e.

4.1 Denotational semantics

Mathematical preliminaries Here we introduce some standard notions and results
related to functions and domain theory. We use A→ B (resp. A ⇀ B) to denote
the set of total (resp. partial) functions f from A to B and dom(f) the domain

? We use ≡ to denote the syntactic equivalence relation.

x : τ ∈ Γ
Γ ` x ⇓ τ Γ ` ι ⇓ ι Γ ` o ⇓ Στ (o)

Γ ` e1 ⇓ τ Γ ` e2 ⇓ τ
Γ ` (e1 : e2) ⇓ τ Γ ` ∅τ ⇓ τ

Γ ` e1 ⇓ τ1 Γ, x : τ1, f : τ1 → τ2 ` e2 ⇓ τ2
Γ ` rec f(x : e1) = e2 ⇓ τ1 → τ2

Γ ` e2 ⇓ τ2 Γ ` e1 ⇓ τ2 → τ1
Γ ` (e1 e2) ⇓ τ1

Γ ` e2 ⇓ τ2 Γ ` e1 ⇓ τ2 → τ1
Γ ` (e1 @ e2) ⇓ τ1

Fig. 4. ML-type inference

of f (i.e. the subset of A where f is defined). We use {fi}≤i∈I to denote a chain
on some order ≤. We use E⊥ to denote the “flat domain” of a set E, i.e. the
domain (E] {⊥},�) where] is the disjoint union over sets and � is a partial
order defined as follows:

∀(x, y) ∈ (E⊥)2, x � y ⇐⇒ x = ⊥ or x = y.

If f is a partial function from A to B, f⊥ is the partial function from A⊥ to B⊥
defined by:

x 7→

{
f(x) if x ∈ dom(A)
⊥ if x = ⊥

We extend � to partial functions from A⊥ to B⊥ as follows:

∀(f, g) ∈ (A⊥ ⇀ B⊥)2, f � g ⇐⇒ ∀x ∈ (dom(f) ∩ dom(g)), f(x) � g(x).

Note that we have f � g if and only if

∀x ∈ (dom(f) ∩ dom(g)), f(x) 6= ⊥ =⇒ f(x) = g(x).

Let X and Y be two sets. We use FY
X to denote the set of partial functions from

X⊥ to Y⊥ with the same domain:

{F ∈ P(X⊥ ⇀ Y⊥) | ∀(f, g) ∈ F 2, dom(f) = dom(g)}.

We use v to denote the binary relation over FY
X defined by:

F v G
⇐⇒

dom(F) ⊇ dom(G) ?? and ∀{fi}�i∈I ⊆ F, ∃{gi}�i∈I ⊆ G, ∀i ∈ I, fi � gi

Lemma 1 ((FY
X ,v) is a cpo).

The relation v is reflexive, transitive and antisymmetric and any chain {Fi}vi∈I ⊆
FY

X has a least upper bound, noted
⊔

n≥0

Fn, in FY
X .

?? We naturally extend the dom operator to a set of functions with a same domain.

Proposition 3 ((FY
X ,v) is a domain).

The cpo (FY
X ,v) has a least element. This least element is ∅.

By Tarski’s theorem, any monotonic continuous function φ over FY
X has a

least (pre)fixpoint, noted fixφ, such that:

fixφ =
⊔
n≥0

φn(∅)

Interpretation We interpret each ML-type as a set and each expression as a
subset of its ML-type. The interpretation of a ML-type, noted τ is defined by
induction on its structure:

ι , (Σφ(ι))⊥

τ1 → τ2 , (τ1 ⇀ τ2)⊥

The underlying idea is that ⊥ is used to interpret a non-terminating expression
and a partial function is used to interpret a function of our language the body of
which contains the ∅ symbol (interpreted as the empty set). So we distinguish
the expressions λx : int. ∅int and rec f(x : int) = (f x): the first expression
is interpreted as the singleton containing the function never defined (its domain is
empty) whereas the second expression is interpreted as the singleton containing
the constant function always defined and returning ⊥.

We can now define the interpretation [[e]]ΛΓ , in the typing environment Γ and
the interpretation environment Λ, of a well-typed expression e as a subset of
TΓ (e). Λ is a partial application which associates, to each identifier x in I, a
value in TΓ (x). Note that x is not associated to a set of values. The formal
definition of [[]] is given in Figure 5. Some cases are easy: the interpretation
of a variable is a singleton containing its associated value in the environment,
the interpretations of an operator and a base type follow Σφ, the refinement
construct ignores its right part (which is less precise than the left part) and the
interpretation of ∅τ is the empty set. An angelic application (e1 e2) joins all the
possible f(x) resulting of the application of a function f in the set denoting e1
on an element x in the set denoting e2 whereas a demonic application (e1 @ e2)
only joins the f(x) giving the same result for each x in the set denoting e2. The
denotation of a recursive function of our language is given by the fixpoint of a
certain application ψ as usual. We now explain the intuitive meaning of ψ and
its fixpoint. If a function is not recursive (i.e. has the form λx : e1. e2), the
fixpoint of ψ is

fixψ = {h | ∀y ∈ [[e1]]∆Γ , h(y) ∈ [[e2]]
Λ,x7→y
Γ,x:TΓ (e1)

}.

This fixpoint is a set of functions and, for each of them, the application to an
element in [[e1]] belongs to [[e2]] (in their respective environments). If a function is
recursive, the subset of the domain which maps to ⊥ for each function decreases
step by step. When the fixpoint is reached, the remaining ⊥ correspond exactly
to the non-terminating function applications.

[[]]ΛΓ : e : E → P(TΓ (e))

[[x]]ΛΓ = {Λ(x)}
[[o]]ΛΓ = {(Σφ(o))⊥}
[[ι]]ΛΓ = Σφ(ι)

[[rec f(x : e1) = e2]]
Λ
Γ = fixψ

[[(e1 e2)]]
Λ
Γ =

S
f∈[[e1]]Λ

Γ

S
x∈[[e2]]Λ

Γ

{f(x)}

[[(e1 @ e2)]]
Λ
Γ =

S
f∈[[e1]]Λ

Γ

T
x∈[[e2]]Λ

Γ

{f(x)}

[[(e1 : e2)]]
Λ
Γ = [[e1]]

Λ
Γ

[[∅τ]]ΛΓ = ∅

with, if we note T1 = TΓ (e1), T2 = TΓ,x:T1,f :T1→T2(e2) and F = FT2
[[e1]]Λ

Γ

,

ψ : P(F) → P(F)

G 7→

26664
if G = ∅ {x 7→ ⊥}
otherwise:[
g∈G

h ∈ F

˛̨̨̨
∀y ∈ [[e1]]

Λ
Γ ,

»
if g(y) = ⊥ h(y) ∈ [[e2]]

Λ,x7→y,f 7→g
Γ,x:T1,f :T1→T2

otherwise h(y) = g(y)

ff

Fig. 5. Denotational semantics

Lemma 2 (fixψ is well defined).
ψ is a monotonic continuous operator from P(F) to P(F).

Example We consider the generalized factorial given in Figure 1:

rec f(x : int) = if x ≤ 0 then int else x ∗ (f (x− 1)).

By successive iterations, we obtain the following fixpoint:

ψω =
{
f

∣∣∣∣ ∀x ∈ Z,
[
f(x) ∈ Z if x ≤ 0
f(x) = x× f(x− 1) otherwise

}
.

So, as claimed in section 2, ψω is the set of functions x 7→ n×x!; n ∈ Z with any
values for negative arguments. If we slightly modify the program by replacing ≤
by = in its body, we obtain the following ψω:f

∣∣∣∣∣∣ ∀x ∈ Z,

f(x) = ⊥ if x < 0
f(x) ∈ Z if x = 0
f(x) = x× f(x− 1) if x > 0

illustrating that these functions loop on negative arguments. But a better way
to define such a function is to restrict the domain to N:

rec f(x : ((λy : int. if y ≥ 0 then y else ∅int) int)) =
if x = 0 then int else x ∗ (f (x− 1))

and we obtain the fixpoint ψω{
f

∣∣∣∣ ∀x ∈ N,
[
f(x) ∈ Z if x = 0
f(x) = x× f(x− 1) if x > 0

}
.

Syntactic sugar Figure 6 introduces additional useful constructs as syntactic
sugar on top of our core language. For example we can rewrite the last form of

let x = e1 in e2 , ((λx : e1. e2) e1) let-binding

tel x = e1 in e2 , ((λx : e1. e2)@ e1) tel-binding

{x : e1 | e2} , let x = e1 in if e2 then x else ∅T(x) subtype

(a ∪ b)τ , {x : τ | x = a or x = b} union

(a ∩ b)τ , {x : τ | x = a and x = b} intersection

aC
τ , {x : τ | x 6= a} complement

∃x : e1, e2 , let x = e1 in if e2 then true else tel x = e1 in e2 exists

∀x : e1, e2 , let x = e1 in if e2 then tel x = e1 in e2 else false forall

Fig. 6. Additional constructs as syntactic sugar

the factorial given in the example in a better way:

rec f(x : int | x ≥ 0) = if x = 0 then int else x ∗ (f (x− 1)).

x : int | x ≥ 0 is just a shortcut for x : {x : int | x ≥ 0}. Proposition 4 explains
why we claim that the “exists” and the “forall” constructs correspond to the
usual quantifiers:

Proposition 4. Let Γ and Λ be respectively a typing and an interpretation en-
vironment.

“exists” characterization

1. If ∃y ∈ [[e1]]ΛΓ , ∀p ∈ [[e2]]
Λ,x7→y
Γ,x:TΓ (e1)

6= ∅, p(y) = true,

then [[∃x : e1, e2]]ΛΓ = {true}.
2. If ∀y ∈ [[e1]]ΛΓ , ∀p ∈ [[e2]]

Λ,x7→y
Γ,x:TΓ (e1)

6= ∅, p(y) = false,

then [[∃x : e1, e2]]ΛΓ = {false}.

“forall” characterization

1. If ∃y ∈ [[e1]]ΛΓ , ∀p ∈ [[e2]]
Λ,x7→y
Γ,x:TΓ (e1)

6= ∅, p(y) = false,

then [[∀x : e1, e2]]ΛΓ = {false}.
2. If ∀y ∈ [[e1]]ΛΓ , ∀p ∈ [[e2]]

Λ,x7→y
Γ,x:TΓ (e1)

6= ∅, p(y) = true,

then [[∀x : e1, e2]]ΛΓ = {true}.

4.2 Operational semantics

Operational semantics of ML programs commonly compute the (unique) value
of a well-typed expression e in an interpretation environment ∆. This value is
either a closure when e is a function or the interpretation of a constant in its
domain of interpretation otherwise. More formally, and with our notation, the
set V of the values v is defined by

v ::= Σφ(c) | (f, x, e, ∆)

where (f, x, e, ∆) is a closure. An interpretation environment ∆ is a partial
application from I to V.

Similarly to the denotational semantics, our operational semantics does not
compute a unique value but a unique set of values. This operational semantics
can be expressed in two different ways: either deterministic or not. The deter-
ministic operational semantics directly computes the set of values corresponding
to an expression. The nondeterministic operational semantics only computes one
value. Each “execution” of this semantics for a given expression may compute a
different value. The evaluation of an expression e is the set of values resulting of
all the possible executions for e. By this way undeterministic expressions can-
not really be computed with these operational semantics: these expressions are
not computable. The nondeterministic operational semantics is useful in order
to connect our language with the usual (operational) semantics of ML programs
whereas the deterministic operational semantics is useful to join the nondeter-
ministic one and the denotational semantics.

Deterministic operational semantics The evaluation judgment ∆ ` e I V of a
well-typed expression e into a set V of values in an interpretation environment
∆ is given in Figure 7. As e is well-typed, each sub-expression s of e has a unique
ML type, noted T(s). The rules for constants, base types, ∅τ and refinement do
not present any difficulty. We associate a singleton containing an unique closure
to each function. The environment is used to associate a value to a variable. The
angelic and demonic applications operate as they operate in the denotational
semantics. {(f i, xi, ei, ∆i

f)}i∈I⊆N represents an indexed set of closures. The
rules for an operator application o(e1, . . . , en) are not given in Figure 7. They
follow the denotational semantics and mix the predefined semantics Σφ(o) of o
and the angelic application rule.

Nondeterministic operational semantics The evaluation judgment ∆ ` e B v
of a well-typed expression e into a value v in an interpretation environment ∆
is given in Figure 8. The rules for variables, constants, refinements, functions
and angelic applications are the same as those of any ML language. The rule for
base type introduces nondeterminism: a base type ι is interpreted by choosing
some value in this type. The rule for the demonic application (e1 @ e2) reduces
nondeterminism because the chosen value has to be computable for each possible
value of e2. There is no rule for ∅ since you cannot choose a value in the empty
set. As we did for the deterministic operational semantics, we omit the rules for
operator applications.

x 7→ v ∈ ∆
∆ ` x I {v} ∆ ` c I {Σφ(c)} ∆ ` ι I Σφ(ι) ∆ ` ∅τ I ∅

∆ ` rec f(x : e1) = e2 I {(f, x, e2, ∆)}
∆ ` e1 I V1

∆ ` (e1 : e2) I V1

∆ ` e1 I {(f i, xi, ei, ∆i
f)}i∈I⊆N ∆ ` e2 I {vj

2}j∈J⊆N

∆i
f , x

i 7→ vj
2, f

i 7→ (f i, xi, ei, ∆i
f) ` ei I V ij

∆ ` (e1 e2) I
S
i∈I

S
j∈J

V ij

∆ ` e1 I {(f i, xi, ei, ∆i
f)}i∈I⊆N ∆ ` e2 I {vj

2}j∈J⊆N

∆i
f , x

i 7→ vj
2, f

i 7→ (f i, xi, ei, ∆i
f) ` ei I V ij

∆ ` (e1 @ e2) I
S
i∈I

T
j∈J

V ij

Fig. 7. Deterministic operational semantics

x 7→ v ∈ ∆
∆ ` x B v ∆ ` c B Σφ(c)

Στ (c) ≡ ι

∆ ` ι B Σφ(c)

∆ ` e1 B v1
∆ ` (e1 : e2) B v1

∆ ` rec f(x : e1) = e2 B (f, x, e2, ∆)

∆ ` e1 B (f, x, e, ∆f) ∆ ` e2 B v2 ∆f , x 7→ v2, f 7→ (f, x, e, ∆f) ` e B v

∆ ` (e1 e2) B v

∆ ` e1 B (f, x, e, ∆f) ∀v2 such that ∆ ` e2 B v2, ∆f , x 7→ v2, f 7→ (f, x, e, ∆f) ` e B v

∆ ` (e1 @ e2) B v

Fig. 8. Nondeterministic operational semantics

A conservative extension of ML If the language is restricted to itsML fragment
Eε, we have the usual semantics of ML programs. First, as the remaining rules
of Figure 8 do not introduce nondeterminism, the interpretation of each ML
expression is a singleton:

Proposition 5. Let ε ∈ Eε, ∆ be an interpretation environment and (v1, v2) ∈
V2.

If ∆ ` ε B v1 and ∆ ` ε B v2 then v1 ≡ v2.

Then, as a corollary of this proposition, both angelic and demonic applications
are equivalent:

Proposition 6. Let (ε1, ε2) ∈ E2
ε , ∆ be an interpretation environment and

(v1, v2) ∈ V2.

If ∆ ` (ε1 ε2) B v1 and ∆ ` (ε1 @ ε2) B v2 then v1 ≡ v2.

So it is possible to add conservatively the demonic application to the grammar
rule ε defining Eε. The only remaining rules are exactly those of ML, then the
given restricted semantics is the same that the one of ML. In particular, it is
preserved by β-reduction:

Proposition 7. Let (ε1, ε2) ∈ E2
ε , τ ∈ Eτ , x ∈ I, ∆ be an interpretation envi-

ronment and (v1, v2) ∈ V2.

If ∆ ` ((λx : τ. e1) e2) B v1 and ∆ ` e1[e2/x] B v2 then v1 ≡ v2.

4.3 Equivalence of the semantics

In this section, we prove that the three semantics are equivalent. We need a no-
tion of compatibility between an interpretation environment∆ of the operational
semantics and an interpretation environment Λ of the denotational semantics.
Such a notion is quite intuitive but rather technical to formalize and is not
detailed here. We extend this notion to a typing environment Γ . First, the de-
terministic and the nondeterministic operational semantics are equivalent on the
terminating programs:

Theorem 1. Let ∆ be an operational interpretation environment and e ∈ E. Let
Λ (resp. Γ) be a denotational interpretation (resp. typing) environment compat-
ible with ∆. Suppose that ⊥ /∈ [[e]]ΛΓ . Then

∀V, ∆ ` e I V ⇐⇒ (∀v, ∆ ` e B v ⇐⇒ v ∈ V).

Second, the deterministic operational and the denotational semantics are equiv-
alent on the terminating programs:

Theorem 2. Let ∆ be an operational interpretation environment, Λ be a de-
notational interpretation environment and Γ a typing environment, all of them
pairwise compatible. Let e ∈ E such that ⊥ /∈ [[e]]ΛΓ . Then

if TΓ (e) ≡ ι then ∆ ` e I [[e]]ΛΓ
otherwise (i.e if TΓ (e) ≡ τ1 → τ2)

∆ ` e I {(f i, xi, ei, ∆i
f)}i∈I ⇐⇒ [[e]]ΛΓ =

⋃
i∈I

fixψi.
†

We prove both theorems by induction on the structure of the expression e. If
a program p loops on some entries, the operational semantics and the denota-
tional semantics may differ because the first one does not produce an output
(the derivation tree is infinite) whereas the denotation of p is a set contain-
ing ⊥. Using both theorems, we immediately deduce that the nondeterministic
operational semantics and the denotational semantics are equivalent on the ter-
minating programs.
† ψi corresponds to the operator ψ defined in Figure 5 where e3, Λ and Γ are respec-

tively substituted by ei, Λi
f and Γ i

f .

5 Future work

There are many directions for future work. Our most immediate concern is typing
in order to verify the type annotations in a program of our language. The next
item of interest for us is the extension of our language in order to include ML
features. We are also interested in developing a prototype of this language.

5.1 Typing

Type annotations of our language must be verified to ensure its correctness: for
example, when a function λx : e2. e is applied to an argument e1, we have
to verify that e2 is an acceptable type for e1, i.e. that the interpretation of
e1 is included in the interpretation of e2. Unfortunately, such a verification is
undecidable in presence of dependent types as we have in our language.

There are several approaches to solve this problem. First, we could have an
undecidable type system such as the one of Cayenne [2]. The presence of ∅ and
(@) potentially increases the number of programs for which the type verifier
does not return an answer. So this solution has to be considered carefully. Sec-
ond, we could only accept a restricted form of dependent types for which there
is a decidable type system similarly to Dependent ML [23]. But we prefer not to
restrict the expressive power of our language. Moreover such a restriction would
probably complicate the syntax of our language. We prefer an intermediate ap-
proach consisting of generating proof obligations when we cannot automatically
verify a type annotation. Then the user has to prove these obligations using ex-
ternal tools. This approach is already followed for example by the B method [1].
We describe below how we can proceed.

The rules which compose a type system verifying type annotations may be
separated in two groups: the rules generating the proof obligations and the oth-
ers. The simplest type system we can imagine has only one rule. This rule gen-
erates a proof obligation and looks like

[[e1]]ΛΓ ⊆ [[e2]]ΛΓ
e1 type-checks e2 in Γ and Λ

Of course, such a type system is not satisfying because all the proofs are dis-
charged to the user who has to understand the theoretical denotation of a pro-
gram: it is untractable in practice. The easier to prove the proof obligations
are, the better the type system is. A good approach seems to mix a verifica-
tion judgment and an inference judgment as it is done for intersection types by
Davies and Pfenning [7]. For example, in order to verify that an angelic applica-
tion (e1 e2) verifies an expression e, we have to infer that e1 is a function, then
we have to verify that e2 matches the type of the parameter of e1 and, finally,
that the result of the application matches e. We believe that such mixed judg-
ments would generate few and concise proof obligations. However these proof
obligations would be hard to understand for the user. Another approach con-
sists of converting a typing constraint of our language into a first-order logical
proposition. It is probably a good way to have “human-understandable” proof

obligations. Curry-Howard isomorphism [14] gives us hope of establishing such
a proposition. But this approach may probably generate big untractable proof
obligations from not-so-big expressions. It is possible to combine both these ap-
proaches. One verifies each type annotation using a syntax-directed type system
such as in the first approach. When one has to generate a proof obligation, one
converts expressions into first-order logical propositions using the second ap-
proach. We would obtain a type system generating few, concise and tractable
human-provable proof obligations.

5.2 Extensions

The language presented in this paper is based on the core of a ML language. But
sum types, pattern matching, polymorphism and imperative features are essen-
tial in practice. Thus our language has to include them in order to apply to some
realistic ML programs. Morever polymorphism could help removing annotations
on ∅ constructs, sum types could have some connections with the theory of in-
ductive types like those of the Calculus of Inductive Constructions [20]. It should
be interesting to compare our language extended with imperative features with
some imperative-based refinement languages. However mixing all these exten-
sions is really challenging: to our knowledge, there is no practical tool dedied to
proof of programs which combines these functional and imperative features.

A module system à la ML is a typed functional language built on top of any
other language [16] and useful in order to compose pieces of program. It seems
to be not so difficult to extend our language with a module system: exactly as we
introduce base types in our expressions, it is possible to introduce module types
into the module expressions in order to refine modules and not only expressions.
Morever we can add a notion of axiom à la Extended ML [15] into the module
system in order to easily specify constraints between different definitions.

6 Conclusion

We have presented a wide-spectrum language mixing refinement and types-as-
specifications approaches. Mainly, base types are simply included into expres-
sions: underdeterministic expressions and dependent types are introduced in this
way. Denotational, deterministic operational and nondeterministic operational
semantics have been introduced. We have proved that they are equivalent. We
have shown that our language is a conservative extension of ML. Future work,
mainly typing and extensions to the language, are required to get a realistic
program verification methodology.

References

1. Jean-Raymond Abrial. The B-Book, assigning programs to meaning. Cambridge
University Press, 1996.

2. Lennart Augustsson. Cayenne – a language with dependent types. In International
Conference on Functional Programming, pages 239–250, 1998.

3. Ralph-Johan J. Back. On the correctness of refinement in program development.
PhD thesis, Department of Computer Science, University of Helsinki, 1978.

4. Ralph-Johan J. Back, Abo Akademi, J. Von Wright, F. B. Schneider, and D. Gries.
Refinement Calculus: A Systematic Introduction. Springer-Verlag New York, Inc.,
1998.

5. Richard S. Bird. An introduction to the theory of lists. In Proceedings of the
NATO Advanced Study Institute on Logic of programming and calculi of discrete
design, pages 5–42. Springer-Verlag New York, Inc., 1987.

6. Alexander Bunkenburg. Expression Refinement. PhD thesis, Computing Science
Department, University of Glasgow, 1997.

7. Rowan Davies and Frank Pfenning. Intersection types and computational effects.
In Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming, pages 198–208. ACM Press, 2000.

8. Ewen W.K.C. Denney. Simply-typed underdeterminism, 1997. In EU KIT/IOS
International Workshop on Formal Models of Programming and their Applications,
Institute of Software, Beijing.

9. Ewen W.K.C. Denney. A Theory of Program Refinement. PhD thesis, University
of Edimburg, 1998.

10. Edsger W. Dijkstra. Notes on structured programming. In O. Dahl, E. Dijkstra,
and C. Hoare, editors, Structured programming. Academic Press, 1971.

11. Edsger W. Dijkstra. A discipline of programming. Series in Automatic Computa-
tion. 1976.

12. Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon University,
1994.

13. Tim Freeman and Frank Pfenning. Refinement types for ML. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and Implementation, 1991.

14. William A. Howard. The formulae-as-types notion of construction. In
J. Roger Hindley Jonathan P. Seldin, editor, To H. B. Curry: Essays on Com-
binatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press,
London, 1980.

15. Stefan Kahrs, Don Sannella, and Andrzej Tarlecki. The definition of Extended
ML. LFCS Report ECS-LFCS-94-300, University of Edinburgh, January 1994.

16. Xavier Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

17. Lambert Meertens. Algorithmics – towards programming as a mathematical activ-
ity. In Proceedings of the CWI Symposium on Mathematics and Computer Science,
pages 289–334, 1986.

18. Carroll Morgan. Programming from specifications (2nd ed.). Prentice Hall Inter-
national (UK) Ltd., 1994.

19. Joseph M. Morris. Non-deterministic expressions and predicate transformers. Inf.
Process. Lett., 61(5):241–246, 1997.

20. Christine Paulin-Mohring. Inductive Definitions in the System Coq — Rules and
Properties. In Proceedings of the International Conference on Typed Lambda Cal-
culi and Applications, pages 328–345. Springer-Verlag, 1993.

21. Nigel Thomas Edgar Ward. A Refinement Calculus for Nondeterministic Expres-
sions. PhD thesis, Dept of Computer Science, University of Queensland, 1994.

22. Niklaus Wirth. Program development by stepwise refinement. Communication of
the ACM, 14(4):221–227, april 1971.

23. Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University, september 1998.

	RR1440entête.pdf
	RR1440rapp.pdf

