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Abstract. We present a new alignment algorithm for pairwise comparison of
RNA secondary structures represented as arc-annotated sequences. This allows
to perform biologically relevant operations on RNA structures (as pairing or
unpairing nucleotides) in a natural and realistic way. We describe three variants
of the algorithm: global alignment, local alignment, and motif searching. All
the variants run in O(n?) space and O(n?*) time in the worst case, whereas the
general edit distance is known to be NP-complete [2]. Incidentally, we improve
the time complexity of the tree local alignment algorithm of Hochsmann et
al. [9] by a factor n. Additionally, our experiments strongly suggest an average-
case complexity in #(n?) for our algorithms. Finally, experiments on real RNA
structures are reported.

Résumé. Nous présentons un nouvel algorithme d’alignement pour la com-
paraison deux a deux de structures secondaires d’ARN représentées par des
séquences arc-annotées. Cet algorithme permet d’exécuter des opérations per-
tinentes d’un point de vue biologique sur des structures ’ARN (par exemple
créer ou détruire un appariement de nucléotides) d’une maniere naturelle et
réaliste. Nous décrivons trois variantes de cet algorithme : I’alignement global,
I’alignement local, et la recherche d’un motif. Toutes ces variantes s’exécutent
en O(n?) en espace et O(n?) en temps dans le pire des cas, alors que le probleme
de distance d’édition est NP-complet [2]. Par ailleurs, nous améliorons la com-
plexité en temps de l'algorithme d’alignement local d’arbres de Hochsmann
et al. [9] d'un facteur n. De plus, nos expérimentations suggerent fortement
une complexité moyenne en temps de nos algorithmes en 6(n?). Enfin, nous
présentons en annexe des résultats d’expériences sur des structures d’ARN
réelles.






1 Introduction

A RNA molecule is a linear polymer in which the nucleotides are linked together by means of
phosphodiester bonds. Although generally an RNA molecule has only a single polynucleotide
chain, it folds on itself to form spatial structures. Structural features of RNAs are important
in the molecular mechanism involving their functions. The presumption, of course, is that to a
preserved function there corresponds a preserved molecular conformation. Therefore the ability to
compare RNA molecules is particularly useful. Since two different sequences can produce similar
structures, comparison must take into account not only the sequence but also the structure of the
molecule. Here we focus on the secondary structure, which is composed of the sequence together
with the set of bonds connecting paired bases. Furthermore, we assume a model where there is
no so-called pseudoknot in the secondary structure. Roughly, this means that for the secondary
structure, the bonds are non-crossing.

The main objective of the paper is to present a new polynomial algorithm for comparing
secondary structures. It involves realistic basic edit operations on RNA structures, such as pairing
or unpairing bases, or altering an arc. Additionally, and contrary to current algorithms, the score
of our edit operations are mutually independent. In Section 2, we first recall the main approaches
used for comparing RNA structures. In Section 3, we present a new global alignment algorithm
and we study its complexity. We notably prove that its worts-case time complexity is in O(n?),
and experimental evidence strongly suggests that it runs in 6(n?) in average. In Section 4 we
develop some variants for local alignment and motif searching, whose complexity is the same as
the global alignment. In section 5 we give some applications and we compare experimental results
of our algorithm. Finally, we outline some perspectives in Section 6.

2 RNA structure comparison

There are two well acknowledged models for representing RNA structures: ordered rooted trees
and arc-annotated sequences. We present both formalisms in further details.

From a historical perspective, RNA secondary structures were first encoded by labeled ordered
rooted trees [19,16]. Figure 1 gives such an example. The tree representation relies on two main
edit operations:

— Substitution: The node’s label is renamed (mismatch), or possibly not (match).
— Insertion / Deletion: When a node is deleted, all its children become the children of its parent.
Insertion is the symmetrical operation of deletion.

Each operation is given a score. Given two trees, the edition problem consists in finding the best
scoring sequence of operations that changes one tree into the other one. The first efficient edition
algorithm for ordered rooted trees is due to Zhang and Shasha [17]. It runs in O(n*) worst-
case complexity, and in O(n?) average-case complexity [5], for two trees of size n. Some authors
have given variants of the algorithm which improve the worst-case complexity [12,6]. Jiang et al.
also introduced the tree alignment which is based on a common super-tree. The tree alignment
algorithm runs in O(n?*) worst-case complexity [11].

From a biological point of view, the evolutionary operations that are associated to the tree
representation are not realistic. Indeed, there are some basic modifications in RNA structures
that cannot be directly translated into a tree operation. For example, when comparing two RNA
structures, it often happens that two nucleotides are paired in one structure and get unpaired
in the other one. A likely explanation is that one of the two nucleotides has been mutated, so
that they can be paired in the first structure but not in the second one. In the corresponding
tree, no single operation can represent this simple evoluationary event: this should be done by
deleting the node that corresponds to the pair, then inserting two new nucleotides. Figure 2 gives
such an example. These observations lead to consider a richer model with more expressive edit
operations on RNA structures: arc-annotated sequences, introduced initially in [7] and further



Fig. 1. A secondary structure without pseudoknot and its associated tree according to the classical rep-
resentation (middle), and according to [9] (right).
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Fig. 2. Arc-breaking and arc-altering and the corresponding changes in a tree. Each of these operations
corresponds up to 3 tree-editing operations

studied in [10,18]. The sequence is represented as is, and an arc is drawn between the two bases
of any base-pair. Following [10], we consider the following edit operations.

— base-match, base-mismatch, arc-match, arc-mismatch which corresponds to the substitution
of a node in the tree representation,

— base-deletion, base-insertion, arc-removing, which corresponds to the deletion or insertion of
a node in the tree representation,

— arc-breaking: the arc is deleted but not its extremities,

arc-altering: the arc is deleted with one of its extremities.

Arc-breaking and arc-altering are two new operations that have no simple counterpart in tree
editing. Figure 2 gives an example of arc-breaking and arc-altering operations on trees and on
arc-annotated sequences. The set of RNA secondary structures without pseudoknots exactly cor-
responds to the set of nested arc-annotated sequences, that is arc-annotated sequences without
crossing arcs. The algorithmic complexity of the edition problem of two arc-annotated sequences
has been studied in its full generality by Jiang et al. in [10]. They stated that the problem is NP-
complete as soon as one allows crossing arcs in at least one of the arc-annotated sequences. Later,
Blin et al. in [2] proved that the problem is NP-complete even if both arc-annotated sequences
are nested. To circumvent this difficulty, several authors have recently investigated alternative
solutions. Guignon et al. give a polynomial algorithm for simple non-branching stems, and then
combine couples of matching stems into a tree [8]. Hochsmann et al. use a clever tree representa-
tion of RNA [9], which is implemented in the RNAForester software. Each pair of nucleotides is
encoded by three nodes: an inner one which represents the arc and two leaves which represent the
nucleotides (see Figure 1). Thus, the arc-breaking operation consists in deleting the inner node,
and the arc-altering operation consists in deleting it and one of its children. Unfortunately, this ap-
proach has two drawbacks. First, it increases the size of the tree, by adding supplementary nodes.
Secondly, the encoding involves some constraints in terms of relations between the edit operations.
For example, the score of an arc-removing must be equal to the score of an arc-breaking plus the
score of two base deletions. This can lead to unexpected edit scripts, such as depicted in Figure
3.
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Fig. 3. The first alignment corresponds to the application of a single edit operation: one arc-removing.
The second alignment results from three distinct evolutionary operations: one arc-breaking and two base
deletions. For tree-derived models, such as RN Aforester, those two alignments have the same score, whereas
the first alignment is more relevant.

In this paper, we present a new way to compare arc-annotated sequences including arc-breaking

and arc-altering operations that can apply to any kind of nested arc-annotated sequences. The
idea is that alignment can be seen as a common super-structure that is obtained by adding bases
and arcs in the two initial arc-annotated sequences. Formally, the problem is defined as follows:
Input: two nested arc-annotated sequences S; and S5.
Question : finding the nested arc-annotated sequence S3 of optimal score such that both S; and
Ss can be deduced from S3 by a series of deletion and renaming operations. The score of S3 is
defined as the sum of the scores of edit operations necessary to transform Ss3 into S5 and the scores
of edit operations necessary to transform S3 into S;.

For plain sequences (without arcs), this definition coincides with the usual alignment on strings.
It can be seen as a generalization of the tree alignment of Jiang [11], with more flexibility in the
edit operations. It should also be noticed that it encompasses the model of RN Aforester: Each valid
alignment provided by RNAforester is a valid alignment in this new scheme, since RNAforester
is based on tree alignment. The difference is that arc-breaking and arc-altering operations are
now defined as independent operations that do not result from combination of initial operations
on nodes. Consequently, there is no restriction on the values of the scores of edit operations, as
mentioned previously.

We shall show in the next section that the alignment problem for nested arc-annotated se-
quences can be solved in polynomial time. Furthermore, we achieve the same asymptotic com-
plexity as for the tree alignment. This is a valuable advance compared to the NP-completeness of
edit distance problem for the same edit operations. The table below summarizes the algorithmic
complexities of comparing trees and nested arc-annotated sequences.

Ordered rooted trees|Nested arc-annotated sequences
Edition O(n3logn) [12] NP-complete [2]
Alignment O(n%) [11] O(n?) (this paper)

Compared to the general edit distance, the alignment model for arc-annotated sequence yields the
same restrictions as the tree alignment compared to the tree edit distance. Insertion operations on
bases and on arcs should be performed before any deletion operation. In practice, when considering
RNA structures, it amounts to prohibit internal rearrangements in the core of the structure when
these rearrangements are not accompanied by subsequent changes in the surrounding stem loops.
However, this kind of mutational event seems very unlikely. Figure 4 shows an example where edit
distance and alignment give rise to two different mappings.

3 Global Alignment algorithm

3.1 Operation scheme

To compare RNA structures, we need a score system, or alternatively a distance, which measures
the similarity (or the difference) between the structures. These two versions of the problem —score
and distance— are equivalent. In the following, we will tackle it in terms of score. Ideally the score
should fit with the evolutionary distance between the two molecules. The nearest the molecules
are in an evolutionary point of view, the greatest the score must be.
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Fig. 4. Alignment versus edit distance. The picture on the left corresponds to an optimal mapping for the
general edit distance, whereas the picture on the right corresponds to an optimal mapping for alignment.
In the latter case, the substructure G-U is not recognized as a conserved substructure and has to be
duplicated.

As mentioned before, we consider the following edit operations: base-match and base-mismatch,
whose score is w,, base-deletion and base-insertion, whose score is wg, arc-match and arc-mismatch,
whose score is w,,, arc-removing, whose score is w,, arc-breaking, whose score is wy, and arc-
altering, whose score is w,. For the sake of readability, the last three operations are slightly
different from the usual ones defined in [10]. We consider that any operation on an arc concerns
its incident bases too, and the operations and their associated scores are defined in such a way
that any nucleotide is subject to one operation at most. Thus for example, in our scheme the
arc-breaking operation may correspond up to three operations in the usual model: an arc-breaking
and up to two base substitutions. And the score of an arc-breaking will be equal to the sum of
the scores of the corresponding operations in the usual model. On the other hand, any operation
of the usual model can be performed using one of our operations. Hence our model is exactly
equivalent to the usual one: any sequence of operations can be translated from one model to the
other, whatever the scoring scheme is.

3.2 Notation

Although the operations are defined on arc-annotated sequences, we choose, for the sake of read-
ability, to write the algorithms in term of trees, using the usual representation detailed in Section 2.
We write a(f) a tree which is composed of a root v and a subforest f. If the subforest in empty,
the root is an isolated node denoted by b (as it represents an unpaired base). A forest is defined
recursively by concatenating a tree and a forest: a(f) ot or bot, where t is a forest and «(f) and
b are trees as defined above.

3.3 Global alignment

Our algorithm is based on dynamic programming. In the following, we state the recurrences which
enable to compute the alignment score of two trees or two subforests, as soon as the alignment
scores of their respective subcomponents are known. Essentially, the general principle is the same
as in [11], but several particular cases are needed for the arc-breaking and arc-altering operations:
Isolated nodes within a subforest play a particular role because they can be involved in either of
these operations.

Align(a(f), o/ (")) =
wm (o, o) + Align(f, ) arc-(mis)match
max § wy(a) + max{Align(u, f") + Align(v,e)luov = a(f)}  arc-removing
wy () + max{Align(f,u’) + Align(e,v")| v’ o v = o/ (f’")} arc-removing

Align(a(f) ot,d/(f') ot') =

Align(a(f), o' (")) + Align(t,t') arc-(mis)match
wy (o) + max{Align(u, f') + Align(v,t')|juov = a(f) ot} arc-removing
max { wy(a) + max{Align(f,u") + Align(t,v")| v’ ov' = /(") o t'} arc-removing

wq (o, b)) + max{Align(f,u") + Align(t,v")| v’ ot/ o v’ = &/(f") o t'} arc-altering
wq (o, b) + max{Align(u, f') + Align(v,t')Juobov = a(f) ot}  arc-altering



Align(bot,a/(f)ot') =

wq(b) + Align(t, o/ (f') o t’) base-deletion

wy (o) + max{ Align(u, f') + Align(v,t')|jucv =bot} arc-removing

max wb(a b, ba) + max{ Align(u, f') + Align(v,t')Jjuobyov =t} arc-breaking
we (o, b) + max{Align(u, f') + Align(v,t')| uov =t} arc-altering
we (e, be) + max{Align(u, f") + Align(v,t')| wo by o v = b ot} arc-altering

Align(a(f)ot,b/ ot’) =

a(b") + Align(a(f) o t,t') base-deletion
(@) + max{Align(f,u’) + Align(t,v")|u' o0 =V o t'} arc-removing
max § wy(a, b, by) + max{Align(f,u’) + Align(t,v")|u' o by ov' =t'}  arc-breaking
wq (e, b ) + max{Align(f,u") + Align(t,v")| v’ o v’ =t} arc-altering
(a, b)) + max{Align(f,u") + Align(t,v")| v’ o by 0 v = V' o t'} arc-altering
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Align(bot,b' ot') =
wq(b) + Align(t,b’ ot') base-deletion
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+ Align(bo t,t") base-deletion
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b') + Align(t, t’) base-(mis)match
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3.4 Trace

Let A and B be two trees. During the calculation of their alignment score, we fill a score ma-
trix in which the cells are indexed by the pairs of subforests of A and B which are involved in
the algorithm. At each step of the computation, we add in the matrix the score of the current
comparison and a link towards the precedent score or the two precedent scores (depending on
the chosen operation) which yield the current score. The score for aligning A and B is given by
Align(A, B). The alignment is given by a path in the matrix (the trace), that follows a set of those
links between a score and his precedent score(s), beginning at Align(A, B). Contrary to sequence
alignment, where the trace is linear, here it is similar to a tree, where all the branches meet in
Align(e,¢).

3.5 Worst-case complexity

Let us state some definitions. The degree of a node v, denoted d,,, is its number of children. The
width of a forest f, denoted w(f), is the number of trees it contains. A closed subforest is a
subforest containing consecutive sibling trees, i.e. trees whose root nodes are consecutive brothers.
A complete subforest is a forest containing all the subtrees which have the same parent. A suffiz
subforest is a closed subforest which contains the rightmost tree of a complete subforest. Given
a tree T, we write Closed(T), Suffix(T'), Subtree(T"), respectively, for the set of closed subforests,
the set of suffix subforests, the set of subtrees whose parent is the root of T. The two following
lemmas are useful for the following.

Lemma 1. Let A and B be two trees having, respectively, na and ng nodes, £4 and £g leaves.
The pairs of forests appearing in the dynamic programming decomposition are ezxactly those of
(Suffix(A) U Subtree(A)) x Closed(B) plus those of Closed(A) x (Suffix(B) U Subtree(B)).

This proves by induction on the sizes of A and B. For short, let us write St = Suffix(7T")USubtree(T')
and Cp = Closed(T).

Lemma 2. For any tree T, we have
|Sp| = np +4r -1, Crl = Yoer (*37)
vl d+2
ZfGSTw('f) _ET+ZUGT( +)’ ZfGCTw(f) :ZWGT( 3+)

The following proposition estimates the number of operations needed to compare two trees.



Proposition 1. Let A and B be two trees having, respectively, na and ng nodes, £4 and £p
leaves. The number of operations necessary to compute Align(f,g) is a O(N(na,np,fa,¢g)), where
N(na,np,la,lp) =

(Zoen (") (Cat Soea (*51) + (ra + 4= 1) Lyep (%5?)
g +ls = 1) Ceq (M57) + (ZveA (d";l)) (gB +2ven (d?l)) :

Sketch of proof. For each pair of subforests (f,g) € A x B, the number of operations neeeded
to compute Align(f,g) is a O(w(f) +w(g)). From Lemma 1, the number of operations needed to

compute Align(A, B) is Q(Z(f,g)GSA ey (W(f) + w(g)) + Z(f,g)echsB (w(f) + w(g))), which is

0(ICs| ZfeSA w(f)+84 decB w(g)+[Sk| ZfeCA w(f)+1Cal desB w(g)). Applying Lemma 2
gives the result. O

Now we can state the worst-case complexity of the algorithm.

Theorem 1. Let A and B be two trees having, respectively, na and ng nodes. Let da and dp
be, respectively, the maximum degree of A and of B. Then the number of scores to be computed
is O(nang(da + dg) and the number of operations needed to compute them is Align(f,g) is
O(TLATLB(dA + dB)Q).

Sketch of proof. From Lemma 2 we get

|Sr| < 207, Cr| < nridrl)
nrdr(d
dresy W) <2npdr . Y pce, w(f) < T(Q rl)

Putting this in Lemma 1 and in Proposition 1 gives the result. O

This means that aligning trees with bounded degree, which is a reasonable assumption when
working with RNA structures, yields an overall quadratic time complexity. The above corollary
follows:

Corollary 1. The space complexity of aligning two trees with n nodes is O(n®); the time com-

plexity is O(n?).

Thus the worst-case complexity is of the same order as the usual tree alignment algorithm [11].
Additionally, as announced is Section 4.1, we reduce by a factor n the time complexity of the

local tree alignment algorithm given in [9], though we use a larger set of operations. Of course,

reducing our set of operations as in [9] would give the same O(n?*) time complexity.

3.6 Average-case complexity

We experimentally estimated the average complexity of the algorithm by randomly generating
large trees and using Proposition 1. Thanks to the GenRGenS software [15], 1000 trees of each
size n = 50, 150, 200, 250, ..., 2000 were generated uniformly and randomly, giving 500 pairs
of random trees for each size. Then the number of operations needed by the algorithm was com-
puted for each pair, according to Proposition 1, and its mean value was computed within each
of the size 41 different sizes (including size 0). Results are given in the graph of Figure 5. We
carried out two interpolation methods on these data: polynomial interpolation and least squares
(with the Maple function CurveFitting[Interactive]). We made the hypothesis that the complexity
would be between O(n?) and O(n*), and would possibly contain a (logn)* factor. Our results
strongly suggest that the average complexity is in §(n?). Indeed, the far best fit is got with
f(n) = 22.09717440n2 — 67.224600n, computed by polynomial interpolation on 3 experimental
values. The maximum relative error between the values of this function and the 48 remaining ex-
perimental values is less than 6.107 3. Intuitively, this result seems natural since the average degree
of a node in a random tree is less than 2. Indeed, the number of trees of size n + 1 is the Catalan

number C,, = %ﬂ (27?) and the number of trees of size n+1 having k leaves is the Narayana number
N(n,k) = L (3)(,",). The average number of leaves in a random tree is Y, N(n,k)/C,, = 2L
It remains ”T'H inner nodes in average for n edges, hence the result.
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Fig. 5. Experimental average complexity on pairs of random trees according to their size.

4 Local alignment and motif searching

4.1 Local alignment

Local alignment aims at identifying conserved subregions between two RNA structures. Beyond
this informal definition, it is subject to various interpretations depending on the shape of conserved
substructures that should be highlighten. The most general definition is to search for any pair
of prefix subforests. Prefix subforests are obtained as concatenation of connected subgraphs of
closed subforests. In this context, an algorithm for local alignment can be derived from the main
algorithm of Section 3 simply by retaining only positive or zero scores in the dynamic programming
decomposition, in the same spirit as the Smith and Waterman local alignment on strings. Each

case of the algorithm should be updated with extra value 0 in order to discard negative scores,
like below:

Align(a(f), o/ (f') =

0

wm (o, o) + Align(f, ) arc-(mis)match
wy (o) + max{Align(u, f') + Align(v,e)luocv = a(f)}  arc-removing
wy () + max{Align(f,u’) + Align(e,v")| v’ o v = o/ (f")} arc-removing

max

An alternative approach for local similarity focuses on complete substructures. The local align-
ment between two trees is then given by the pair of closed subforests of maximal score. This
definition, used in [9], is more appropriate to identify common motifs in large structures. From an
algorithmic point of view, we already noticed that the global alignment algorithm does not visit all
pairs of closed subforests (Lemma 1). So the recursive relationships should be modified to deal with
local alignment. For that purpose, one can explicitely include all pairs of closed subforests in the
computational process, such as in [9]. This solution gives rise to an increase of the complexity: the
number of recursive calls is in O(n*) and the associated time complexity is in O(n®). We propose
an alternative method that solves the local alignment problem without increasing the asymptotic
time complexity. The principle is that any pair (f, g) of Closed(A) x Closed(B) may be obtained
by truncating a pair of subforests of Closed(A) x Suffix(B). We introduce a supplementary table
L and supplementary associate rules. For each pair (f,g) in Closed(A) x Suffix(B), L(f,g) gives
the optimal score between f and a prefix of g.

L(f,e) = Align(f,¢)

L(e,9) =0
La(f)ot,d/(f)ot)) =
Align(a(f),a' (")) + L(t,t) arc-(mis)match
wy (o) + max{Align(u, f") + L(v,t')|[uov = a(f) o t} arc-removing
max { wy(a) + max{Align(f,u') + L(t,v")| v’ ov' =/ (f") o t'} arc-removing

wq (o, b)) + max{Align(f,u') + L(t,v")| v/ o b/ o v’ = &/ (f") o t'} arc-altering
wq (o, b) + max{Align(u, f') + L(v,t')uobov = a(f) ot}  arc-altering
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Lbot,o/(f")ot") =

wq(b) + L(t, o' (f") o t) base-deletion
wy (o) + max{Align(u, f’) + L(v,t')juocv =bot} arc-removing
max { wy(a’, b, ba) + max{Align(u, f') + L(v,t')jucbyov =1t} arc-breaking
we (e, b) + max{Align(u, f') + L(v,t')| uov =t} arc-altering
wq (', be) + max{Align(u, f') + L(v,t')] wo by o v = b ot} arc-altering

L(a(f)ot,b/ ot') =

wq(b') + L(a(f) ot,t) base-deletion

wy(a) + max{ Align(f,u') + L(t,v")|u' o v’ =V o t'} arc-removing

max wb(a b, bh) + max{Align(f,u') + L(t,v")|u’ o b, ov' =} arc-breaking
we (o, b’ ) + max{Align(f,u") + L(t,v")| v o0’ =t} arc-altering
wq (a, b)) + max{Align(f,u') + L(t,v")| v/ o by o v’ = b o t'} arc-altering

Lbot,t/ ot') =

wq(b) + L(t,b" ot') base-deletion
max { wq(b') + L(b o ¢,t") base-deletion

ws(b,b') + L(t,t') base-(mis)match
Clearly, the time complexity remains in O(n?), as for the global alignment. As announced before,
we reduce by a factor n the time complexity of the local tree alignment algorithm given in [9],
though we use a larger set of operations. Of course, reducing our set of operations as in [9] would
give the same O(n*) time complexity. The trace can be found in the same manner as for global
alignment, yet beginning at the maximum score in the alignment score matrix.

4.2 Motif searching

The motif searching problem consists in aligning a whole small structure locally on a large struc-
ture. Like for the local alignment problem, we propose two methods for the motif searching prob-
lem. The first one searches for a pair of prefix subforests, while the second one searches for a pair
of closed subforests. The first method is derived from the algorithm of global alignment, only by
changing one case of the initialization: M (e, g) = 0. For the other cases, M(f, g) = Align(f,g). The
alignment is the trace from max{M (A, g) : g € B} to the first M (e, g) met. The second method is
the local alignment detailed above, and the alignment is the same trace as the first method. So, for
any pair (f,g) of Closed(A) x Closed(B), M(f,g) = L(f,g). Obviously, the worst-case complexity
of these two methods is the same as the other variants.

5 Experimental results

Our algorithms have been implemented in a prototype software. We have ran it on several RNases
P, tRNAs and ribosomal RNAs, respectively taken from the RNase P database ([3]), the Genomic
tRNA Database ([14]) and the Gutell Lab Comparative RNA Web Site ([4]). The alignments
were compared with those given by RNAForester with the same parameter values. The resulting
alignments are equivalent. We have produced some other alignements with different parameter
values. Those results are in the appendix. On the other hand, we have compared the execution
time of our prototype with RNAForester, on some RNA’s of various sizes. Some representative
results are given, in the table below (Figure 6).

6 Conclusion and Perspectives

We have presented an algorithm which ouputs the optimal (global, local or motif searching) align-
ment of two RNA secondary structures without pseudoknots, using a set of biologically relevant
edit operations and mutually independent scores. The theoretical complexity results, as well as our
first experiments on real data, show that the method performs well compared to the current ones.



11

RNAforester|Our prototype
Two tRNAs 0.061s 0.035s
FE. coli alanine and leucine
Two RNase P 5.533s 2.966s
C. trachomatis and H. cutirubrum
Two Group I introns 40.872s 21.758s
A. griffini and C. sorokiniana
Two 16S RNAs 30.997s 23.101s
B. subtilis and E. coli

Fig. 6. Comparison of execution time of our prototype with RNAforester

We plan to carry out a wider campaign of experiments. An important feature of our approach
is that the scores of the operations can be set totally independently from one another. We are
currently investigating the design of biologically relevant RNA scoring matrices (in a way similar
to [13]) which should benefit from this property. Finally, we would like to compare our approach
with the multiscale comparison algorithms developed by Allali and Sagot in [1]. It could be worth
combining the two approaches, since they seem to be complementary.
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A Alignments given by RN Aforester and by our prototype

We have compared some tRNAs (appendix B), 5S RNAs (appendix C), RNases P (appendix
D) and Group I introns (appendix E) with RNAforester, and with our prototype. For each of
those RNA families, we have chosen a couple of secondary structures, with which we have run
RNAforester with its default parameters, our prototype with scoring parameters of RN Aforester,
and our prototype with different scoring parameters. We present below three alignments for each
family, their global optimal score and their execution time. The stars in alignments indicate arc-
breaking and arc-altering operations.

B tRNAs
Alanine tRNA of E. coli, Leucine tRNA of E. coli, by RNAforester

Scoring type: similarity
Scoring parameters:

pm: 10
pd: -5
bm: 1
br: 0
bd: -10

Global optimal score: 111
Execution time: 0.061s

CCCCCCE . et DEDDD I (C (€ CIM I === = 23)3)3))3))) .. ..

COCCCCC . (Gt ) G 3))) . (.Y (et 2333)33)3))) .. ..

ggggcuauagcucageugggag-agegeuugcauggecaugecaagag--g---u-c--agcgguucgaucccgcuuagecuccacca

gccgaaguggcgaaaucgguagacgeaguugauucaaaaucaaccguagaaauacgugecgguucgaguccggecuucggeacca
* * * ok * ok

Alanine tRNA of E. coli, Leucine tRNA of E. coli, by our prototype, with scoring parameters of
RNAforester

Scoring parameters:

wd(b): -10
ws(b,b’): 1 if b=b’
0 if not

wr(p): -25

wn(p,p’): 10

wb(pl-p2,b,b’): -5+ws(pl,b)+ws(p2,b)

wa(pl-p2,b): -5+wd(pl)+ws(p2,b) if pl is deleted
-5+wd (p2)+ws(pl,b) if p2 is deleted

Global optimal score: 111
Execution time: 0.035s

CCCCCCC . CCCCannnnnn DESDD I G ( { I DD DD R e (G DI ...

CCCCCCC . CCCanaaaan ). (et )PPPDRCCCURED DD I € (| CINPp DN ...

ggggcuauagcucageugggag-agegeuugcauggeaugcaag---agg--u-c--agcgguucgaucccgeuuageuccacca

gccgaaguggcegaaaucgguagacgcaguugauucaaaaucaaccguagaaauacgugecgguucgaguccggecuucggeacca
* * * ok * %
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Alanine tRNA of E. coli, Leucine tRNA of E. coli, by our prototype, with different scoring
parameters

Scoring parameters:

wd(b): -8

ws(b,b’): 12 if b=b’
8 if not

wr(p): -16

wm(p,p’): 20 if p=p’
18 if one base is conserved and the other one is substituted
16 if the two bases are substituted

wb(p,b,b’): 5 if p=b-b’
1 if p=b-b" or if p=b"-b’
-3 if not

wa(p,b): -0.5 if p=b’-b and the left base of p is deleted
-0.5 if p=b-b’ and the right base of p is deleted
-1.5 if not

Global optimal score: 629

Execution time: 0.035s

CCCCCCC. . CCCCeeeenet DEDD RN { (I M) == (CCCQ I DN ...

COCCCC . Gt D)) Gt IPDDD I (IS DD I € € € { I 333333303

ggggcuauagecucageugggag-agegeuugecauggeaugeaaga-——gguc———-- agcgguucgaucccgecuuageuccacca

gccgaaguggcgaaaucgguagacgcaguugauucaaaaucaaccguagaaauacgugecgguucgaguccggecuucggeacca
* *
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C 5S RNAs
Bacillus subtilis, Deinococcus Radiodurans, by RNAforester

Scoring type: similarity
Scoring parameters:

pm: 10
pd: -5
bm: 1
br: 0
bd: -10

Global optimal score: 335
Execution time: 0.121s

N (O G P € C (€ C C P € € € € QI 333)..33)...3333)).0) . CCCCCCC . CCCCCCCCh . .=))332)))

- (e n e (N (I 333)..33)...3332)).0) . CCCCCCC . CCCCCCCC. . .2)3332)))

ugcuuggugg-cg-auagcgaagaggucacacccguucccauaccgaacacggaaguuaageucuucagegecgaugguagucggggguuu-cccccugu

acacccccgugcccauagecacuguggaaccaccccaccccaugecgaacugggucgugaaacacagecagegecaaugauacucggaccgcagggucccegg
*

SN = mININ) -
22)33)3))...0))))))))) ..
gagaguaggac-g-ccgccaage—
aaaagucggucagcgeggggguuu

*

Bacillus subtilis, Deinococcus Radiodurans, by our prototype, with scoring parameters of RNAforester

Scoring parameters:

wd(b): -10
ws(b,b’): 1 if b=b’
0 if not

wr(p): -25

wn(p,p’): 10

wb(pl-p2,b,b’): -5+ws(pl,b)+ws(p2,b)

wa(pl-p2,b): -5+wd(pl)+ws(p2,b) if pl is deleted
-5+wd (p2)+ws(pl,b) if p2 is deleted

Global optimal score: 335
Execution time: 0.066s

(OO o= (OO e e 13))..)2)...32)))).)) . CCCCCCC. . CCCCCCCC...=)I)0) )

Lo CCCCCCCC e (OOl 12))..2)...92)2)) ) . CCCCCCC. . (..MM

U-GCUUGGUGGCG-AUAGCGAAGAGGUCACACCCGUUCCCAUACCGAACACGGAAGUUAAGCUCUUCAGCGCCGAUGGUAGUCGGGGGUUU-CCCCCUGU

ACACCCCCGUGCCCAUAGCACUGUGGAACCACCCCACCCCAUGCCGAACUGGGUCGUGAAACACAGCAGCGCCAAUGAUACUCGGACCGCAGGGUCCCGG
* *

SO =N -
2333333)..00000000)) ..
GAGAGUAGGAC-GCCGCCAAGC-~
AAAAGUCGGUCAGCGCGGGGGUUU
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Bacillus subtilis, Deinococcus Radiodurans, by our prototype, with different scoring parameters

Scoring parameters:

wd(b): -8

ws(b,b’): 12 if b=b’
8 if not

wr(p): -16

wn(p,p’): 20 if p=p’
18 if one base is conserved and the other one is substituted
16 if the two bases are substituted

wb(p,b,b’): 5 if p=b-Db’
1 if p=b-b" or if p=b"-b’
-3 if not

wa(p,b): -0.5 if p=b’-b and the left base of p is deleted
-0.5 if p=b-b’ and the right base of p is deleted
-1.5 if not

Global optimal score: 1078

Execution time: 0.066s

== (OO n e (T ( C C C C C I 33))-2)))...0))))).)) . (CCCCCC. . CCCCCCCC. . .=
L (OO nn s (TN (€ (G 33))..3))...33)))).)) . (CCCCCC. . CCCCCCCC. . .29I9990))
UG--CUUGGUGGCGAUAGCGAAGAGGUCACACCCGUUCCCAUACCGAACACGGAAGUUAAGCUCUUCAGCGCCGAUGGUAGUCGGGGGUUU-CCCCCUGU
ACACCCCCGUGCCCAUAGCACUGUGGAACCACCCCACCCCAUGCCGAACUGGGUCGUGAAACACAGCAGCGCCAAUGAUACUCGGACCGCAGGGUCCCGG

LODMD) DN -
22))3)3)) ... ..
GAGAGUAGGACGCCGCCAAG--C-
AAAAGUCGGUCAGCGCGGGGGUUU
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D RNases P

Alcaligenes eutrophus, Streptomyces bikiniensis, by RNAforester

Scoring type: similarity
Scoring parameters:

pm: 10
pd: -5
bm: 1
br: 0
bd: -10

Global optimal score: 122
Execution time: 6.047s

CCCCCCCCCCCCCCCCC. CC v IIIIIII) D) e (CCC I CCCCC. CCCC. .. e 1)) . CCCCC. .. )
CCCCCCCCCCCCCCCCC CC == D) e (CCC I CCCCCCCCCC. .. n e 1)) (CCCC. .. )

aaagcaggccaggcaaccgeugecugeaccgeaaggugeagggggaggaaaguccggacuccacagggeaggguguuggeuaacagecauccacggeaac
cgagcegggegggeggecgegugggggucuuc--ggaccuccccgaggaacguccgggeuccacagageagggugguggeuaacggecacccggggugac

* * * *
NI G CCCC OO e 02000000)) ) =) ) e mmmmmmmmmm oo m oo oo oo N el
DD I X € G € CCCCCCCCCC eI ) e et 3))))) . (CCCCCCC. . .0
gugcggaauagggecacagagacgagucuugccgecggguucgeccggeggga-agg—g-— -—- ----uga----a---a
ccgegggacagugecacagaaaacagacc-gecggggaccucgguccucgguaagggugaaacggugguguaagagaccaccagegecugaggegacuca
*ok *ok * kKK *okok
T T e NN m e mmm s OO == e a=0000000000) .. )))
DD I I23)30)00)) .. CCCC o CCCCCCC o 0300)0)) . (Ll (Ot DI ..... )))
--c-gc--gguaaccuccaccuggagcaaucccaa-au---a-—-------—----- g-gcaggcgau-gaagcg-gecc-geugagucugeggguagegs
ggcggeuagguaaaccccacucggageaaggucaagaggggacaccccggugucccugcgeggauguucgagggcugcucgcccgaguccgeggguagac
* * % E * *
Yoo Ol e IMIMN et 3333))) .. (G CCCCCCCC e eI D) e )2)))))))
) CCCCCCCC .o I000)) e e DRI P (CICC G CCCCTTID DDD LD DD L B E ).)II))))

agcuggagccggeugguaacagecggecuagaggaaugguugucacgeaccguuugecgeaaggegggeggggegeacagaauccggeuuaucggecuge

cgcacgaggccggeggeaacgecggeccuagauggauggecgucg-cc-ccgacgaccgegagguc-ccgg-gg-—acagaacccggeguacageccgac
Kk *ok

DDD I

M)

uuugcuu

ucgucug
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Alcaligenes eutrophus, Streptomyces bikiniensis, by our prototype, with scoring parameters of
RNAforester

Scoring parameters:

wd(d): -10

ws(b,b’): 1 if b=b’

0 if not

wr(p): -25

wn(p,p’): 10

wb(pl-p2,b,b’): -5+ws(pl,b)+ws(p2,b)

wa(pl-p2,b): -5+wd(pl)+ws(p2,b) if pl is deleted
-5+wd (p2)+ws(pl,b) if p2 is deleted

Global optimal score: 122
Execution time: 3.364s

CCCCCCCCCCCaaCCCC. CC e 22020999 D) e (Gt CCCCC CCCC e 2)2) . CCCCC. )
CCCCCCCCCCaCCCCCl. CC e e==092300) 0D et (Gt CCCCCeeCCC. . 22))) CCCCC.. )
AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGCUAACAGCCAUCCACGGCAAC
CGAGCCGGGCGGGCGGCCGCGUGGGGGUCUUC--GGACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGCUAACGGCCACCCGGGGUGAC

* * * *
I (e CCCCCCCCCCCC I ) =) ) mmmmmmm e p— U P
M (e (= CCCCCCCCC .MMM ) e (T 1)) . (0N
GUGCGGAAUAGGGCCACAGAGACGAGUCUUGCCGCCGGGUUCGCCCAGCGGGA-AGG--———————~ GUG-AA---A------- CG-C----G-G--U-A
CCGCGGGACAGUGCCACAGAAAACAGACC-GCCGGGGACCUCGGUCCUCGGUAAGGGUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCA

*k k% kk kk kk kX ok * 3k
——————— e D D D D D D D D D D D D N € € I €  ( ( (I (A (D DD DD IO D DD DD D D))
DDD) I I G CCCCCCCC . .0))00)) - (L CCCCCCnnt s ). )))
——————— A-----CCUCCACCUGGAGCAAUCCCAA------AUA-------G-------GCAGGCGAU--GAAGCGGCCCGCUGA-GUCUGCGGGUAGGG
GGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAGAGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGAC
k ks kkok ok ok
) CCCCCCCC. .o I000)) v e DI92))) . CCCCCCCCCCCa eI D)) e ).)II)))
) CCCCCCCC. .o I000)) v e D)) == D))= )= )) == ).))3))))

AGCUGGAGCCGGCUGGUAACAGCCGGCCUAGAGGAAUGGUUGUCACGCACCGUUUGCCGCAAGGCGGGCGGGGCGCACAGAAUCCGGCUUAUCGGCCUGC
CGCACGAGGCCGGCGGCAACGCCGGCCCUAGAUGGAUGGCCGUCG-CC-CCGACGACCGCGAGGUC-CCGG-GG--ACAGAACCCGGCGUACAGCCCGAC
*ok Kk

DDD IS
DDD I
UUUGCUU
UCGUCUG
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Alcaligenes eutrophus, Streptomyces bikiniensis, by our prototype, with different scoring parameters

Scoring parameters:
wd(b): -8
ws(b,b’): 12 if b=b’
8 if not
wr(p): -16
wm(p,p’): 20 if p=p’
18 if one base is conserved and the other one is substituted
16 if the two bases are substituted
wb(p,b,b’): 5 if p=b-b’
1 if p=b-b" or if p=b"-b’
-3 if not
wa(p,b): -0.5 if p=b’-b and the left base of p is deleted
-0.5 if p=b-b’ and the right base of p is deleted
-1.5 if not

Global optimal score: 2641
Execution time: 3.364s

CCCCCCCCCCCCCCaCC CC w2090 D) e (Gt CCCCC. CCCC e )))) . CCCCC. )
CCCCCCCCCCCaECCCl. (el a==2II00) ) et (O CCCCCeCCC. .. 230 CCCCC.. )
AAAGCAGGCCAGGCAACCGCUGCCUGCACCGCAAGGUGCAGGGGGAGGAAAGUCCGGACUCCACAGGGCAGGGUGUUGGCUAACAGCCAUCCACGGCAAC
CGAGCCGGGCGGGCGGCCGCGUGGGGGUCUUCG--GACCUCCCCGAGGAACGUCCGGGCUCCACAGAGCAGGGUGGUGGCUAACGGCCACCCGGGGUGAC

* * * *

DD DD X € G € G, COCC e e INNN=N)) ===~ e S A
DDDID X € I € G (CICCEEIEeE DD DD DD DD D DD I CCCCCCanannn )))))) . CCCCCCCC. . ..))))
GUGCGGAAUAGGGCCACAGAGACGAGUCUUGCCGCCGGGUUCGCCCGGCGG-GAAGG——————-————— GU--GA-—---—- A-————— ACG--—--
CCGCGGGACAGUGCCACAGAAAACAGACC-GCCGGGGACCUCGGUCCUCGGUAAGGGUGAAACGGUGGUGUAAGAGACCACCAGCGCCUGAGGCGACUCA

* kX * %k

----- R D DD DD D D D D D D D N (I e e ( A ( (G (I (RO DD ES DD DD DD D D D))
DDD D T I o CCCC o CCCCCCCCa e eI L e (s NN ... )
————— C--GGUAACCUCCACCUGGAGCAAUCCCAA-A----——--UA-G---——----—-GCAGGCGAU-GA-AGCGGCCCGCU-GAGUCUGCGGGUAGGG

GGCGGCUAGGUAAACCCCACUCGGAGCAAGGUCAAGAGGGGACACCCCGGUGUCCCUGCGCGGAUGUUCGAGGGCUGCUCGCCCGAGUCCGCGGGUAGAC

) I CCCCCCCCea e IMININ) e I12))) . CCCCCCCCCCC e eI D) e ).)))))))

) I CCCCCCCCe e dININN) et NN == CCCC eI = DN D)= ). DNN)

AGCUGGAGCCGGCUGGUAACAGCCGGCCUAGAGGAAUGGUUGUCACGCACCGUUUGCCGCAAGGCGGGCGGGGCGCACAGAAUCCGGCUUAUCGGCCUGC

CGCACGAGGCCGGCGGCAACGCCGGCCCUAGAUGGAUGGCCGUCG-CC-CCGACGACCGCGAGGUC-CCGG-GG--ACAGAACCCGGCGUACAGCCCGAC
*% *k

DDD I
DDD I
UUUGCUU
UCGUCUG
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E Group I introns
Acanthamoeba griffini, Chlorella sorokiniana, by RNAforester

Scoring type: similarity
Scoring parameters:

pm: 10
pd: -5
bm: 1
br: 0
bd: -10

Global optimal score: -1196

Execution time: 40.872s

CCCCCCCee e met e im=o=0==202202)) CCCCCCCCCCCCCC wn COCC COCCCCCCCCC. .33 - ee e e 33))).20)))...0)))))
CCCCCCCanania e 23— (===~ (= ((((=mmmmmmmmm - cmemeemm)))) ) e ))))))
ucugguuaaca-uauu--a-u--cagccagauguugauaucauacuacacacacaacagaguacuacuagugcugcucucuuguuguuguggguguguga
augggugaaaaguauugcacuuacugcccau-gaaagcagcccgu-———----- c-ccgu-——————-—----- c-g-uc---acgg--gg-Ccagagcggec
okokok * % * * * %
)DDDDDD NN ((( (Gt N —— M) —mm = OO (O = = e
1)) === (CCCCCCCCCCCCen ettt )DDDDDIDDDIDDDD I, (CCCCERN C C T CCCCCCCCCCeee=cecC
uauuggcagaaaguugg--a--gauaa--gc-a----- ccaac-u-g-uacaccgua-aauugcgggaaaccccuaa-agecuauucuacc-geggeuau
ugcu---agucaccgccgeaccgeuaucugegaggugeggeggeuggegagaccgucgaauugeggggacacccuuagagecugugucaccaacc-cgge
koK ok ok ok * sokok ok *
C.. .. M=) (et DD DD D I b b B B B B B B B B IR € € )

CCCa=IMIMINN=)==CCC=CCC o) o)) e DI .= - -—- -—
gaggaugacuc-auagugcagcagguguggauaacgcccaccggaugguaauaacgaauaggaugaccuuaguaccuccauaagcauaauaauaacaaaa
guggaa-acacagccgggg-g--ccgg-gguaauuaccuaggguaugguaaaagcacacaggal-— - - - T oo oo s o s s s s s s s m e

* * * *
MW o I C  (C==(Cmm=m === == ) ==I)) . D)) e (=== (((==....——-
———————— DIMFNSIIIII(CCN(CIENCICCEEED DD DDD D IS DDD IS DD NN G € ( { RSN ( € € (€ € (€ I
ggucgcaaugggcaauccgecagecaagcucc—--cau---a----u--gcug--ggagaagguucagagacua--uaa---ucggaugggc--gcaa---
———————— ugggcuauccgeagecaageuccuaagggecgagegaucggecuagggagaagguucagagacuagguggeggucgguucccaaaguaucge
* *k ok * kK Hokokokok
SO DD 32))) . CC o . ))00)) CCCCCCCCC. . ... e )DDDDIEESDDDDDDDDD I
DDDDDDDDD NN I =CC . =CCCCC o= (... (==t DL NS DDDDDECE (—=(--((
-gcu——--- uaagguauaguccacucccacuucgaaagaggugcuauaaaacuauuaagaaguuugcuuacuuccuaggguuuuauagauccguugeuug
uugggggcuuaagauagagucc-gaca-cagcagaaaugcug-ccucgggacgaau--guuucgagca-gaaacg--ggaguccggg-—-—- g--g--ag
skokokok ok * *ok Kkk K ® Kkk * * ok Kk
............................................................................. Moo
(== == - =))====))) ) === )==)) e m i m i m e )) -
uauauauacaacauacgugagugugugguguauacaucaauacccccaaggaaaugcuugguuggaagaugguagecaagggecagea
-gggga-acg-ca--c-—--agu-ug--------- c-uc----ccce-————=== u--uug-----a-g-u---ag--ucgggugg-—-

kKKK *k *kkk * kX%
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Acanthamoeba griffini, Chlorella sorokiniana, by our prototype, with scoring parameters of
RNAforester

Scoring parameters:

wd(b): -10
ws(b,b’): 1 if b=b’
0 if not

wr(p): -25

wn(p,p’): 10

wb(pl-p2,b,b’): -5+ws(pl,b)+ws(p2,b)

wa(pl-p2,b): -5+wd(pl)+ws(p2,b) if pl is deleted
-5+wd (p2)+ws(pl,b) if p2 is deleted

Global optimal score: -1196

Execution time: 21.758s

(O ama == == CCCCCCCCCCCCCCa (O CCCCCCCCCCC D) e )20 NN
i, 2NN === = = (=== (= (=== (.= I == L=IN==INN)
ucugguUAACA-UAUU--A-U--CAGCCAGAUGUUGAUAUCAUACUACACACACAACAGAGUACUACUAGUGCUGCUCUCUUGUUGUUGUGGGUGUGUGA
auggguGAAAAGUAUUGCACUUACUGCCCAU----GA-A-AGCAG----CCCG-U----CCCGUCG-UCACGGGGCA----- GAG--CGGG---CUGCUA

Kk kk %k * * k% *
DN im e = (((Cmm s imme = am =)D e meimamm = CCCCCC e CCC = CCCCCCCCCCC= (L
———————— CCCCCCCCCCCCCC I I oo (L CCCCCCCCCCCeCeccece

UAUUGGCAG-AAA-GUUGGA--GAUAA--GC-A---CCAACUG-UA-C-A--CCGUA-AAUUGCGGGAAACCCCUAA-AGCCUAUUCUACC-GCGGCUAU
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Acanthamoeba griffini, Chlorella sorokiniana, by our prototype, with different scoring parameters

Scoring parameters:

wd(b): -8

ws(b,b’): 12 if b=b’
8 if not

wr(p): -16

wm(p,p’): 20 if p=p’
18 if one base is conserved and the other one is substituted
16 if the two bases are substituted

wb(p,b,b’): 5 if p=b-b’
1 if p=b-b" or if p=b"-b’
-3 if not

wa(p,b): -0.5 if p=b’-b and the left base of p is deleted
-0.5 if p=b-b’ and the right base of p is deleted
-1.5 if not

Global optimal score: 1896

Execution time: 21.758s
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