L

EULERIAN SUBGRAPH CONTAINING GIVEN VERTICES

ZHANG Z / LI H

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI
04/2006
Rapport de Recherche $\mathbf{N}^{\circ} 1442$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

Eulerian subgraph containing given vertices

Zhao ZHANG,*
Hao LI ${ }^{\dagger}$

Abstract

A vertex set $S \subseteq V(G)$ is k-weak-edge-connected if for every $C \subset S$ and $x \in S-C$ there are $\min \{k,|C|\}$ edge-disjoint (x, C)-paths in G. For a graph G and a k-weak-edge-connected vertex set $S \subset V(G)$ with $k \geq 3$ and $4 \leq|S| \leq 2 k$, we show that G has an eulerian subgraph containing all vertices in S.

1 Introduction

All graphs considered in this paper are undirected and simple. A graph is eulerian if it is a connected even graph, i.e., each vertex has even degree. A graph is supereulerian if it contains a spanning eulerian subgraph. Since a 3-regular graph is supereulerian if and only if it is hamiltonian, and the hamiltonian problem is NP-complete even for 3-regular graphs, the problem of determining whether a graph is supereulerian is NP-complete $[8,9,13]$. So, it is interesting to ask what is the maximum order of an eulerian subgraph in a given graph [12, 14]. In this paper we study a more general problem as follows: for a given vertex set $S \subseteq V(G)$, is there an eulerian subgraph of G containing all vertices in S. Note that in the particular case of $S=V(G), G$ contains an eulerian subgraph containing all vertices in S if and only if G is supereulerian.

[^0]We begin by introducing some results on cycles containing a given subset of vertices Two basic and classic results due to Dirac are the followings.

Theorem 1. [4]: If G is a 2-connected graph on $n \geq 3$ vertices, then $c(G) \geq \min \{n, 2 \delta\}$, where $c(G)$ is the circumference of G.

Theorem 2. [3] If G is a k-connected graph then it has a cycle through any k vertices.

Flandrin et al. [6] generalized Theorem 2 by limiting the connected condition of the graph to a connected condition on the subset of vertices considered. Let G be an arbitrary graph and $S \subseteq V(G)$ be a set of at least two vertices. S is k-connected if any two vertices of S can not be seperated in G by deleting at most $k-1$ vertices.

Theorem 3. [6] If S is a k-connected subgraph of G, then G has a cycle through any k vertices of S.

The above theorems are sharp (see for example the complete bipartite graphs $K_{k, k+1}$).
It has been proved by Győri and Plummer [10] and independently Favaron and Jackson [7] that 3-connected $K_{1,3^{-}}$-free graphs are 9-cyclable, i.e. any nine vertices is in a cycle. For $K_{1,4}$-free graphs, Flandrin et al. obtained

Theorem 4. [5] Let G be a $K_{1,4}$-free graph and S be a k-connected subset of vertices in G with $k \geq 4$ and $4 \leq|S| \leq 2 k$. Then there exists a cycle containing S.

Corollary 1. Let G be a k-connected $K_{1,4}$-free graph and S be a subset of vertices in G such that $k \geq 4$ and $4 \leq|S| \leq 2 k$. Then there exists a cycle containing S.

Let C be a vertex set in G, and x a vertex in $G-C$. A path P is called an (x, C)-path if the two ends of P are x and y respectively, where y is the only vertex in $P \cap C$, which will be called the attachment of P on C. A vertex set $S \subseteq V(G)$ is k-weak-edge-connected if for every $C \subset S$ and $x \in S-C$ there are $\min \{k,|C|\}$ edge-disjoint (x, C)-paths in G. By Menger's Theorem, if G is k-edge-connected, then every vertex set of $V(G)$ is k -weak-edge-connected. Conversely, if $|V(G)| \geq k+1$, then $V(G)$ is k-weak-edge-connected
implies that G is k-edge-connected. For $k \leq 2, k$-weak-edge-connectedness is equivalent to k-edge-connectedness when $|S| \geq k+1$. The case $k=1$ is trivial. In the case $k=2$, for any three vertices in S, there are two edge disjoint paths between one of them and the other two, hence they are 2 -edge-connected. When $k \geq 3, k$-weak-edge-connectedness is indeed 'weaker' than k-edge-connectedness, as can be seen from the graph in Figure 1, where S is the set of the blackened vertices.

Figure 1
Let G be a graph, $k \geq 3$ an integer, and S a k-weak-edge-connected subset of $V(G)$ with $4 \leq|S| \leq 2 k$. The main result of this paper is that G has an eulerian subgraph containing all vertices in S. We will give a proof of this result in the next section. As a consequence of the main theorem, we have

Corollary 2. Let G be a graph and S a k-edge-connected subset of $V(G)$ with $k \geq 3$ and $|S| \leq 2 k$. Then G has an eulerian subgraph containing all vertices of S.

Given an eulerian cycle, we can start from any vertex, traverse every edge exactly once, and then come back to the starting point. So, for an eulerian cycle, we can associate with it a direction. Let x, y be two vertices in an eulerian cycle C. Denote by $x C y$ the segment from x to y traversed in the previously fixed direction, and $x \bar{C} y$ the segment from x to y traversed in the reversing direction. Similar notation is used for paths. Furthermore, for a path P and a vertex x on $P, x P$ denotes the segment of P from x to its end, and $P x$ denotes the segment of P from its initial to x.

For simplicity, we will use the graph itself to denote its vertex set. We follow [1] or [2] for notations or terminology not defined here.

2 Main Result

Similar to the result of exercise 6.42 in [11], which concerns with vertex-disjoint paths, we have the following lemma dealing with edge-disjoint paths.

Lemma 1. Let M be a vertex set in a graph G, and x a vertex in $G-M$. Suppose there are ℓ edge-disjoint (x, M)-paths Q_{1}, \ldots, Q_{ℓ} and $\ell+r$ edge-disjoint (x, M)-paths $P_{1}, \ldots, P_{\ell+r}$. Then there are ℓ edge-disjoint (x, M)-paths R_{1}, \ldots, R_{ℓ} and r integers $1 \leq j_{1}<\ldots<j_{r} \leq$ $\ell+r$, such that
(i) R_{i} has the same attachment as $Q_{i}(i=1, \ldots, \ell)$, and
(ii) $R_{1}, \ldots, R_{\ell}, P_{j_{1}}, \ldots, P_{j_{r}}$ are edge-disjoint.

Proof. Let $\mathcal{R}=\left\{R_{1}, \ldots, R_{\ell}, \ldots, R_{t}\right\}$ be a set of edge-disjoint paths such that
(1) R_{i} has the same attachment as $Q_{i}(i=1, \ldots, \ell)$, and
(2) subject to (1), $\left|\left(\bigcup_{R \in \mathcal{R}} E(R)\right) \cap\left(\bigcup_{i=1}^{\ell+r} E\left(P_{i}\right)\right)\right|$ is as large as possible.

Note that such \mathcal{R} exists by the existence of Q_{1}, \ldots, Q_{ℓ}.

Claim. If the begining edge of P_{j} is different from any begining edge of $R_{i}(i=1, \ldots, \ell)$, then P_{j} is edge-disjoint from $\left\{R_{i}\right\}_{i=1}^{\ell}$.

Suppose the claim is not true. Let $y z$ be the first edge on P_{j} which also belongs to some path in $\left\{R_{i}\right\}_{i=1}^{\ell}$, say $R_{i_{0}}$. Replace $x R_{i_{0}} y$ with $x P_{j} y$, and denote by \mathcal{R}^{\prime} the new set of paths. Then \mathcal{R}^{\prime} is also a set of edge-disjoint paths satisfying (1). But $\left|\left(\bigcup_{R \in \mathcal{R}^{\prime}} E(R)\right) \cap\left(\bigcup_{i=1}^{\ell+r} E\left(P_{i}\right)\right)\right|>$ $\left|\left(\bigcup_{R \in \mathcal{R}} E(R)\right) \cap\left(\bigcup_{i=1}^{\ell+r} E\left(P_{i}\right)\right)\right|$, which contradicts (2).

The existence of j_{1}, \ldots, j_{r} follows from the above claim and the observation that there are at least r paths in $\left\{P_{j}\right\}_{j=1}^{\ell+r}$ whose begining edges are different from those of $\left\{R_{i}\right\}_{i=1}^{\ell}$.

As a corollary, we have
Lemma 2. Suppose G is a graph, k is an integer with $k \geq 2$, S is a k-weak-edge-connected subset of $V(G), M$ is a vertex set in G with $M \cap S=C, x$ is a vertex in $S-M, Q_{1}, Q_{2}$ are two edge-disjoint (x, M)-paths with attachments x_{1} and x_{2} respectively. Then there
exist $c=\min \{k,|C|\}$ edge-disjoint (x, M)-paths P_{1}, \ldots, P_{c} with attachments y_{1}, \ldots, y_{c} such that $\left\{x_{1}, x_{2}\right\} \subseteq\left\{y_{1}, \ldots, y_{c}\right\}$.

Proof. Since S is k-weak-edge-connected, there are c edge-disjoint (x, C)-paths R_{1}, \ldots, R_{c} in G. Suppose the directions of these paths are from x to C. Denote by z_{i} the first vertex of R_{i} in $R_{i} \cap M$. Set $R_{i}^{\prime}=R_{i} z_{i}$. Then $R_{1}^{\prime}, \ldots, R_{c}^{\prime}$ are c edge-disjoint (x, M)-paths and the result follows from Lemma 1.

The following is our main result:

Theorem 5 (the main theorem). Let G be a graph of order at least 3, and S a subset of vertices in G. Then G has an eulerian subgraph containing all vertices of S if one of the following conditions is satisfied:
(1) For $k=2,3, S$ is k-edge-connected with $|S| \leq k$ and
(2) For $k \geq 3$, S is a k-weak-edge-connected subset of $V(G)$ with $4 \leq|S| \leq 2 k$.

Remark 1. The requirement that $k \geq 3$ in (2) is necessary, as can be seen from $G=$ $K_{2,2 n+1}(n \geq 2)$, where S is the partite set containing $2 n+1$ vertices which is 2 -weak-edge-connected but not 3-weak-edge-connected. The requirement $|S| \geq 4$ in (2) is also necessary, as can be seen from $K_{2,3}$, where S is the partite set containing three vertices which is k-weak-edge-connected for any k.

Proof of the main theorem:

Let C be an eulerian subgraph of G with $|C \cap S|$ as large as possible. By our discussion after the definition of k-weak-edge-connectedness, S is 2-edge-connected, and thus $\mid C \cap$ $S \mid \geq 2$ by Menger's Theorem. As a consequence, the theorem holds when $|S| \leq 2$. So, suppose $|S| \geq 3$ in the following.

Assume that this theorem is not true, we shall derive a contradiction by showing that C is 'augmentable', i.e., there is another eulerian subgraph C^{\prime} of G containing more S-vertices than C. Let x be a vertex in $S-C$.

If S satisfies condition (1) with $k=3$, then $|C \cap S|=2$, and there are three edge disjoint (x, C)-paths Q_{1}, Q_{2}, Q_{3} with attachments x_{1}, x_{2}, x_{3} on C, where x_{1}, x_{2}, x_{3} lie on C in this order. For each i, there is at least one S-vertex in (x_{i}, x_{i+1}) (' + ' is comprehended as modulo 3) since otherwise C can be augmented by setting $C^{\prime}=x Q_{i+1} x_{i+1} C x_{i} \bar{Q}_{i} x$. But then $|C \cap S| \geq 3$, a contradiction.

Next we assume that S is a k-weak-edge-connected subset of $V(G)$ with $k \geq 3$ and $|S| \leq 2 k$. In this case,

$$
\begin{equation*}
|C \cap S|<|S| \leq 2 k . \tag{1}
\end{equation*}
$$

Since S is k-weak-edge-connected, there are $c=\min \{k,|C \cap S|\}$ edge-disjoint (x, C) paths Q_{1}, \ldots, Q_{c} with attachments x_{1}, \ldots, x_{c}, where x_{1}, \ldots, x_{c} lie on C sequentially in this order. Denote by $X=\left\{x_{1}, \ldots, x_{c}\right\}$. Call the segments $\left(x_{i}, x_{i+1}\right)(i=1, \ldots, c)$ on C as X-segments, where ' + ' is comprehended as modulo c. Similar to the above, we have

Claim 1. For each i, there is at least one S-vertex in $\left(x_{i}, x_{i+1}\right)$.

If $|C \cap S|=2$, since $|S| \geq 4$, we have $y_{i} \in S-\{x\}, 1 \leq i \leq 3$ such that $y_{1} \in x_{1} C x_{2}$ and $y_{2} \in x_{2} C x_{1}$. Then there are three edge disjoint ($\left.y_{3},\left\{x, y_{1}, y_{2}\right\}\right)$-paths, and hence three edge disjoint $\left(y_{3}, C \cup Q_{1} \cup Q_{2}\right)$-paths with attachments $z_{i}(1 \leq i \leq 3)$ respectively. It is easy to verify that if $\left|\left\{z_{1}, z_{2}, z_{3}\right\} \cap\left(Q_{1} \cup x_{1} C y_{1} \cup x_{2} C y_{2}\right)\right| \geq 2$, there will be an eulerian subgraph containing at least three S-vertices, a contradiction. So $\mid\left\{z_{1}, z_{2}, z_{3}\right\} \cap\left(Q_{1} \cup\right.$ $\left.x_{1} C y_{1} \cup x_{2} C y_{2}\right) \mid \leq 1$. Similarly $\left|\left\{z_{1}, z_{2}, z_{3}\right\} \cap\left(Q_{2} \cup y_{1} C x_{2} \cup y_{2} C x_{1}\right)\right| \leq 1$. But this is again a contradiction. Therefore we may assume that $|C \cap S| \geq 3$.

Claim 2. There is an X-segment containing exactly one S-vertex.
In fact, if $c<k$, then each X-segment contains exactly one S-vertex. Whereas when $c=k$, the claim follows from the hypothesis that C contains less than $2 c S$-vertices.

Suppose, without loss of generality, that $\left(x_{1}, x_{2}\right)$ is an X-segment which contains exactly one S-vertex y. By taking $M=x_{2} C x_{1} \cup Q_{1} \cup Q_{2}$ in Lemma 2, we obtain c edge-disjoint (y, M)-paths P_{1}, \ldots, P_{c} with attachments y_{1}, \ldots, y_{c} lying sequentially on C, in which $y_{1}=x_{1}$ and $y_{2}=x_{2}$.

Claim 3. P_{1}, \ldots, P_{c} are vertex-disjoint from Q_{1}, \ldots, Q_{c} except that $P_{1} \cap Q_{1}=\left\{x_{1}\right\}$ and $P_{2} \cap Q_{2}=\left\{x_{2}\right\}$.

First, it can be seen from the choice of M that P_{2} is vertex-disjoint from Q_{1} and internally disjoint from Q_{2}, P_{1} is vertex-disjoint from Q_{2} and internally disjoint from Q_{1}.

Suppose that $P_{j} \cap\left(Q_{1} \cup Q_{2}\right) \neq \emptyset$ for some $j \geq 3$. That is to say, without loss of generality, $y_{j} \in Q_{1}$. But then C is augmentable to $C^{\prime}=x Q_{2} x_{2} C x_{1} \overline{P_{1}} y P_{j} y_{j} \overline{Q_{1}} x$ (see Figure 2). So $P_{j} \cap\left(Q_{1} \cup Q_{2}\right)=\emptyset$ for any $j \geq 3$.

Figure 2
Suppose $Q_{i} \cap\left(\bigcup_{j=1}^{c} P_{j}\right) \neq \emptyset$ for some $i \geq 3$. Let u be the first vertex of Q_{i} which also belongs to $\bigcup_{j=1}^{c} P_{j}$, say $u \in P_{j}$. Then C is augmentable by taking $C^{\prime}=x Q_{i} u \overline{P_{j}} y P_{2} x_{2} C x_{1} \overline{Q_{1}} x$ if $j \neq 2$ and $C^{\prime}=x Q_{i} u \overline{P_{2}} y P_{1} x_{1} \bar{C} x_{2} \overline{Q_{2}} x$ if $j=2$ (see Figure 3).

Figure 3
Set $Y=\left\{y_{3}, \ldots y_{c}\right\}$. As a consequence of Claim $3, Y \subseteq C$ and $Y \cap X=\emptyset$. Moreover, we have the following

Claim 4. For each pair of vertices $u, v \in X \cup Y$, there is at least one S-vertex between them.

It has been shown in Claim 1 that $\{u, v\} \nsubseteq X$. If there is a Y-segment $\left(y_{i}, y_{i+1}\right)$ not containing any S-vertex, then C is augmentable by setting $C^{\prime}=x Q_{2} x_{2} C y_{i} \bar{P}_{i} y P_{i+1} y_{i+1} C x_{1}$
$\bar{Q}_{1} x$. So $\{u, v\} \nsubseteq Y$.
Next, suppose $u=x_{i} \in X$ and $v=y_{j} \in Y$. Without loss of generality we assume that x_{2}, u, v, x_{1} are in this order on C. Then C is augmentable by setting $C^{\prime}=$ $x Q_{i} x_{i} \bar{C} x_{2} \overline{P_{2}} y P_{j} y_{j} C x_{1} \overline{Q_{1}} x$ if there is no S-vertex in $x_{i} C y_{j}$ (see Figure 4).

Figure 4
Claim 5. $c=k<|C \cap S|$.
By the definition of c, we have $c=|C \cap S|$ or $c=k$. If $c=|C \cap S|$, then $c \geq 3$. But by Claim $4,|C \cap S| \geq|X|+|Y|=2 c-2>c$, a contradiction. So, $c<|C \cap S|$, and thus $c=k$.

Claim 6. There is only one X-segment on C containing exactly one S-vertex.
Suppose $S \cap\left(x_{\ell} C x_{\ell+1}\right)=\{z\}$ for some $\ell \neq 1$. By taking $M=\left(C-\left(x_{1} C x_{2} \cup x_{\ell} C x_{\ell+1}\right)\right) \cup$ $Q_{1} \cup Q_{2} \cup Q_{\ell} \cup Q_{\ell+1} \cup P_{1} \cup P_{2}$ in Lemma 2, we obtain c edge-disjoint (z, M)-paths R_{1}, \ldots, R_{c} with attachments z_{1}, \ldots, z_{c} lying on C sequentially, and $z_{\ell}=x_{\ell}, z_{\ell+1}=x_{\ell+1}$.

Subclaim 6.1. R_{1}, \ldots, R_{c} are vertex disjoint from Q_{1}, \ldots, Q_{c} and P_{1}, \ldots, P_{c}, except for the obvious common ends.

First, by the choice of M, we see that R_{ℓ} and $R_{\ell+1}$ are vertex-disjoint from $P_{1}, P_{2}, Q_{1}, Q_{2}$ and internally disjoint from $Q_{\ell}, Q_{\ell+1}$. Suppose R_{i} intersects $P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2} \cup Q_{\ell} \cup Q_{\ell+1}$ for some $i \neq \ell, \ell+1$. If R_{i} comes across Q_{ℓ} or $Q_{\ell+1}$ first, say Q_{ℓ}, then $z_{i} \in Q_{\ell}$, and $C^{\prime}=x Q_{\ell+1} x_{\ell+1} C x_{1} \overline{P_{1}} y P_{2} x_{2} C x_{\ell} \overline{R_{\ell}} z R_{i} z_{i} \overline{Q_{\ell}} x$ is an augmentation of C (see Figure 5 (a)). If R_{i} comes across P_{1}, P_{2}, Q_{1} or Q_{2} first, say P_{1}, then $z_{i} \in P_{1}$, and $C^{\prime}=$ $x Q_{\ell} x_{\ell} \bar{C} x_{2} \overline{P_{2}} y P_{1} z_{i} \overline{R_{i}} z R_{\ell+1} x_{\ell+1} C x_{1} \overline{Q_{1}} x$ is an augmentation of C (see Figure 5 (b)). So, $R_{i} \cap\left(P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2} \cup Q_{\ell} \cup Q_{\ell+1}\right)=\emptyset$ for any i. Suppose $P_{j} \cap R_{i} \neq \emptyset$ for some $j \geq 3$ and some i. Let u be the first vertex on P_{j} which also belongs to some R_{i}. Then C can be augmented by setting $C^{\prime}=x Q_{\ell+1} x_{\ell+1} C x_{1} \overline{P_{1}} y P_{j} u \overline{R_{i}} z R_{\ell} x_{\ell} \bar{C} x_{2} \overline{Q_{2}} x$ if $i \neq \ell$ (see Figure

5 (c)) or $C^{\prime}=x Q_{\ell} x_{\ell} \bar{C} x_{2} \overline{P_{2}} y P_{j} u \overline{R_{\ell}} z R_{\ell+1} x_{\ell+1} C x_{1} \overline{Q_{1}} x$ if $i=\ell$ (see Figure 5 (d)). Similar contradiction arises if some Q_{j} intersects some R_{i}.

Figure 5

Set $Z=\left\{z_{1}, \ldots, z_{\ell-1}, z_{\ell+2}, \ldots, z_{c}\right\}$. It follows from Subclaim 6.1 that $Z \subseteq C$ and $Z \cap(X \cup Y)=\emptyset$.

Subclaim 6.2. For every pair of vertices u, v in $X \cup Y \cup Z$, there is at least one S-vertex between them.

In view of Claim 4 and by symmetry, we only show the case that $u=y_{i} \in Y$ and $v=$ $z_{j} \in Z$. Suppose there is no S-vertex between them. We assume by symmetry that $y_{i}, z_{j} \in$ $x_{\ell+1} C x_{1}$. Then $i \neq 2$ and $j \neq \ell$. Set $C^{\prime}=x Q_{\ell+1} x_{\ell+1} C z_{j} \overline{R_{j}} z R_{\ell} x_{\ell} \bar{C} x_{2} \overline{P_{2}} y P_{i} y_{i} C x_{1} \overline{Q_{1}} x$ if z_{j} precedes y_{i} on C (see Figure 6 (a)), and $C^{\prime}=x Q_{\ell+1} x_{\ell+1} C y_{i} \overline{P_{i}} y P_{2} x_{2} C x_{\ell} \overline{R_{\ell}} z R_{j} z_{j} C x_{1} \overline{Q_{1}} x$ if y_{i} precedes z_{j} on C (see Figure $6(\mathrm{~b})$). Then C can be augmented to C^{\prime}.

Figure 6

It follows from Subclaim 6.2 and Claim 5 that $|C \cap S| \geq|X|+|Y|+|Z|=3 c-4=3 k-4$. By inequality (1), this happens only when $c=k=3$ and G has a sub-structure as in Figure 7 (a) or (b), where the blackened vertices are in S.

(a)

(b)

Figure 7

Let w be the S-vertex between y_{3} and z_{1} (as indicated in Figure 7). For simplicity, we only consider the case that G has a sub-structure in Figure 7 (a). By taking $M=$ $x_{3} C z_{1} \cup y_{3} C x_{1} \cup Q_{1} \cup Q_{2} \cup Q_{3} \cup P_{1} \cup P_{2} \cup P_{3} \cup R_{1} \cup R_{2} \cup R_{3}$ in Lemma 2, we have three edge-disjoint (w, M)-paths T_{1}, T_{2}, T_{3} with attachments z_{1}, t_{2} and y_{3} respectively. Similar to the above arguments, T_{1}, T_{2}, T_{3} are disjoint from $Q_{1} \cup Q_{2} \cup Q_{3} \cup P_{1} \cup P_{2} \cup P_{3} \cup R_{1} \cup R_{2} \cup R_{3}$ except for the obvious common ends (see Figure 8).

(a)

(b)

(c)

(d)

(e)

Figure 8. By the choice of M, T_{1} and T_{3} obviously satisfies our requirement. If T_{2} first comes across (a) Q_{1}, (b) P_{1}, (c) P_{2}, (d) Q_{2}, (e) P_{3}, then C can be augmented to the blackened eulerian subgraph. By symmetry, the cases that T_{2} first comes across $Q_{3}, R_{3}, R_{2}, R_{1}$ are similar.

It follows that $t_{2} \in x_{3} C z_{1} \cup y_{3} C x_{1}$. Suppose by symmetry that $t_{2} \in y_{3} C x_{1}$. Then C can be augmented as indicated in Figure 9.

Figure 9

By Claim 5, Claim 6, and inequality (1), we see that $c=k$, and for each $i \neq 1$, there are exactly two S-vertices in $\left(x_{i}, x_{i+1}\right)$. Denote them by u_{i} and $u_{i}^{\prime}\left(u_{i}\right.$ precedes u_{i}^{\prime} on $\left.C\right)$. By Claim 4, there are at least $c-2 X$-segments, such that for each such a segment $\left(x_{i}, x_{i+1}\right)$ there is a Y-vertex between u_{i} and u_{i}^{\prime}. So, we may suppose that $\left(x_{2}, x_{3}\right)$ is such a segment. Let y_{3} be the Y-vertex lying between u_{2} and u_{2}^{\prime}. By taking $M=\left(C \backslash\left(x_{1}, y_{3}\right)\right) \cup P_{1} \cup P_{2} \cup P_{3} \cup Q_{1} \cup Q_{2}$ in Lemma 2, we obtain c edge-disjoint $\left(u_{2}, M\right)$-paths R_{1}, \ldots, R_{c} with attachments z_{1}, \ldots, z_{c}, such that $z_{2}=x_{2}$ and $z_{3}=y_{3}$. By the choice of M, R_{2} and R_{3} are internally disjoint from $P_{1} \cup P_{2} \cup P_{3} \cup Q_{1} \cup Q_{2}$. Write $C^{\prime \prime}=x Q_{2} x_{2} \overline{R_{2}} u_{2} R_{3} y_{3} C x_{1} \overline{Q_{1}} x$. Then y is a vertex in $S-C^{\prime \prime}$ with two Y-segments $\left(x_{1} C^{\prime \prime} x_{2}\right.$ and $x_{2} C^{\prime \prime} y_{3}$) on $C^{\prime \prime}$ having exactly one S-vertex each. Since $\left|C^{\prime \prime} \cap S\right|=|C \cap S|$, Claim 6 is also applicable to y and $C^{\prime \prime}$, which incurs a contradiction.

References

[1] B. Bollobás, Mordern Graph Theory. Springer-Verlag New York Inc., 1998.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan Press, 1976.
[3] G.A. Dirac, In abstrakten Graphen vorhande völlstandigene-4-Graphen und ihre Unterteilungen. Math. Nachr., 22 (1960) 61-85.
[4] G.A. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. (3) 2(1952), 69-81.
[5] E. Flandrin, E. Gyori, H.Li and J.L. Shu, Cyclability in k-connected $K_{1,4}$-free graphs. preprint.
[6] E. Flandrin, H. Li, A. Marczyk, M. Woźniak, A generalization of Dirac's theorem on cycles through k vertices in k-connected graphs.
[7] O. Favaron and B. Jackson, personal communication.
[8] M.R. Garey, D.S. Johnson and R.E. Tarjan, The planar hamiltonian circuit problem is NP-complete. SIAM J. Comp. 5 (1976) 704-714.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability. W.H. Freeman and Company, New York (1979).
[10] E. Győri, M.D. Plummer, A nine vertex theorem for 3-connected claw-free graphs. Preprint
[11] L. Lovász, Combinatorial problems and exercises. North-Holland, Amsterdam (1979).
[12] L. Nebeský, On eulerian subgraphs of comlementary graphs. Czech. Math. J. 29 (104) (1979) 298-302.
[13] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs. J. Graph Theory 3 (1979) 309-310.
[14] B. Zelinka, Some remarks on eulerian graphs. Czech. Math. J. 29 (104) (1979) 564$56 \%$.

[^0]: *College of Mathematics and System Sciences, Xinjiang University, Urmuqi, Xinjiang, 830046, China. e-mail: zhzhao@xju.edu.cn
 ${ }^{\dagger}$ Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.-Université de Paris-sud, 91405Orsay, France and School of Mathematics and Statistics, Lanzhou University, 730000 Lanzhou, Gansu, China. Corresponding author. e-mail: li@lri.fr. The work is partially supported by NNSF of China (60373012)

