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Abstract:
GenRGenS is a software dedicated to the random generation of genomic sequences
and structures. It allows to handle several useful models in sequence analysis, as
Markov chains, Hidden Markov models, weighted context-free grammars, regular
expressions and Prosite expressions. In particular, GenRGenS is the only program
that handles weighted context-free grammars, allowing the user to model and
generate structured objects (as RNA secondary structures) of any given desired size.
GenRGenS also allows the user to combine several of these different models.
The present user manual describes the different classes of models for random
sequences supported by GenRGenS, and illustrates the implementation of such
models with several examples inspired by real biological models. It also describes the
different ways to invoke the software under various operating systems.

Availability:
Source and executable files of GenRGenS (in Java), as well as the complete user’s
manual, are freely available at http://www.lri.fr/bio/GenRGenS.

Contact: dev.GenRGenS@lri.fr

1This work was partially supported by the French IMPG Bioinformatics program, the CNRS Spe-
cific Action ”Modélisation et algorithmique des structures secondaires d’ARN” and the French education
ministry founded action ACI IMPBio.
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Chapter 1

Introduction

Random sequences can be used to extract relevant information from biological sequences. The
random sequences represent the “background noise” from which it is possible to differentiate the
real biological information. Random sequences are widely used to detect over-represented and
under-represented motifs, or to determine whether the scores of pairwise alignments are relevant.
Analytic approaches exist for solving these kinds of problems (see e.g. [?].) although for the most
complex cases, an experimental approach (i.e. the computer generation of random sequences) is
still necessary.

Some programs are already currently available for generating random sequences. For example,
the GCG package contains a few generation tools, such as HmmerEmit that generates sequences
according to HMM profiles, and Corrupt that adds random mutations to a given sequence [?].
Seq-Gen randomly simulates the evolution of nucleotide sequences along a phylogeny [?]. The
Expasy server has RandSeq, which generates random amino acid sequences according to a Bernoulli
process [?]. Shufflet is a program that generates random shuffled sequences [?]. However, until
now, there has been no software package that can integrate several statistical and syntaxical models
of random sequences and combine them. This is the purpose of GenRGenS.

The random sequence models currently handled by GenRGenS are the following:

• MARKOV : Markovian random generation. Puts probabilistic constraints on the occurences of
k-mers among the generated sequences. A markovian model can be automatically built from
real biological data by a tool bundled with GenRGenS

• GRAMMAR : Random generation based on context-free grammars. This syntaxic formalism
allows to take into account both sequential and structural constraints. Most long-range
interactions and correlations can be captured by this formalism.

• MASTER : Random generation of hierarchical sequences. Combines different levels of abstrac-
tion. Sequences of symbols are generated using a master description file and then some of
these symbols are rewrited into sequences generated with respect to auxiliary description
files and distributions over sequences lengths.

• RATEXP : Prosite patterns and rational expressions. Generates sequences uniformly at random
from a rational expression or a prosite pattern. Long ago, searches in language theory stated
that these formalisms’ expressivity are included in that of the context-free grammars’1.
However, more efficient generation algorithms are available for this subclass. Moreover,
support for Prosite patterns allows a copy/paste approach for random generation that some
may find convenient.

1i.e. If a property is captured by a Prosite-based model, it is always possible to build a context-free grammar-
based model capturing the same property.
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Chapter 2

Generalities and file formats

2.1 How to run GenRGenS

This section is dedicated to the installation and usage of GenRGenS v2.0.
GenRGenS performs random generation from a given sequences model. Models are passed to
the main generation engine through description files. These are text files meeting certain syntax
criteria. Until further improvements GenRGenS supports four classes of models. Each of these
models’ description file has a specific syntax, although they all share certain properties.

2.1.1 Downloading and installing GenRGenS

Foreword: GenRGenS’ current implementation uses Java, so it will be necessary to download
and install a version of Java’s runtime environment (or virtual machine) superior to 1.1.2, freely
downloadable from http://java.sun.com.

GenRGenS latest versions (binaries+sources) can be found at the following URL:

http://www.lri.fr/bio/GenRGenS

First download the bundle file found in the download section of the site. If needed, uncompress
the archive into an appropriate directory, using free or shareware tools like 7zip (.ZIP files), Java
bundled tool jar (.JAR files) or GNU tar (.TAR files) into a root directory of your choice. We’ll
assume for the next sections that the chosen directory is GenRGenSDir.

2.1.2 Command-line version

After decompression of the archive, move to GenRGenSDir and open a shell to invoke the Java
virtual machine through the following command:

java -cp . GenRGenS.GenRGenS [options ] [-nb k] -size n DescriptionFile

where:

- k is the number of sequences to be generated by GenRGenS. Defaults to 1.

- n is an indicative length for the generated sequences. Depending on the class of models, it
can either be the exact length, an upper bound or just ignored depending on the type of
generation. Required.

- DescriptionFile is the path to a description file describing the random sequence model.
Required.

Specific options may be available for some classes of models and will be detailed further.
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2.1.3 Graphical User Interface

There are two ways to run GenRGenS interactive version, one is achieved through command line
and the other uses file associations supported by certain platforms:

- From Shell: Move to GenRGenSDir and, at the prompt, enter the following command:

java -cp . GenRGenS.GenRGenS
or java -jar GenRGenSvX.X.JAR

- From a graphical environment: Some operating systems maintain associations between
files and eligible executables, based on file name suffixes or file header analysis. Under these
platforms, a simple double-click on the JAR archive will execute the main application.

Figure 2.1: Screenshot of the main GUI

Once GenRGenS UI is run, a typical random generation scenario would be:

• Open a description file, using ’File/Open Description File...’ or ’File/Reopen’ menu
items or clicking on button A

• Define some required/optional parameters, such as the sequence length or the number of se-
quences, inside the Generation Configuration window spawned from ’Utilities/GenRGenS’
menu item or by clicking on button C.

• Validate generation. Random sequences are generated and displayed on text buffer D.
Potential errors or warnings are shown on text buffer E.

• Save generated sequences to disk, using ’Buffers/Save Output Buffer Content...’ or
by cliquing on button B.

6



Figure 2.2: Defining the generation parameters

The Generation Configuration window defines of a few additional parameters:

• Box 1: The size of the emitted sequences or an upper-bound depending on the type of
generation.

• Box 2: The number of generated sequences.

• Checkbox 3: Whether or not to display informations about the generation during the process.

• Checkbox 4: Toggles displaying of generated sequences on and off. Useful when large num-
bers of sequences are required.

• Messagebox 5: Selects the output file.

• Panel 6: Display a number of generator-specific option. Here, for a markovian generator, it
is possible to provide the size parameter (Box 1) as an upper bound for the sequence size.
The sequence is then generated letter by letter, until a dead-end is encountered, i.e. there is
no sequel for this sequence in this model, or the size provided is reached.

2.2 Description files

Description files describe random models to the generation engine of GenRGenS. They are com-
posed of clauses, each defining a parameter in the random model. The syntax of description files
will be detailed below, along with the most common clauses.

2.2.1 Main structure

GenRGenS description files are sequences of clauses. All clauses are based on the pattern Param Name
= Param Value, where Param Name is the name of the parameter being defined and Param Value
its value. Parameters available are specific to a given random model, although some parameters are

7



shared by most if not all description files types. Clauses must be ordered in a generation-specific
way, otherwise they will be rejected by GenRGenS’ main engine. A clause can be optional: if omit-
ted, its associated parameter will default to a value detailed in the random model’s description
part of this document.

2.2.2 Common clauses

2.2.2.1 The TYPE clause

TYPE = {MARKOV,GRAMMAR,RATEXP,MASTER}

The TYPE clause is the first clause of any description file. It defines the type of random model to
be used for generation. Currently supported values for FileType are listed below:

TYPE Random model description
MARKOV Markovian random generation.
GRAMMAR Random generation based on context-free grammars.
MASTER Random generation of hierarchical sequences.
RATEXP Prosite patterns and rational expressions.

2.2.2.2 The ALIAS clause

ALIASES = s1=id1 s2=id2 ...

si is a symbol used for random generation
id2 is a new representation for this symbol

Another common clause is the ALIAS clause. It causes GenRGenS to substitute the right hand
sides of the equalities to the left hand sides after the generation is performed. This clause simplifies
the writing of large random models while keeping the output explicit, as one can write the whole
model using letters and substituting more explicit symbols to letters afterward. See chapter 3 for
advanced use of this clause.

2.2.3 Simple example

1 TYPE = MARKOV

2 ORDER = 0

3 FREQUENCIES =
a 33 c 20
g 15 t 32

4 ALIASES =
a = A c = C
g = G t = U

Figure 2.3: A simple Markovian description file

For instance, here is the toy example of a description file describing a simple Markovian model:

Clause 1 defines the class of random model to be used for random generation. Here, a Markovian
model is choosen, thus raising a need for the definition of various parameters whose roles a ex-
plained below.
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Clause 2 defines the order of the Markovian model. A 0 value stands for a Bernoulli model,
i.e. the probability of emission of a letter doesn’t depend on letters priorly emitted. Further
details and definitions can be found on chapter 3.

Between clause 2 and clause 3, an optional clause PHASE = int is omitted. Default value 1
will then be used for the number of phases, thus defining an homogenous Markovian model.

Clause 3 defines the emission probabilities for the various symbols. Instead of asking the user
to provide the probabilities for the different k-mers, we preferred to compute the probabilities
from given numbers of occurrences. This approach is well fit for the use of a Markovian profile
built from a real sequence. Here, we are using the DNA bases A,C,G and T. Here, Adenosine(A)
will be emitted with a 33

33+20+15+32 = 0.33 probability.

Clause 4 performs-post generation rewriting of the sequence. Here, it allows generation of RNA
sequences from a DNA-dedicated Markovian model 1.

1Which may seem a little lazy as the model is simple, but the size of a Markovian model grows exponentially
with respect to its order, and rewriting manually a Markovian model of order 6 may bore the most wilful scientist.
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Chapter 3

The MARKOV package : Markovian
models

Markovian models are the simplest, easiest to use statistical models available for genomic se-
quences. Statistical properties associated with a Markovian model make it become a valuable tool
to the one who wants to take into account the occurrences of k-mers in a sequence. Their most
commonly used version, the so-called classical Markovian models, can be automatically built from
a set of real genomic sequences. Hidden Markovian models are now supported by GenRGenS at the
cost of some preprocessing, as shown in section 3.1.3. Apart from genomics, such models appear
in various scientific fields including-but-not-limited-to speech recognition, population processes,
queuing theory and search engines1.

3.1 Some theoretical aspects

3.1.1 Main definition

Formally, a classical Markovian model applied to a set of random variables V1, . . . , Vn causes the
probabilities associated with the potential values for Vn to depend on the values of Vi, . . . , Vn−1.
We will focus on homogenous Markovian models, where the probabilities for the different values
for Vn are conditioned by the values already chosen for a small subset [Vi−k−1, Vi−1] of variables
from the past, also called context of Vi. The parameter k is called the order of the Markovian
model. Moreover, the probabilities of the values for Vi in an homogenous Markovian model cannot
in any way be conditioned by the index i of the variable.

Applied to genomic sequences, the random variable Vi stands for the ith base in the sequence.
The Markovian model constrains the occurrence probability for a base α in a given context com-
posed of the k previously assigned letters, therefore weakly2! constraining the proportions of each
k + 1-mers.

3.1.2 What about heterogeneity ?

GenRGenS handles a small subset of the heterogenous Markovian class of models.
Formally, an heterogenous model allows the probabilities associated with a variable Vi to depend
on any of the variables prior to Vi. Our subset of the heterogenous Markovian models will use an
integer parameter called phases to compute the probabilities for Vi. The phase of a variable Vi is

1Google computes its PageRank, which is a score for the relevance of a page, by modelling the behavior of a
randomly clicking net-surfer using a Markovian model . . .

2When total control over the occurrences of k + 1-length words(and shorter. . . ) is required, one should consider
using shuffling algorithms
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Figure 3.1: The probability of the event : ”the i-th base is an a” depends on its k predecessors.

simply given by the formula i mod phases. In our subset of the heterogenous Markovian models,
the probabilities for Vi depend on both context and phase of the variable. Such an addition is
useful to model phenomenons in which variables are gathered in packs of phases consecutive vari-
ables, and their values not only depend of their contexts, but also of their relative position inside
the pack. Such are sequences of protein-coding DNA, where the position of a base inside of a base
triplet is well-known to be of interest.

It is also possible to simulate such phase alternation by introducing dummy letters encoding the
phase in which they will be produced. For instance, an order 0 model having 3 phases (for coding
DNA...) would result in a sequence model over the alphabet {a0,c0,g0,t0,a1,c1,g1,t1,a2,c2,g2,t2}
having non-null transition probabilities only for · · ·x0 → y1, · · ·x1 → y2 and · · ·x2 → y0. There-
fore, the expressivity of our heterogenous models do not exceed that of the homogenous ones, but
it is much more convenient to write these models using an heterogenous syntax.

3.1.3 Hidden Markovian Models (HMMs)

Hidden Markovian models address the hierarchical decomposability of most sequences.

An hidden Markovian model is a combination of a top-level Markovian model and a set of bottom-
level Markovian models, called hidden states. The generation process associated with an HMM
initiates the sequences using a random hidden state. At each step of the generation, the algorithm
may switch to another hidden using probabilities from the top-level model, and then emits a sym-
bol using probabilities related to the current urn.

Once again, this class of models’ expressivity seems to exceed that of the classical Markovian
models. However, in our context, it is possible to emulate an hidden model with a classical one
just by duplicating the alphabet so that the emitted character also contains the state which it
belongs to.

3.2 Implementing a Markovian model

This section describes the syntax and semantics of Markovian description files, as shown in figure
3.2.

3.2.1 Main structure

Clauses nested inside square brackets are optional. The given order for the clauses is mandatory.

3.2.2 Markovian generation specific clauses

Markovian description files allows definition of the Markovian model parameters.
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TYPE = MARKOV

ORDER = ...

[PHASE = ...]

[SYMBOLS = ...]

[START = ...]

[FREQUENCIES | HMMFREQUENCIES] = ...

[ALIASES = ...]

Figure 3.2: Main structure of a Markovian description file

3.2.2.1 The ORDER clause

ORDER = k

k ∈ N

Required
Sets the order of the underlying Markovian model to a positive integer value k. The order of a
Markovian model is the number of previously emitted symbols taken into account for the emission
probabilities of the next symbol. See section 3.1.1 for more details about this parameter.

3.2.2.2 The PHASE clause

PHASE = phases

phases ∈ N∗

Optional, defaults to PHASE = 0
Sets the number of phases parameter of GenRGenS’ heterogenous Markovian models subclass to
a positive non-null integer value phases. See section 3.1.2 for more details about this parameter.

3.2.2.3 The SYMBOLS clause

SYMBOLS = {WORDS,LETTERS}

Optional, defaults to SYMBOLS = WORDS
Chooses the type of symbols to be used for random generation.
When WORDS is selected, each pair of symbols must be separated by at least a blank character
(space, tabulation or newline). A Markovian description file written using WORDS will then be
easier to read, as explicit names for symbols can be used, but may take a little longer to write,
as illustrated by the toy example of the FREQUENCIES clause’s content for a simple Markovian
description file modelling the ORF/Intergenic alternation at a base-triplet level :

Start ORF 100 ORF Stop 35 Stop Intergenic 93 Intergenic Intergenic 85
ORF ORF 65 Stop ORF 7 Intergenic Start 15

Figure 3.3: A simple Markovian model for the Intergenic/ORF alternation

A LETTER value for the SYMBOLS parameter will force GenRGenS to see a word as a sequence
of symbols. For instance, the definition of a 15/35/23/27 occurrences proportions for the symbols
A/C/G/T in a context ACC will be expressed by the following statement inside of the FREQUENCIES
clause :

12



ACCA 15 ACCC 35 ACCG 23 ACCT 27

3.2.2.4 The START clause

START = s1 n1 s2 n2 . . .
ni ∈ N

Optional, defaults to the distribution of k-mers, k being the value order(see below).
Defines the frequencies associated with various eligible prefixes for the generated sequence.
Each si is either a sequence of symbols separated by white spaces or a word, depending on the
value of the SYMBOLS parameter. Every si must be composed of the same amount m of symbols,
m ≥ order.
If omitted, the beginning of the sequence is chosen according to the distribution of k-mers implied
by the content of the FREQUENCIES clause and computed as follows :

∀ω ∈ V k, pω =
∑
c∈V

pω.c

where V is the set of symbols used inside of the sequence, V k is the set of words of size k, and
pc,ω is the probability of emission of c in a context ω as defined by the FREQUENCIES clause. Note
that no specific order is required for definition of a START clause.

3.2.2.5 The FREQUENCIES clause

This clause is used to define the probabilities of emission of the Markovian model.

FREQUENCIES = s1 n1 s2 n2 . . .
ni ∈ N

Required
Defines the probabilities of emission for the different symbols.
Each si is either a sequence of symbols separated by white spaces or a word, depending on the
value of the SYMBOLS parameter. Each si is composed of k + 1 symbols, k being the order. The
first k symbols define the context and the last letter a candidate to emission. The relationship
between the frequency definition si ni and the probability pci,ωi

of emitting ci in a context ωi,
si = ωi.ci is given by the following formula :

pci,ωi
=

ni∑
sj=ωi.c

nj

The (simple) idea behind this formula is that the probability of emission of a base in a certain con-
text equals to the context/base, concatenation’s frequency divided by the sum of the frequencies
sharing the same context . Choice has been made to write frequencies instead of direct proba-
bilities because most of the Markovian models encountered in genomics are built from real data
by counting the occurrences of all k + 1-mers, thus allowing the direct injection of the counting
process’ result into the description file. As for the START clause, it is not necessary to provide
values for the FREQUENCIES in a specific order.

3.2.2.6 The HMMFREQUENCIES clause

HMMFREQUENCIES = s1 n1 s2 n2 . . . ;
α1 : s1

1 n1
1 s1

2 n1
2 . . . ;

α2 : s2
1 n2

1 s2
2 n2

2 . . . ;
. . . ;

si ∈ {αj}∗, ni ∈ N, nj
i ∈ N
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Required
Defines the hidden Markovian model’s probabilities of emission.
First, a master model s1 n1 s2 n2 . . . is defined for the alternation of the hidden states. s1, s2, . . .
are sequences of hidden states αi, separated or not by whitespaces depending on the previously
defined value for the clause SYMBOLS. ni are sequences of integers, representing the frequencies of
the corresponding sequence. Their lengths equal the phase parameter of the model, as provided
by the PHASE clause.
Then, a model definition is required for each hidden states αi through the following syntax:

αi : si
1 ni

1 si
2 ni

2 . . . ;

Each sj
i is composed of symbols βk, which are part of the emission vocabulary.

Once such a model is defined, a sequence is issued starting from a random hidden state h0. At
each step k of the generation, the process is allowed to move from the current hidden state hk

to another hidden state hk+1 (potentially hk = hk+1) and then emits a symbol according to
the probabilities of the hidden state hk+1. The process is iterated until the expected number of
symbols are generated.
Remark 1: Each model definition must be ended by a semicolon ; to avoid ambiguity.
Remark 2: The vocabularies A = {αi} and B = {βi} respectively used for the master and the
hidden states model definition must be disjoint.
Remark 3: The numbers of phases for heterogenous master and hidden states model must be
equal.
Remark 4: Different orders for the master and states models are supported.

3.3 Examples

3.3.1 A Bernoulli model

3.3.1.1 Source

We illustrate the design of a Markovian model with a description file generated automatically from
the 22-th human chromosome, using the tool BuildMarkov bundled with GenRGenS and described
in section 3.4.2, through the following command:

java -cp . GenRGenS.markov.BuildMarkov -o 0 -p 1 q22.fasta -d q22.ggd

This model is a Bernoulli one, as no memory is involved here, i.e. the probability of emission of a
base doesn’t depend on events from the past.

1 TYPE = MARKOV

2 ORDER = 0

3 PHASE = 1

4 SYMBOLS = LETTERS

5 FREQUENCIES =

T 8800702 G 8083806 C 8090307 A 8846873

Figure 3.4: A Bernoulli model for the entire 22-th human chromosome(cleaned up from unknown
N bases.)

3.3.1.2 Semantics

In 1, we choose a Markovian random generation.

In 2, we choose an amnesic model, i.e. there is no relation between two bases probabilities.
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In 3, we choose an homogenous model, the probabilities of emission won’t depend on the in-
dex of the symbol among the sequence.

In 4, we use letters as symbols for simplicity sake.

Clause 5 provides definition for the frequencies. Here, the A and T are slightly more likely
to occur than C and G. Precisely, at each step an A symbol will be emitted with probability

8846873
8800702+8083806+8090307+8846873 ≈ 0, 2616.

3.3.2 A model for a mRNA having order 1

3.3.2.1 Source

This description file has been built automatically from a portion of the 17q11 part of the 17-th
human chromosome by the tool BuildMarkov invoked through the following command:

java -cp . GenRGenS.markov.BuildMarkov -o 1 -p 1 17-q11.fasta -d 17-q11.ggd

1 TYPE = MARKOV

2 ORDER = 1

3 PHASE = 1

4 SYMBOLS = WORDS

5 FREQUENCIES =

a a 64 a c 98 a g 127 a t 52
c a 126 c c 174 c g 58 c t 138
g a 112 g c 127 g g 135 g t 66
t a 39 t c 96 t g 121 t t 48

Figure 3.5: Order 1 Markov model for the sequence of the mRNA encoding the S-protein involved
in serum spreading.

3.3.2.2 Semantics

In 1, we choose a Markovian random generation.

In 2, we choose an order 1 model, i.e. the probability of emission of a symbol only depends
on the symbol immediately preceding in the sequence.

In 3, we choose an homogenous model, the probabilities of emission won’t depend on the in-
dex of the symbol among the sequence.

In 4, we illustrate the use of WORDS. The symbols must be separated in the FREQUENCIES by
at least one whitespace or carriage return. Space characters will be inserted between symbols in
the output.

Clause 5 provides definition for the frequencies, subsequently for the transition/emission prob-
abilities.
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3.3.3 An heterogenous model

3.3.3.1 Source

The following description file describes a Markovian model for the first chromosome’s 1q31.1 area
of the human genome, built by BuildMarkov through :

java -cp . GenRGenS.markov.BuildMarkov -o 2 -p 3 1q31.1.fasta -d 1q31.1.ggd

and edited afterward to include the START clause.

1 TYPE = MARKOV

2 ORDER = 2

3 PHASE = 3

4 SYMBOLS = LETTERS

5 START =

atg 99

gtg 1

6 FREQUENCIES =

agg 19 18 22 cgg 3 10 6 act 42 27 28 agc 30 24 22
aga 47 30 40 cct 22 33 35 cgc 11 9 11 tag 23 28 31
cga 3 6 5 att 68 80 53 ggg 14 12 15 tac 17 26 36
ctt 46 38 45 taa 58 49 48 gct 26 31 24 ggc 15 8 21
acg 10 2 5 gga 25 22 17 acc 22 18 22 ccg 8 12 11
aca 38 28 45 gtt 41 38 26 tgt 42 35 40 atg 32 42 44
ccc 17 21 17 cca 20 39 29 atc 31 24 23 gcg 5 7 5
ctg 24 27 41 ata 43 56 46 gcc 25 24 8 ctc 26 19 23
gca 25 26 20 cta 29 32 24 gtg 9 30 27 tgg 32 29 28
gtc 20 16 13 tct 26 42 38 tgc 32 16 27 gta 34 27 26
tga 54 26 47 ttt 89 99 95 tcg 5 6 5 tcc 41 29 20
tca 38 34 36 ttg 41 43 48 aat 71 48 50 ttc 34 40 51
tta 55 62 61 cat 35 27 37 gat 37 33 24 aag 31 38 51
aac 19 32 36 cag 27 40 36 aaa 74 96 94 cac 25 19 26
caa 43 35 28 gag 19 22 21 agt 43 28 43 gac 14 23 14
gaa 39 51 25 cgt 9 3 5 tat 59 58 62 ggt 17 26 16

Figure 3.6: A Markovian description file for the 1q31.1 area of the first human chromosome

3.3.3.2 Semantics

In 1, we choose a Markovian random generation.

In 2, we will consider the frequencies of base triplets, e.g. the probability of emission of a base is
conditioned by the 2 last bases.

In 3, we differentiate the behaviour of the Markovian process for each phase, in order to cap-
ture some properties of the coding DNA.

In 4, we use letters as symbols for simplicity sake.

Clause 5 initiates each sequence with an atg base triplet with probability 0.99 or chooses gtg
with probability 0.01.
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Clause 6 provides definition for the frequencies. To explain the semantics of this clause, we
will focus on some particular frequencies definitions :

agg 19 18 22 aga 47 30 40 agt 43 28 43 agc 30 24 22

Writing agg 19 means that base g has occurred 19 times in an ag context on phase 0. In other
words, the motif agg has occurred 19 times on phase 1. We will illustrate the link with the
emission probability of g in a context ag in the next section.

3.3.3.3 Random generation scenario for this example

- First a random start atg is chosen with probability 0.99.

- The context, here composed of the two most recently emitted bases, is now tg, and the phase3

of the next base is 2. The emission probabilities for the bases of a g is p2
g,ag = 22

22+40+43+22 = 22
127 .

Similarly, probabilities of emissions for the other bases are p2
a,ag = 40

127 , p2
t,ag = 43

127 and
p2

c,ag = 22
127 .

- After a call to a random number generator, a g base is chosen and emitted.

- The new context is then gg, and the new phase is 0. We then consider new probabilities for
the bases a,c,g and t:

gga 25 22 17 ggc 15 8 21 ggg 14 12 15 ggt 17 26 16

The probabilities of emission for the different bases are then p0
a,gg = 25

71 , p0
c,gg = 15

71 , p0
g,gg = 14

71

and p0
t,gg = 17

71 . . .

3.3.4 Basic Hidden Markov Model

Figure 3.7: Basic HMM excerpted from the sequence analyst’s bible[?]

Consider the basic output of a HMM profile building algorithm drawn in Figure 3.7.

3.3.4.1 Source

It can be translated into the following GenRGenS input file:
3We recall that the phase equals to n mod Phases, where n is the number of bases previously generated.
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1 TYPE = MARKOV

2 ORDER = 1

3 SYMBOLS = WORDS

4 HMMFREQUENCIES =

St I 100 I J 100 J K 60 J L 40
K K 60 K L 40 L M 100 M End 100 ;

5

St: A 80 C 00 G 00 T 20 ;
I: A 00 C 80 G 20 T 00 ;
J: A 80 C 20 G 00 T 00 ;
K: A 20 C 40 G 20 T 20 ;
L: A 100 C 00 G 00 T 00 ;
M: A 00 C 00 G 20 T 80 ;
End: A 00 C 80 G 20 T 00 ;

Figure 3.8: A Markovian description file for the 1q31.1 area of the first human chromosome

3.3.4.2 Semantics

In 1, we choose a Markovian random generation.

In 2, an order of 1 is defined for the master model.

In 3, we choose to manipulate words as symbols.

Part 4 is a definition for the frequencies of the master Markovian model. For instance, the
probability of choosing L as the next hidden state while in state J is pJL = 40

100 .
Remark: The word START is a keyword and cannot be used as an identifier.

Part 5 contains the different emission frequencies, converted from probabilities to integers.

3.4 Command-line options and additional tools

3.4.1 Markov-specific option: Dead-Ends tolerance

Inside some markovian models, it is theoreticaly possible that some states may be dead-ends,
the frequencies of all candidate symbols summing to 0 in this context. It is then impossible to
emit an extra symbol. That is why GenRGenS always checks weither each reachable state can be
exited. The default behaviour of GenRGenS is to refuse to generate sequences in such a case, as
the generated sequences are supposed to be of the size provided by the user, and it is senseless
to keep on generating letters when a dead-end is encountered. However, this phenomenon may
be intentional, in order for instance to end the generation with a specific word (perhaps a STOP
codon...) if total control over the size can be neglected.

Markovian specific command line option usage:

java -cp . GenRGenS.GenRGenS -size n -nb k -m [T|F] MarkovianGGDFile

• -m [T|F]: Toggles rejection of models with dead-ends on (T) and off (F). Notice that dis-
abling the rejection may result in shorter sequences than that specified by mean of the size
parameter. Defaults to -m T.
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3.4.2 BuildMarkov: Automatic construction of MARKOV description files

3.4.2.1 Tool description

This small software is dedicated to the automatic construction of MARKOV description files from a
sequence. It scans the sequence(s) provided through the command line and evaluates the proba-
bilities of transitions from and to each markov states.

3.4.2.2 Usage

After decompression of the GenRGenS archive, move to GenRGenSDir and open a shell to invoke
the Java virtual machine through the following command:

java -cp . GenRGenS.markov.BuildMarkov [options ] InputFiles

where:

- InputFiles is a set of paths aiming at sequences that will be used for Markov model con-
struction. Required(At Least one).

The following parameters/options can also be specified :

• -d OutputFile: Outputs the description file to the file OutputFile.

• -p n: Defines the number of phases in the markov model. n must be > 0. n = 1 means that
the model will be homogenous. Defaults to n=1.

• -o k: Defines the order of the markov model. k must be ≥ 0. k = 0 means that the model
will be a bernoulli model. Defaults to n=0.

• -v 1: Verbose mode, show the progress of the construction(useful for large files).

3.4.2.3 Input files

The input files can be flat files, that are text files containing a raw sequence, or FASTA formatted
files, that are an alternation of title lines and sequences, and usually look like the figure below.

Title line → > seq1 This is the description of my first sequence.
Seq Def → AGTACGTAGTAGCTGCTGCTACGTGCGCTAGCTAGTACGTCA

CGACGTAGATGCTAGCTGACTCGATGC
> seq2 This is a description of my second sequence.
CGATCGATCGTACGTCGACTGATCGTAGCTACGTCGTACGTAG
CATCGTCAGTTACTGCATGCTCG

Figure 3.9: A typical FASTA formatted file, containing several sequences.

Remark1: Inside a sequence definition, both for FASTA and flat files, BuildMarkov ignores the
spaces, tabulations and carriage returns so that the sequence can be indented in a user-friendly
way.
Remark2: When several sequences are found inside a FASTA file, they are considered as different
sequences and processed to build the Markov model. If the FASTA file contains a sequence split
into contigs, thus needing to be concatenated, then a preprocessing of the file is required to remove
the title lines before it can be passed as an argument to BuildMarkov.
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Chapter 4

The GRAMMAR package:
Context-Free Grammars(CFG)

4.1 Minimal amount of language theory

For many years, the context free grammars have been used in the theoretical languages field They
seem to be the best compromise between computability and expressivity. Applied to genomics,
they can model long range interactions, such as base pairings inside an RNA, as shown by D.B.
Searls[?]. We provide in this package generation algorithms for two classes of models based on
Context Free Grammars: the uniform models and the weighted models. In the former, each se-
quence of a given size has the same probability of being drawn. In the latter, each sequence’s
probability is proportional to its composition. Like stochastic grammars, a weight set can be
guessed to achieve specific frequencies. Unlike stochastic grammars, one can control precisely the
size of the output sequences.

The term context-free for our grammars equals to a restriction over the form of the rules. This
restriction is based on language theoretical properties. A sample of context-free grammar, and
the way a sequence is produced from the axiom can be seen in figures 4.1 and 4.2.

1 S → aSbS
2 S → ε

Figure 4.1: A context free grammar for the well-balanced words

S →
1

aSbS →
1

aaSbSbS →
2

aabSbS →
1

aabaSbSbS →
2

aababSbS

→
2

aababbS →
1

aababbaSbS →
1

aababbaaSbSbS

→
2

aababbaabSbS →
2

aababbaabbS →
2

aababbaabb

Figure 4.2: Derivation of the word aababbaabb from the axiom S. Bold are the freshly produced
letters. Underlined are the letters that will be rewritten at next step.

4.1.1 Grammars and discrete models

In the computer science and combinatorics fields, words issued from grammars are used as codes
for certain objects, like computer programs, combinatorial objects, . . . For instance, the grammar
whose rules are given in figure 4.1 naturally encodes well balanced parenthesis words, if a stands
for a opening parenthesis and b stands for a closing one . A one to one correspondence has also
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been shown between the words generated by this grammar and some classes of trees. As trees are
also used as approximations of biological structures, it is possible to consider the use of context-
free grammars as discrete models for genomic structures.

4.1.1.1 Toward models for structures: Modelling long range interactions

We now discuss the utility of context-free grammars as discrete models for genomic structures.
Most of the commonly-used models do only take into account a smallest subset of their neighbor-
hood. For instance, in a Markov model, the probability of emission of a letter depends only on
a fixed number of previously emitted letters. Although these models can prove sufficient when
structural data can be neglected, they fail to capture the long-range interaction in structured
macromolecules such that RNAs or Proteins. Back to our CFGs, figure 4.2 illustrates the fact
that letters produced at the same step can at the end of the generation be separated by further
derivations. As we claim that dependencies inside a CFG-based model rely on some terminal sym-
bols proximity inside of the rules, CFGs can capture both sequential and structural properties, as
illustrated by figure 4.3.

Figure 4.3: Long range interaction between bases 1 and 2 can be captured by CFGs, as they are
generated at the same stage, and then separated by further non-terminal expansions. The CFG
used here is an enrichment of the one shown in Figure 4.2

4.2 Uniform random generation of words of context-free
languages

The uniform random generation algorithm, adapted from a more general one[?], is briefly described
here. At first, we motivate the need for a precomputation stage, by pointing out the fact that a
stochastic approach is not sufficient to achieve uniform generation. Moreover, controlling the size
of the output using stochastic grammar is already a challenge in itself.
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4.2.1 Stochastic approach does not guarantee uniformity

To illustrate this point, we introduce the historical grammar for RNA structures, whose rules are
described in figure 4.4.

1 S → aTbS
2 S → cS
3 S → ε
4 T → aTbS
5 T → cS

Figure 4.4: A CFG grammar for the RNA Secondary Structures

Now, suppose one wants to generate a word of size 6 uniformly at random from this grammar.
A natural idea would be to rewrite from the axiom S until a word of size 6 is obtained. Therefore,
you have to check wether each derivation yields a word of the desired length, as, for instance, the
S → ε rule produces only the empty word and needs not to be investigated.

Once you have built a set of derivations suitable for a given length, you have to carefully associate
probabilities with each derivation. Indeed, choosing any of the eligible k rules with probability
1/k may end in a biased generation, as the numbers of sequences accessible from any rules are
not equal. This fact is illustrated by the example from figure 4.4, where the two eligible rules for
sequences of size 6 from the axiom S are S → aTbS(1) and S → cS(2).

Figure 4.5: Deriving words of size 6 from S

As illustrated by figure4.5, choosing rules (1) or (2) with equal probabilities is equivalent to
grant the set of words produced by rules (1) and (2) with total probabilities 1/2 and 1/2. As these
sets do not have equal cardinalities, uniform random generation cannot be achieved.

4.2.2 A precomputation stage is needed

That is why the grammar is first analyzed during a preprocessing stage, that precomputes the
probabilities of choosing rules at any stage of the generation. These probabilities are proportional
to the number of sequences accessible after the choice of each applicable rule for a given non-
terminal, normalized by the total number of sequence for this non-terminal.
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Once these computations are made, it is possible to perform uniform random generation by choos-
ing a rewriting using the precomputed probabilities, as shown in figure 4.6.

Figure 4.6: The complete tree of probabilities for the words of size 6.

4.3 Weighted languages for controlled non-uniform random
generation

Although uniform models can prove useful in the analysis of algorithms, or to shed the light on
some overrepresented phenomena, they are not always sufficient to model biological sequences or
structures. For instance, it can be shown using combinatorial tools that the classical model for
RNA secondary structures from figure 4.4 produces on the average one base-pair-long helices (see
[?] or [?]), which is not realistic. Furthermore, substituting the rule 1 with a rule S → akTbkS in
order to constrain the minimal number of base pairs inside an helix only raises the average length
of an helix to exactly k, loosing all variability during the process.

Thus, we proposes in [?] a way to control the values of the parameters of interest by putting
weights πi1 , πi1 . . . πiα on the terminal letters i1, i2 . . . iα. We then define the weight of a sequence
to be the product of the individual weights of its letters. For instance, in a weighted CFG model
having weights πa = 2, πb = 1 and πc = 3, a sequence aacbcacbcbc has a weight of 23.13.35 = 1944.

By making a few adjustments during the precomputation stage, it is possible to constrain the
probability of emission of a sequence to be equal to its weight, normalized by the sum of weights
of all sequences of the same size. Under certain hypothesis, it can be proved that for any ex-
pected frequencies for the terminal letters, there exists weights such that the desired frequencies
are observed. By assigning heavy weights to the nucleotides inside helices, and low ones to helices
starts, it is now possible to control the average size of helices, terminal loops, bulges and multiloops.

To illustrate the effect of such weightings, we consider the previous example from figure 4.5,
and we point the fact that the average number of unpaired bases equals to 58

17 ≈ 3.412 . . . in
the uniform model. By assigning a weight πc = 10 to each unpaired base letter, we obtain the
probabilities of emission for sequences of size 6 summarized in table 4.7.
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Word ω Probability P(ω)
aaccbb 100/total
aacbcb 100/total
aacbbc 100/total
acacbb 100/total
acbacb 100/total
caacbb 100/total
accccb 10000/total
acccbc 10000/total
accbcc 10000/total
acbccc 10000/total
cacccb 10000/total
caccbc 10000/total
cacbcc 10000/total
ccaccb 10000/total
ccacbc 10000/total
cccacb 10000/total
cccccc 1000000/total
Total 1100600

Figure 4.7: Probabilities for all words of size 6 under πc = 10

These probabilities yield a new expectancy for the number of unpaired bases in a random
structure of 506

103 ≈ 4.91 . . .. So, by assigning a weight barely higher than 10(< 12), it is possible to
constrain the average number of the unpaired base symbol c to be 5 out of 6. This property holds
only for sequences of size 6, but another weight can be computed for any sequence size. Moreover,
we claim that, under certain common sense hypothesis, the frequency of a given symbol quickly
reaches an asymptotic behaviour, so that the weight do not need to be adapted to the sequence
size above a certain point.

4.4 Implementing a CFG-based model

This section describes the syntax and semantics of context-free grammar based description files.

4.4.1 Main structure

TYPE = GRAMMAR

[SYMBOLS = ...]

[START = ...]

RULES = ...

[WEIGHTS = ...]

[ALIASES = ...]

Figure 4.8: Main structure of a context-free grammar description file

Clauses nested inside square brackets are optional. The given order for the clauses is mandatory.

4.4.2 Grammar generation specific clauses

Context-free grammar based description files define some attributes and properties of the grammar.
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4.4.2.1 The SYMBOLS clause

SYMBOLS = {WORDS,LETTERS}

Optional, defaults to SYMBOLS = WORDS
Chooses the type of symbols to be used for random generation.
When WORDS is selected, each pair of symbols must be separated by at least a blank character
(space, tabulation or newline). This affects mostly the RULES clause, where the right-hand-sides of
the rules will be made of words, separated by blank characters. This feature can greatly improve
the readability of the description file as shown in the example from figure 4.9.

RULES=
tRNA -> Acceptor Stem Acceptor Site ;
Acceptor Stem -> A Acceptor Stem U ;
Acceptor Stem -> MultiLoop ;
MultiLoop -> Fill D Stem Anticodon Stem Variable Loop T Psi C Stem ;
...

Figure 4.9: The skeleton of a grammar for the tRNA

A LETTERS value for the SYMBOLS parameter will force GenRGenS to see a word as sequence
of symbols. For instance, the right hand side of the rule S->aSbS will decompose into S -> a S
b S if this option is invoked. Moreover, blank characters will be inserted between symbols in the
output.

4.4.2.2 The START clause

START = nt

Optional, defaults to START = n0, with n0 being the left hand side of the first rule defined by the
RULES clause.
Defines the axiom nt of the grammar, that is the non-terminal letter initiating the generation.
This letter must of course be the left-hand-side of some rule inside the RULES clause below.

4.4.2.3 The RULES clause

RULES = nt1 -> s1; nt2 -> s2; ...

Required
Defines the rules of the grammar.
Rules are composed of letters, also called symbols. Each symbol nti that appears as the left-hand
side of a rule becomes a non-terminal symbol, that is a symbol that needs further rewriting. si

are sequences of symbols that can weither appear or not as the left-hand side of rules, separated
by spaces or tabs if SYMBOLS=LETTERS is selected.
If the START clause is omitted, the axiom for the grammar will be nt1.
The characters ::= can be used instead of -> to separate the left-hand side symbols from the
right-hand side ones.

4.4.2.4 The WEIGHTS clause

WEIGHTS = l1 w1 l2 w2 ...
wi ∈ R
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Optional, weights default to 1.
Defines the weights of the terminal letters li.
As discussed in section 4.3, assigning a weight wi to a terminal letter li is a way to gain control over
the average frequency of li. For instance, in a grammar over the alphabet {a, b}, adding a clause
WEIGHTS = a 2 will grant sequences aaab and bbbb with weights 8 and 1, i.e. the generation
probability of aaab will be 8 times higher than that of bbbb.

4.4.3 A complete example

4.4.3.1 Source

The following description file captures some structural properties of the tRNA.

1 TYPE = GRAMMAR

2 SYMBOLS = WORDS

3 START = tRNA

4 RULES =

tRNA -> A Stem A Site ;
A Stem -> A u A Stem a U ; A Stem -> U a A Stem u A ;
A Stem -> C g A Stem c G ; A Stem -> G c A Stem g C ;
A Stem -> MultiLoop ;
A Site -> A A Site ; A Site -> U A Site ;
A Site -> C A Site ; A Site -> G A Site ;
A Site -> ;
MultiLoop -> Fill D Stem C Stem Variable Loop T Psi C Stem ;
Fill -> A Fill ; Fill -> U Fill ; Fill -> C Fill ;
Fill -> G Fill ; Fill -> ;
D Stem -> A u D Stem a U ; D Stem -> U a D Stem u A ;
D Stem -> C g D Stem c G ; D Stem -> G c D Stem g C ;
D Stem -> D Loop ;
D Loop -> Fill ;
C Stem -> A u C Stem a U ; C Stem -> U a C Stem u A ;
C Stem -> C g C Stem c G ; C Stem -> G c C Stem g C ;
C Stem -> C Loop ;
C Loop -> Fill ;
Variable Loop -> Fill;
T Psi C Stem -> A u T Psi C Stem a U ; T Psi C Stem -> U a T Psi C Stem u A ;
T Psi C Stem -> C g T Psi C Stem c G ; T Psi C Stem -> G c T Psi C Stem g C ;
T Psi C Stem -> T Psi C Loop ;
T Psi C Loop -> Fill ;

5 WEIGHTS =

A 0.125 U 0.125 C 0.125 G 0.125

6 ALIASES =

A u = A a U = U C g = C c G = G
U a = U u A = A G c = G g C = C

Figure 4.10: A basic CFG-based model for the tRNA

4.4.3.2 Semantics

In 1, we choose a context free grammar-based model.
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In 2, we use words, a reader-friendly choice for such a complicated(though still a little simplistic)
model.

In 3, we choose the non-terminal symbol tRNA as our starting symbol. Every generated sequence
will be obtained from iterative rewritings of this symbol. Here, this clause has no real effect, as
the default behaviour of GenRGenS is to choose the first non-terminal to appear in a rule as the
starting symbol.

Clause 4 describes the set of rules. The correspondance between non-terminal symbols an sub-
structures is detailled in figure 4.11.

Figure 4.11: Non-terminal symbols and substructures

Note that we use different alphabets to discern paired bases from unpaired ones, which allows
discrimination of unpaired bases using weights in clause 5.
Of course, it is possible to get a more realistic model by substituting the X Loop -> Fill rules
with specific set of rules, using different alphabets. Thus, one would be able to control the size
and composition of each loop.

In 5, we discriminate the unpaired bases, which increases size of the helices. Indeed, unifor-
mity tends to favor very small if not empty helices whereas the weighting scheme from this clause
penalizes so much the occurences of unpaired bases that the generated structures now have very
small loops.

In 6, the sequence’s alphabet is unified by removing traces of the structure.
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4.5 Grammar-specific command line options

During the precomputation stage, GenRGenS uses arbitrary precision arithmetics to handle numbers
that can grow over the size in an exponential way. However, for special languages or small
sequences, it is possible to avoid using time-consumming arithmetics, and to limit the computation
to double variables. This is the purpose of the -f option. The -s option toggles on and off
the computation and display of frequencies of symbols for each generated sequence. Grammar
specific command line options usage:

java -cp . GenRGenS.GenRGenS -size n -nb k -f [T|F] -s [T|F] GrammarGGDFile

• -f [T|F]: Activates/deactivates the use of light and limited double variables instead of
heavier but more accurate BigInteger ones. Misuse of this option may result in division by
zero or non-uniform generation. Defaults to -f F.

• -s [T|F]: Enables/disables statistics about each sequence. Defaults to -s F.
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Chapter 5

The RATIONAL package : Regular
Expressions and PROSITE
patterns

At the bottom of Chomsky’s formal languages hierarchy lies the regular expressions. Taken as
languages theory tools, their main purpose is the description of subsets over the whole set of
sequences that can be parsed and/or generated by very simple machines called finite state automata
over finite alphabets. This class is known to be a subclass of the one that is implemented by
the context-free grammar, but more efficient random generation algorithms are available for it.
Because of their simplicity, they have been extensively used to model families of genomic sequences
differing only on a few positions. In the Prosite database, which is well known database of protein
families and domains, a pattern (or consensus) is built from a given set of sequences, sharing
functional properties. These so-called Prosite patterns are related to regular expressions, as shown
in 5.1.3.
GenRGenS provides a random generation process both for Prosite patterns and regular expressions.
For instance, random sequences drawn with respect to a Prosite pattern supposedly being a
fingerprint for a biological property can be used to test its relevance. One can also generate
simple mutants from a regular expression by introducing some choice places inside the sequence.
Such sequences can used for computation of statistical scores, such as Z-Scores, and P-values.

5.1 Some theory

In this chapter, we will describe the syntax and semantics of the regular expressions. We will then
explain how GenRGenS turns a ProSite pattern into a regular expression associated with the same
language, and show how uniform random generation can be performed from a regular expression.

5.1.1 Regular expressions syntax

A regular expression e is a language description tool, recursively defined as follows :

e =



e′*

e′ | e′′

e′ . e′′

(e′)
ω
ε

Where e1 and e2 are regular expressions, and l stands for any letter among the alphabet.
The ε is a shortcut for an empty word(a word of size 0).
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Formally, a language can be seen as a set of words over a given alphabet. The meanings of
these alternatives are related to the languages denoted by such expressions.

- The disjonction e′ | e′′: The language is the union of the languages associated to e′ and e′′.
Any word of e′ | e′′ belongs to e′ or e′′.

- The concatenation e′ . e′′: The language is the concatenation of the languages associated to
e′ and e′′. Any word among e′ . e′′ can be decomposed into a concatenation of words issued
from e′ and e′′.

- The iteration e∗: Each word of the resulting language is a concatenation of a finite set of
words issued from e.

- (e′): The language is that of e′. This construction is useful to avoid ambiguity. For instance,
the expression a|b.c can denote the language {a, bc} or the language {ac, bc}.

- ω, ε: The only word among the language is the single character l, resp. ε.

Example 1:

e = (A.T.G).((A|T |G|C).(A|T |G|C).(A|T |G|C))∗.(T.A.G|T.G.A|T.A.A)

The regular expression e describes a simplistic model for an ORF, that is a subsequence of a DNA
code starting with a START base triplet ATG and ending with one of the STOP base triplets
TAG/TGA/TAA. It should be noticed that anything can happen between the START and STOP
codon, as the ((A|T |G|C).(A|T |G|C).(A|T |G|C))∗ part of e doesn’t excludes STOP base triplets.

Example 2:
Such expressions are also perfectly fit to model mutants. Suppose you’re given three 5.8S ribosomal
RNA sequences close one to another and aligned as follows.

... C G C C C C G C C G G C G G ...

... A C G C G A C C C G G U G G ...

... C C U G U U . G U G G U G G ...

A regular expression e can then be used to model a family of sequences that contains the three
original sequences, among with some other sequences close to the originals.

e = · · · (C|A).(C|G).(C|G|U).(C|G).(C|G|U).(C|A|U).(G|C|ε).(C|G).(C|U).G.G.(C|U).G.G · · ·

5.1.2 PROSITE Patterns

5.1.2.1 What are PROSITE Patterns ?

PROSITE is a database of protein families and domains.It consists of biologically significant sites,
patterns and profiles that help to identify to which known protein family a new sequence belongs.
It was started in 1989 by Amos Bairoch, and is part of the SWISS-PROT program[?]. It features
text-files structured by tags and carriage-returns. Among these tags, some are used to define
patterns to model sequential aspects behind functional properties. They can be seen as consensus,
as they capture some sequential similarities of a given entry set of sequences.
Further informations can be found at:

http://www.expasy.org/prosite/prosuser.html
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Glycine G
Alanine A
Valine V
Leucine L

Isoleucine I
Proline P

Phenylalanine F
Tyrosine Y
Cysteine C

Methionine M
Histidine H
Lysine K

Arginine R
Tryptophan W

Serine S
Threonine T

Aspartic acid D
Glutamic acid E
Asparagine N
Glutamine Q

Aspartic acid or asparagine B
Glutamic acid or glutamine Z

Unknown X

Figure 5.1: Standard codes for the amino-acids, as proposed by the IUPAC

5.1.2.2 Syntax

Let P be the set of all known amino-acids, abbreviated with respect to the standard one-letter
IUPAC code1 given by figure 5.1.2.2.
Then a PROSITE pattern p can then be recursively defined as follows:

p =



p′-p′′

p′(n)
p′(nmin,nmax)

(p′)
[l]
{l}
x
l

where p′ and p′′ are PROSITE patterns; n, nmin and nmax are positive integers; l is a sequence
of amino-acids encoded with respect to the IUPAC code for the amino-acids. The semantics for
the preceeding alternatives is described below :

- The concatenation p′-p′′: protein codes are derived from patterns p′ and p′′ and concate-
nated.

- The strict iteration p′(n): a protein code is derived from pattern p′ and copied n times.

- The loose iteration p′(nmin,nmax): a protein code is derived from pattern p′ and copied
from nmin to nmax times.

1See http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html for details
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- The identity (p′): This notation is equivalent to p′, and simply means that a sequence is
issued from p′. It can be used to resolve some ambiguities.

- The inclusive disjonction [l]: Any amino-acid code can be choosed from the list l.

- The exclusive disjonction {l}: Any amino-acid code that is not in the list l can be choosed.

- The wildcard x: Any amino-acid, including the unknown X code.

- The amino-acid sequence l: l is a word composed of amino-acid codes.

5.1.3 PROSITE patterns/Rational expressions relationship

As the rational expressions are also defined using concatenations, iterations and disjunctions,
a PROSITE pattern can be considered as a rational expression. The correspondance between
PROSITE elementary operations and rational ones are listed below:

p′-p′′ ⇒ e(p′).e(p′′)
p′(n) ⇒ e(p′)

p′(nmin,nmax) ⇒ e(p′)1 . . . e(p′)nmin.(ε|e(p
′)nmin+1.(ε|e(p

′)nmin+2.( · · · (ε|e(p′)nmax) · · · )))
(p′) ⇒ e(p′)
[l] ⇒ (l1|l2| . . . |l|l|)
{l} ⇒ (k1|k2| . . . |k|l|), ki ∈ IUPACCodes− l
x ⇒ (k1|k2| . . . |k|l|), ki ∈ IUPACCodes

⋃
{X}

l ⇒ l

5.1.4 Uniform random generation among the language denoted by a
Regular Expression

Its is a classical result of the formal language theory that any regular expression can be turned into
an automaton that recognises/generates the same language. Such an automaton can be turned
into a deterministic one, that is an automaton where each accepted word is uniquely coupled
with a walk between two special states (start and final). Thus, instead of expanding a initial
non-terminal symbol the way we did for the GRAMMAR package, we are going to walk inside of this
automaton with carefuly chosed probabilities.

For instance, consider the ORFs inside of DNA. They start with a START codon ATG, then
follows a region of codons that are not STOP-ones, and finally they end with the STOP codon
TAA. This can be modelled by the following expression, whose deterministic automaton is shown
in figure 5.2.

(ATG).(T.A.(C|G|T )|T.(C|G|T ).(A|C|G|T )|(C|G|T ).(A|C|G|T ).(A|C|G|T ))∗.(TAA)

Each sequence is bijectively associated with a single path in the resulting. For instance, the se-
quence ATG AAT TCG GAT TAA corresponds to the state sequence 1-2-3 7-8-9 5-8-9 7-8-9 5-6-10.
As explained in the GRAMMAR package, the choice of the next state must be made using correct
probabilities in order to achieve uniformity. These probabilities are proportional to the amount
of words reachable from the destination state. Once again these numbers can be computed using
simple linear recurrences before the generation stage.

Controlled non-uniform random generation can also be achieved using the same distributions
as within the GRAMMAR package. Indeed, each symbol(letter, IUPAC Code) can be associated with
a weight inside the WEIGHT clause, so that a sequence’s probability will the product of all its letters’
weights, normalized by the sum of all the weights over the sequence set denoted by the expression.
This weight mechanism may be used for instance to increase the proportion of a given base as well
as to favor the occurence of a given structured motif.
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Figure 5.2: Deterministic automaton corresponding to the simple ORF model.

5.2 Implementing a Rational/PROSITE model

5.2.1 Main structure

The main structure of the file is shown in figure 5.3

TYPE = RATIONAL

LANGUAGE = RATIONAL | PROSITE

EXPRESSION = e | p

[WEIGHTS] = ...

[ALIASES = ...]

Figure 5.3: Main structure of a RATIONAL description file

5.2.2 RATIONAL generation specific clauses

5.2.2.1 The LANGUAGE clause

LANGUAGE = RATIONAL | PROSITE

Required
Chooses between rational/regular expression and PROSITE pattern syntaxes for the expression.

5.2.2.2 The EXPRESSION clause

EXPRESSION = e

Required
The rational or PROSITE expression. The syntax for e depends on the value of the LANGUAGE clause,
and has always been described in section 5.1.1 for a RATIONAL choice, and in section 5.1.2.2 for
PROSITE patterns.

5.2.2.3 The WEIGHTS clause

WEIGHTS = l1 w1 l2 w2 ...
wi ∈ R
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Optional, all weights default to 1.
Defines the weights of the terminal letters li.
As discussed in section 4.3 for the GRAMMAR description file, assigning a weight wi to a terminal
letter li is a way to gain control over the average frequency of li.

5.3 Examples

5.3.1 RATIONAL style example

5.3.1.1 Source

We show and explain the GenRGenS description file corresponding to the simple ORF model shown
in figure 5.2.

1 TYPE = RATIONAL

2 LANGUAGE = RATIONAL

3 EXPRESSION = (A.T.G).(T.A.(C’|G’|T)|T.(C’|G’|T).(A|C’|G’|T)|
(C’|G’|T).(A|C’|G’|T).(A|C’|G’|T))*.(T.A.A)

4 WEIGHTS =
5 G’ 2 C’ 2.5

6 ALIASES =
7 C’=C G’=G

5.3.1.2 Semantics

On line 1, we choose the RATIONAL package for random generation.

On line 2, we select a rational/regular expression.

On line 3, the rational expression corresponding to the simple ORF model from figure 5.2. Notice
that the star operator * has highest precedence, so that ”A|B*”⇔”A|(B*)”6=”(A|B)*”. On lines
4 and 5, weights are assigned to the C’s and G’s. A weight higher than 1 for a symbol will increase
its number of occurence within generated sequences. Here, we choose to favor C and G among the
coding area.

On lines 6 and 7, the symbols C’ and G’ were only introduced to allow the assignment of weights
within the coding area. Indeed, we needed the weight not to affect the G from the START codon.
We don’t really need them anymore, so we send them back to their original representations C and
G.

5.3.2 PROSITE style example

We illustrate the use of GenRGenS’ RATIONAL package to generate protein sequences with respect to
a given PROSITE pattern by a real-life example. The pattern CBM1 1 can be found under accession
code PS00562 on expasy’s and is considered as a signature for the carbohydrate binding type-1
domain. Figure 5.4 shows its entry in the PROSITE database.

5.3.2.1 Source

The PA line of the PROSITE file can be inserted directly into the EXPRESSION clause, without
the terminal dot, resulting in the following description file:
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ID CBM1_1; PATTERN.
AC PS00562;
DT DEC-1991 (CREATED); DEC-2004 (DATA UPDATE); JAN-2006 (INFO UPDATE).
DE CBM1 (carbohydrate binding type-1) domain signature.
PA C-G-G-x(4,7)-G-x(3)-C-x(4,5)-C-x(3,5)-[NHGS]-x-[FYWM]-x(2)-Q-C.
NR /RELEASE=49.0,207132;
NR /TOTAL=28(25); /POSITIVE=28(25); /UNKNOWN=0(0); /FALSE_POS=0(0);
NR /FALSE_NEG=1; /PARTIAL=0;
CC /TAXO-RANGE=??E??; /MAX-REPEAT=4;
CC /SITE=1,disulfide; /SITE=7,disulfide; /SITE=9,disulfide;
CC /SITE=16,disulfide;
CC /VERSION=1;
DR Q99034, AXE1_TRIRE , T; Q00023, CEL1_AGABI , T; Q9HE18, FAEB_PENFN , T;
DR Q12714, GUN1_TRILO , T; P07981, GUN1_TRIRE , T; P07982, GUN2_TRIRE , T;
DR Q12624, GUN3_HUMIN , T; O14405, GUN4_TRIRE , T; P43317, GUN5_TRIRE , T;
DR P46236, GUNB_FUSOX , T; P46239, GUNF_FUSOX , T; P45699, GUNK_FUSOX , T;
DR O59843, GUX1_ASPAC , T; P15828, GUX1_HUMGT , T; Q06886, GUX1_PENJA , T;
DR P13860, GUX1_PHACH , T; Q9P8P3, GUX1_TRIHA , T; P62695, GUX1_TRIKO , T;
DR P62694, GUX1_TRIRE , T; P19355, GUX1_TRIVI , T; Q92400, GUX2_AGABI , T;
DR P07987, GUX2_TRIRE , T; P49075, GUX3_AGABI , T; P46238, GUXC_FUSOX , T;
DR P50272, PSBP_PORPU , T;
DR P38676, GUX1_NEUCR , N;
3D 1AZ6; 1AZH; 1AZK; 1CBH; 2CBH;
DO PDOC00486;

Figure 5.4: PROSITE entry for pattern CBM1 1

1 TYPE = RATIONAL

2 LANGUAGE = PROSITE

3 EXPRESSION =
4 C-G-G-x(4,7)-G-x(3)-C-x(4,5)-C-x(3,5)-[NHGS]-x-[FYWM]-x(2)-Q-C

5.3.2.2 Semantics

On line 1, we choose the RATIONAL package for random generation.

On line 2, we select a PROSITE pattern expression.

On line 3 and 4, the PROSITE pattern.

5.4 Rational expressions-specific command line options

The default behaviour of GenRGenS is to generate sequences of the size provided through the -size
command line option. However, it can also be useful to generate among every words possibly
drawn from a PROSITE expression, regardless of the size. This is the purpose of the -i option. The
sequences are still drawn at random.

Rational specific command line options usage:

java -cp . GenRGenS.GenRGenS -size n -nb k -i [T|F] PrositeGGDFile

• -i [T|F]:When T is selected, ignores the size parameter, so that the sequences are drawn
at random among the finite set corresponding to the PROSITE pattern defined in the file
PrositeGGDFile. Generates sequences of the given size otherwise.
Defaults to -i F.
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Chapter 6

The MASTER package : Hierarchical
models

Sometimes, true uniformity or total control over the distribution of the sequences is not needed,
and the hierarchical aspects of some models can be captured. The MASTER generation is then a good
tradeoff between computational efficiency and expressivity. The main principle is to generalize the
idea behind hidden Markovian to any type of master and hidden states models. At first, a sequence
is derived from a master description file, having a length passed to the main generation engine
of GenRGenS. Then each of its symbols can either or not be defined non-terminal and rewritten
using another description file coupled with a size distribution.

6.1 Hierarchical models: Principles

This class of models has been included to allow different models to be combined. For example, a
simple model for the Intergenic/ORF alternation could describe the framed aspect of the ORFs
(using the Framed Markov model) as well as the lack of a start codon in the intergenic areas (using
the Rational expression model). This can be modelled using our hierarchical models.

Hierarchical models comprise a main master model, a set of auxiliary models and a set of rules
defining how to rewrite letters of the master sequence using the auxiliary models. This can also
be seen as a generalisation of the HMMs, as the hidden state sequence can be computed inde-
pendently from the letters arising from each hidden state. A sequence length distribution can be
provided with each rule through an expressive language, enabling complex constraints such as the
overall length of the sequence is a multiple of 3 to be expressed.

6.1.1 Saving time and space

It is noticeable that this approach to random can save some time and space while using models
that require more than linear time and space complexities. Indeed, if n1 and n2 are the sizes of
the two parts of an expected sequence then n1+ε

1 + n1+ε
2 < (n1 + n2)

1+ε, for all ε > 0.

6.1.2 Ambiguity and bias

It also implies a small loss of control over the distribution of sequences. For instance, a model
built up by concatenating two sequences chosen uniformly is unlikely to be uniform itself. More
generally, let M1 and M2 be two models, a sequence s issued from the model M1.M2 may ad-
mit different decompositions s = α1.β1 = α2.β2 = . . . = αk.βk. Its global probability is then
p(s|M1.M2) =

∑k
i=1 p(αi|M1)p(βi|M2), which induces a bias if uniformity is aimed at. Further-
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more, as it is impossible to constrain the ending of a Markov chain, the concatenation of two
sequences issued from some Markovian models may induce some bias at the cutpoint.

6.2 Implementing a hierarchical model

This section describes the syntax and semantics of MASTER description files.

6.2.1 Main structure

TYPE = MASTER

[SYMBOLS = ...]

MAINFILE = "MainFilePath"

WHERE =
s1 : "AuxFile1Path" SIZE = law1
s2 : "AuxFile2Path" SIZE = law2
...

Figure 6.1: Main structure of a MASTER description file

Clauses nested inside square brackets are optional. The given order for the clauses is mandatory.

6.2.2 Master generation specific clauses

A hierarchical model must define the way symbols from the main sequence are to be expanded.

6.2.2.1 The SYMBOLS clause

SYMBOLS = {WORDS,LETTERS}

Optional, defaults to SYMBOLS = WORDS
Chooses the type of symbols to be used for random generation.
When WORDS is selected, each pair of subsequent symbols is separated with spaces during the
generation.

6.2.2.2 The MAINFILE clause

MAINFILE = "MainFilePath"

Required
Defines the main random generation model description file. The file must be accessible by ap-
pending the string MainFilePath to the current directory.
A so-called master sequence is generated from this description file for further rewritings. Its length
equals to the size provided to GenRGenS.
Remark: The overall size of the sequence generated from a MASTER model is usually not related
to the size parameter provided to GenRGenS.

6.2.2.3 The WHERE clause

WHERE =
s1 : "AuxPath1" SIZE = var1

s2 : "AuxPath2" SIZE = var2 ...
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Required
Defines the way to expand each occurences of a symbol si from the main file to sequences issued
from AuxPathi, having size given by the distribution lawi.
Each si is a symbol that must belong to the vocabulary of the master file, but not necessarily to
the sequence generated from it.
AuxPathi is the path to a description file that must be read-access enabled.
vari is a description of the random value associated to the size of this symbol’s expansion.

6.2.2.4 The SIZE definitions

A size can either be a constant, one of the predefined random variate generator, or an arithmetic
expression defined recursively.

- integer or float constant: Generates a constant sequence size. If a non-integer size is specified
at top-level, the value is rounded to the closest integer value, as it would be have been using
round.

- +,-,*,/,^ : Classical binary arithmetic operators, acting on real numbers and returning a
real value.

- (e): An expression nested by parenthesis is evaluated separately and priorly from its context.
It can be used to overrule usual operator precedences. Ex : 7+3*5 6= (7+3)*5

- pow(e1,e2): Functional form of the power operator ^ , returns ee2
1 . If first argument e1 is

omitted, returns 2e2 .

- log(e1,e2): Returns loge1
(e2). If e1 is omitted, returns log2(e2).

- floor(e): Returns the closest integer value smaller than e.

- round(e): Returns the closest integer to e.

- ceil(e): Returns the closest integer value greater than e.

- min(e1,e2): Returns the smallest number among {e1, e2}.

- max(e1,e2): Returns the smallest number among {e1, e2}.

- length: Returns the former length of the master sequence. Equivalent syntax: size or N.

- normal(m,sd): Generates a pseudorandom real value obeying a normal law having mean
m and standard deviation sd. Equivalent syntax: gaussian(m,sd).

- uniform(low,up): Generates a pseudorandom integer value uniformly distributed over
[low, up) (e.g. [low, up−1]). If low is omitted, defaults to 0. Equivalent syntax: random(lowm,up).

- var(ω,e): Declares a variable ω, whose value always equals the most recent evaluation of e.
Once declared, ω can be used anywhere among the SIZE declaration parts of the ggd. Each
variable carries the value 0 as long as it is not assigned.

6.2.3 Capturing Dependencies between sequences size

MASTER package introduces a way to capture the dependency between two subsequences’ size. A
typical dependency that one may find useful would be : The total size of the two subsequence is
100nt, although the first’s size has been observed to vary with respect to a given distribution. The
MASTER package offers the possibility to declare variables, which is a powerful and delicate feature.
Inside of a MASTER description file, simply enclose any expression of a length definition inside a
VAR declaration. Ex.:
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TYPE = MASTER
MAINFILE = "MainFile.ggd"
WHERE
A : "AuxFile1.ggd" SIZE VAR(X,UNIFORM(0,5)+1)
B : "AuxFile2.ggd" SIZE MAX(5-X,0)

In this example, each evaluation of the random variable UNIFORM(0,5)+1 is assigned to a
variable named X. Each evaluation of the expression MAX(5-X,0) will then make use of the current
value of X. This is likely to trick one into bad assumptions over the resulting sequences, for instance
if the sequences issued from MainFile.ggd do not only present simple A-B alternations. Suppose
that MainFile.ggd contains an implementation of a simple RATIONAL model, based on the regular
expression (A|B|m)*, that AuxFile1.ggd and AuxFile2.ggd are RATIONAL models based on the
regular expressions T* and U*, and that a sequence ω is issued from MainFile.ggd. Rewritings
according to the SIZE definitions above result in the following sequence ω′. It can be seen in figure

ω m A1 m m m B1 m m m m A2 m m B2 m m B2′ m m m A3 m m A4 m m m B4 m
X ? 1 − − − − − − −→ 3 − − − − − − − −→ 5 −→ 1 − − − − →

MAX(5-X,0) ? 4 − − − 4 − − −→ 2 − − 2 − − 2 − −→ 0 −→ 4 − − − 4 →

⇒ ω′ = mT1mmmUUUU1mmmmTTT2mmUU2mmUU2′mmmTTTTT3mmT4mmmUUUU4m

Figure 6.2: Dependencies during generation stage

6.2 that a variable’s assignment can either be used by several subsequent dependant variables
assignments, as in A2 → B2 . . . B2′ , or be ignored like A4. Therefore, this feature should only be
used when the sequences issued from MainFile.ggd are sufficiently constrained, for instance by
showing a strict assignment/use alternation such as the regular expression m*(A m* B m*)*.

6.3 A complete example

6.3.1 Source

This example is inspired by a simple model for stem-loop ribosomal -1 frameshifting sites. A
frameshitfting RNA causes the ribosome to slip over a specific sequence/structure motif and shift
to another phase. A model inspired by the HIV-1 stem-loop frameshifting site is detailled in figure
6.3. The Heptamer part can be modeled with a regular expression, similar to a mutation model.
The Spacer will use a Bernoulli model(model of order 0). The Stem Loop requires the full power
of a context free grammar. Lastly, the frame shift sites are drowned into an ocean of coding
RNA(symbol Fill) modelled again by a markov model.

1 TYPE = MASTER

2 SYMBOLS = WORDS

3 MAINFILE = "frameshift.ggd"

4 WHERE =
5 Heptamer : "heptamers.ggd" SIZE = 7
6 Spacer : "spacers.ggd" SIZE = VAR(X,5 + UNIFORM(0,3))
7 Stem Loop : "stem loops.ggd" SIZE = VAR(Y,24 + UNIFORM(0,9))
8 Fill : "junk.ggd" SIZE = 3*FLOOR((NORMAL(300 , 100)+X+Y+7)/3)-X-Y-7

Figure 6.4: A MASTER description file for the frameshift model from figure 6.3.1
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Figure 6.3: A simple stem-loop frameshifting model. X stands for any base, Y means A or U and Z
is anything but C

File frameshift.ggd File heptamers.ggd
TYPE = MARKOV

ORDER = 1

SYMBOLS = WORDS

START = Fill 1

FREQUENCIES =
Fill Heptamer 1
Heptamer Spacer 1
Spacer Stem Loop 1
Stem Loop Fill 1

TYPE = RATIONAL

LANGUAGE = RATIONAL

SYMBOLS = WORDS

EXPRESSION =
(A|U|C|G).(A|U|C|G).(A|U|C|G).
(A|U).(A|U).(A|U).(A|U|G)

File spacers.ggd File stem loops.ggd.ggd

TYPE = MARKOV

ORDER = 0

SYMBOLS = WORDS

FREQUENCIES =
A 10 U 15
C 20 G 25

TYPE = GRAMMAR

RULES =
S -> A S U ; S -> U S A ;
S -> C S G ; S -> G S C ;
S -> L ;
L -> A’ L ; L -> C’ L;
L -> G’ L ; L -> U’ L;
L -> ;

WEIGHTS =
A’ 0.4 C’ 0.5 G’ 0.5 U’ 0.3

ALIASES =
A’=A G’=G C’=C U’=U

File junk.ggd
TYPE = MARKOV

ORDER = 0

SYMBOLS = WORDS

FREQUENCIES =
A 20 C 25
C 30 U 35

Figure 6.5: Auxiliary description files
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6.3.2 Semantics

On line 1, a MASTER generator is choosed.

On line 2, we use words as symbols to avoid confusion.

On line 3, we define the main description file, whose content is listed in figure 6.5.

On line 5, we ask the generator to rewrite each occurence of the symbol Heptamer with a se-
quence issued from heptamers.ggd, having size 7.

On line 6, we ask the generator to rewrite each occurence of Spacer with a sequence issued
from spacers.ggd, using a size uniformly distributed over [5, 7). Note that UNIFORM(5,8) is an
equivalent syntax for 5 + UNIFORM(0,3). After each evaluation, the resulting size is stored inside
a variable X.

On line 7, we ask the generator to rewrite each occurence of Stem Loop with a sequence issued
from stem loops.ggd, using a size uniformly distributed over [24, 33). After each evaluation, the
resulting size is stored inside a variable Y.

On line 8, we ask the generator to rewrite each occurence of Fill using a size that depends
on the previous assignments. The somehow cabalistic formula for the size of Fill’s expansion is
just a little trick to ensure that the Heptamer motif always occurs on phase 0. That is, NORMAL(300
, 100)+X+Y+7 must be a multiple of 3. So, by dividing by 3 and rounding to the closest smaller
integer and then multiplying by 3, we get the closest sum of the sizes of Heptamer, Spacer,
Stem Loop and Fill that is divided by 3 without a remainder. It suffices then to substract 7
(Heptamer’s size), X (Spacer’s size) and Y (Stem Loop’s size), to get an elligible size for Fill.
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