
L R I

CONFLICT MANAGERS FOR SELF-

STABILIZATION WITHOUT FAIRNESS
ASSUMPTION

GRADINARIU M

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

09/2006

Rapport de Recherche N° 1459

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

RR LRI 1459
Conflict Managers for Self-stabilization

without Fairness Assumption

Maria Gradinariu∗ Sébastien Tixeuil†

∗ LIP6, Université Paris 6, INRIA REGAL Maria.Gradinariu@lip6.fr
† LRI-CNRS UMR 8623 & INRIA Grand Large, Université Paris Sud,

tixeuil@lri.fr

Abstract

In this paper, we specify the conflict manager abstraction. Informally, a conflict man-
ager guarantees that any two neighboring nodes can not enter their critical simultaneously
(safety), and that at least one node is able to execute its critical section (progress). The
conflict manager problem is strictly weaker than the classical local mutual exclusion prob-
lem, where any node that requests to enter its critical section eventually does so (fairness).

We argue that conflict managers are a useful mechanism to transform a large class
of self-stabilizing algorithms that operate in an essentially sequential model, into self-
stabilizing algorithm that operate in a completely asynchronous distributed model. We
provide two implementations (one deterministic and one probabilistic) of our abstraction,
and provide a composition mechanism to obtain a generic transformer. Our transformers
have low overhead: the deterministic transformer requires one memory bit, and guarantees
time overhead in order of the network degree, the probabilistic transformer does not require
extra memory. While the probabilistic algorithm performs in anonymous networks, it only
provides probabilistic stabilization guarantees. In contrast, the deterministic transformer
requires initial symmetry breaking but preserves the original algorithm guarantees.

Résumé

Dans cet article, nous spécifions l’abstraction du gestionnaire de conflits. Informelle-
ment, un gestionnaire de conflits garantit que n’importe quel couple de nœuds en conflit
ne peut entrer en section critique simultanément (sûreté), et qu’au moins un nœud est en
mesure d’exécuter sa section critique (progrès). Le problème du gestionnaire de conflits
est strictement plus faible que celui de l’exclusion mutuelle où tout nœud qui demande à
entrer en section critique a la garantie de pouvoir le faire au bout d’un temps fini (équité).

Les gestionnaires de conflits constituent un mécanisme utile pour transformer une
large classe d’algorithmes auto-stabilisants qui s’exécutent dans un modèle essentiellement
séquentiel, en algorithmes qui supportent un modèle d’exécution totalement asynchrone.
Nous proposons deux implantations (une déterministe et une probabiliste) de notre ab-
straction, ainsi qu’un mécanisme de composition permettant d’obtenir une transformation
automatique. Le sourcoût en mémoire reste faible : la transformation déterministe requiert
seulement un bit, et garantit un surcoût en temps de l’ordre du degré ; la transformation
probabiliste ne requiert aucune mémoire supplémentaire.

Keywords: self-stabilization, central scheduler, local mutual exclusion, conflict manager,
fairness

Chapter 1

Introduction

Self-stabilization [8, 9] is an elegant approach to forward recovery from transient faults
as well as initializing a large-scale system. Informally, a self-stabilizing systems is able to
recover from any transient fault in finite time, without restricting the nature or the span
of those faults.

The historical model for presenting self-stabilizing algorithms [8] is the central scheduler
model. This model is essentially sequential: at each step, exactly one process is activated
and atomically executes a portion of its code. This model permits to write simple and
elegant algorithms, and proving their correctness does not have to take into account more
realistic system assumptions. Since algorithms are only able to read their neighbor state,
this model is in fact equivalent to a model where exactly one process is activated at a
certain time in its neighborhood (this model is also called the locally central scheduler).

To run algorithms written in the locally central scheduler model in more realistic sys-
tems (where processes are activated in a distributed manner), the approach so far consists
in composing the initial algorithm with a (local) mutual exclusion algorithm. The (local)
mutual exclusion mechanism, if self-stabilizing, eventually guarantees that all processes
execute their critical sections in an atomic manner (in their neighborhood), so that if the
initial algorithm is run in critical sections only, its correctness remains valid (the scheduler
it relies on is simulated by the exclusion mechanism). As a result, the overhead induced by
the simpler system hypothesis (locally central scheduler) is driven by the resources that are
consumed by the implementation of the exclusion mechanism. There exist a large amount
of self-stabilizing local mutual exclusion mechanisms [10, 2, 16, 7, 5]. In particular, [5]
provides necessary and sufficient conditions to deterministically implement self-stabilizing
local mutual exclusion. Fairness targeted atomicity refinement and adequate transformers
are discussed in [17, 6].

In short, self-stabilizing local mutual exclusion on general networks requires, in the best
case, an amount of memory per node that depends on the size of the network. Similarly,
the stabilization time of such mechanisms could depend on the number of processes in the
system. The reason for such high overhead is essentially that processes are guaranteed
to eventually enter their critical section if they request so (that is, implementations of
self-stabilizing mutual local exclusion mechanism guarantee fairness in addition to safety).

1

We argue that providing fairness to the initial algorithm is not necessary in all cases. In
particular, all self-stabilizing algorithms whose complexity is evaluated in the step model
(i.e. the number of atomic local steps that were performed in any computation) do not
require fairness from the exclusion mechanism, but rather progress (i.e. at least one ac-
tivatable process executes its code). So, for those algorithms, the overhead induced by
regular exclusion mechanisms could be avoided if a different scheme is used.

Contributions. In this paper, we specify the conflict manager abstraction. Informally,
a conflict manager provides the safety part of the local mutual exclusion specification, but
not the fairness part (which is replaced by a progress property). Also, we provide both
deterministic and probabilistic implementations of our abstraction, and use those imple-
mentations on the node coloring algorithm of [14] (the same scheme could also be applied
to [12]) and the maximal matching algorithm of [15]. Using our tool, these algorithms,
which perform in the locally central scheduler, can be run under an arbitrary distributed
scheduler (where any subset of activatable processes could be selected at a given time
to execute their action). The deterministic transformation requires only one extra bit of
memory (zero for the probabilistic transformation), while the time overhead is in the order
of the network degree.

2

Chapter 2

Model

Distributed Systems A distributed system is a set of state machines called processes.
Each process can communicate with a subset of the processes called neighbors. We will
use Nx to denote the set of neighbors of node x. The communication among neighboring
processes is carried out using communication registers (called “shared variables” through-
out this paper). The system’s communication graph is drawn by representing processes as
nodes and the neighborhood relationship by edges between the nodes.

We model a distributed system S = (C, T, I) as a transition system where C is the
set of system configurations, T is a transition function from C to C, and I is the set of
initial configurations. A probabilistic distributed system is a distributed system where a
probabilistic distribution is defined on the transition function of the system.

The state of a process is defined by the values of its variables. A process may change
its state by executing its local algorithm (defined below). A configuration of a distributed
system is an instance of the state of its processes.

The algorithm executed by each process is described by a finite set of guarded actions
of the form 〈guard〉 −→ 〈statement〉. Each guard of process Pi is a boolean expression
involving the variables of Pi and its neighbors. A process Pi is enabled in configuration c if at
least one of the guards of the program of Pi is true in c. Let c be a configuration and CH be
a subset of enabled processes in c. We denote by {c : CH} the set of configurations that are
reachable from c if every process in CH executes an action starting from c. A computation
step is a tuple (c, CH, c′), where c′ ∈ {c : CH}. Note that all configurations ∈ {c : CH} are
reachable from c by executing exactly one computation step. In a probabilistic distributed
system, every computation step is associated with a probabilistic value (the sum of the
probabilities of the computation steps determined by {c : CH} is 1). A computation of a
distributed system is a maximal sequence of computation steps. A history of a computation
is a finite prefix of the computation. A history of length n (denoted by hn) can be defined
recursively as follows:

hn ≡
{

(c0, CH0, c1) if n = 1
[hn−1(cn−1, CHn−1, cn)] otherwise

If the system is probabilistic, the probabilistic value of a history is the product of the

3

probabilities of all the computation steps in the history. If hn is a history such that

hn = [(c0, CH0, c1) . . . (cn−1, CHn−1, cn)]

then we use the following notations: the length of the history hn (equal to n) is denoted
as length(hn), the last configuration in hn (which is cn) is represented by last(hn), and the
first configuration in hn (which is c0) is referred to as first(hn) (first can also be used
for an infinite computation). A computation fragment is a finite sequence of computation
steps. Let h be a history, x be a computation fragment such that first(x) = last(h), and e
be a computation such that first(e) = last(h). Then [hx] denotes a history corresponding
to the computation steps in h and x, and (he) denotes a computation containing the steps
in h and e.

Scheduler. A scheduler is a predicate over the system computations. In a computation,
a transition (ci, ci+1) occurs due to the execution of a non-empty subset of the enabled
processes in configuration ci. In every computation step, this subset is chosen by the
scheduler. We refer to the following types of schedulers in this paper: the locally centralized
scheduler ([10, 2, 3]) ensures that in every computation step, neighboring processes are
not chosen concurrently by the scheduler; the distributed scheduler ensures that during a
computation step, any nonempty subset of the enabled processes is chosen by the scheduler.
We generalize the locally centralized scheduler toR-restricted scheduler whereR is a conflict
relation defined on the processes. During a computation step a non-empty set of enabled
processes is chosen by this scheduler such that no two chosen processes verify the relation
R. The interaction between a scheduler and the distributed system generates some special
structures, called strategies. The scheduler strategy definition is based on the tree of
computations (all the computations having the same initial configuration). Let c be a
system configuration and S a distributed system. The tree representing all computations
in S starting from the configuration c is the tree rooted at c and is denoted as T ree(S, c).
Let n1 be a process in T ree(S, c). A branch originating from n1 represents the set of all
T ree(S, c) computations starting in n1 with the same first transition. The degree of n1 is
the number of branches rooted in n1.

Definition 1 (Strategy) Let S be a distributed system, D a scheduler, and c a configura-
tion in S. We define a strategy as the set of computations represented by the tree obtained
by pruning Tree(S, c) such that the degree of any process is at most 1.

Definition 2 (Cone) Let s be a strategy of a scheduler D. A cone Ch(s) corresponding
to a history h is defined as the set of all possible computations under D which create the
same history h.

When the system is probabilistic, the probabilistic value of a cone Ch(s) is the proba-
bilistic value of the history h (i.e., the product of the probabilities of all computation steps
in h).

Definition 3 (Subcone) A cone Ch′(s) is called a subcone of Ch(s) if and only if h′ =
[hx], where x is a computation fragment.

4

Let S be a system, D a scheduler, and s a strategy of D. The set of computations
under D that reach a configuration c′ satisfying predicate P (denoted as c′ ` P) is denoted
as EPs. When the system is probabilistic, the associated probabilistic value of EPs is
represented by Pr(EPs). We call a predicate P a closed predicate if the following is true:
If P holds in configuration c, then P also holds in any configuration reachable from c.

2.1 Deterministic self-stabilization

In order to define self-stabilization for a distributed system, we use two types of predicates:
the legitimacy predicate—defined on the system configurations and denoted by L—and the
problem specification—defined on the system computations and denoted by SP.

Let P be an algorithm. The set of all computations of the algorithm P is denoted by
EP . Let X be a set and Pred be a predicate defined on the set X . The notation x ` Pred
means that the element x of X satisfies the predicate Pred defined on the set X .

Definition 4 (Deterministic self-stabilization) An algorithm P is self-stabilizing for
a specification SP if and only if the following two properties hold:

1. convergence — all computations reach a configuration that satisfies the legitimacy
predicate. Formally,
∀e ∈ EP :: e = ((c0, c1)(c1, c2) . . .) : ∃n ≥ 1, cn ` C;

2. correctness — all computations starting in configurations satisfying the legitimacy
predicate satisfy the problem specification SP. Formally, ∀e ∈ EP :: e = ((c0, c1)
(c1, c2) . . .) : c0 ` L ⇒ e ` SP.

2.2 Probabilistic Self-Stabilizing Systems.

In this section, we give an outline of the probabilistic model used in the rest of the paper.
A detailed description of this model is available in [4].

A probabilistic self-stabilizing system is a probabilistic distributed system satisfying
two important properties: probabilistic convergence (the probability of the system to con-
verge to a configuration satisfying a legitimacy predicate is 1) and correctness (once the
system is in a configuration satisfying a legitimacy predicate, it satisfies the system spec-
ification). In this context, the correctness comes in two variants: weak correctness—the
system correctness is only probabilistic, and strong correctness—the system correctness is
certain.

Definition 5 (Strong Probabilistic Stabilization) A system S is strong self-stabilizing
under scheduler D for a specification SP if and only if there exists a closed legitimacy pred-
icate L such that in any strategy s of S under D, the two following conditions hold:

5

(i) The probability of the set of computations under D, starting from c, reaching a configu-
ration c′, such that c′ satisfies L is 1 (probabilistic convergence). (Formally, ∀s, Pr(ELs) =
1).
(ii) All computations, starting from a configuration c′ such that c′ satisfies L, satisfy SP
(strong correctness).(Formally, ∀s, ∀e, e′ ∈ s, e = (he′) :: last(h) ` L ⇒ e′ ` SP).

Convergence of Probabilistic Stabilizing Systems. We borrow a result of [4] to
prove the probabilistic convergence of the algorithms presented in this paper. This result
is built upon previous work on probabilistic automata ([18, 19, 20, 21]) and provides a com-
plete framework for the verification of self-stabilizing probabilistic algorithms. We need to
introduce a few terms before we are ready to present this result. First, we explain a key
property, called local convergence and denoted by LC. Informally, the LC property char-
acterizes a probabilistic self-stabilizing system in the following way: The system reaches a
configuration which satisfies a particular predicate, in a bounded number of computation
steps with a positive probability.

Definition 6 (Local Convergence) Let s be a strategy, and P1 and P2 be two predicates
defined on the system configurations, where P1 is a closed predicate. Let δ be a positive num-
ber ∈]0, 1[and N a positive integer. Let Ch(s) be a cone with last(h) ` P1 and let M denote
the set of subcones Ch′(s) of Ch(s) such that last(h′) ` P2 and length(h′)− length(h) ≤ N .
Then Ch(s) satisfies the local convergence property denoted as LC(P1, P2, δ, N) if and only
if Pr(

⋃
Ch′ (s)∈M Ch′(s)) ≥ δ.

Now, if in strategy s, there exist δs > 0 and Ns ≥ 1 such that any cone Ch(s) with
last(h) ` P1 satisfies LC(P1, P2, δs, Ns), then the result of [4] states that the probability of
the set of computations under D reaching configurations satisfying P1 ∧P2 is 1. Formally:

Theorem 1 ([4]) Let s be a strategy. Let P1 and P2 be two closed predicates on configu-
rations such that Pr(EP1s) = 1. If ∃δs > 0 and ∃Ns ≥ 1 such that any cone Ch(s) with
last(h) ` P1 satisfies LC(P1, P2, δs, Ns), then Pr(EP12s) = 1, where P12 = P1 ∧ P2.

6

Chapter 3

Self-stabilizing Conflict Manager

A conflict manager is an abstraction for a distributed oracle that is queried by processes
wanting to execute possibly conflicting actions. A conflicting action could consist in access-
ing a non-sharable resource or executing a critical section of code (i.e. code that cannot be
executed by nodes in the same physical or logical neighborhood). When queried, the con-
flict manager gives execution permission to exactly one of the queriers. Conflict managers
are extensively used in distributed computing in general, and in the self-stabilizing setting
in particular. A locally centralized scheduler for example is a conflict manager in a neigh-
borhood while a centralized scheduler is a conflict manager when all the processes in the
system have to execute conflicting actions or a critical section. In this paper, we propose
a formal specification for the conflict manager abstraction that unifies these schedulers.
Additionally we provide both probabilistic and deterministic implementations.

Let R be the conflict relation defined over V × V defining the conflicts in the system
(V is the set of processes in the system1). For example, if the semantics of the conflict is
related to un-sharable resources in a system then two processes willing to simultaneously
use this kind of resource are in R.

Definition 7 (Deterministic Conflict Manager) Let R be a conflict relation over the
set of processes of a system. A deterministic conflict manager restricted to R is defined by
the following two properties:

• safety no two processes, p, q such that p R q, execute their actions simultaneously.

• progress if in a configuration there are some enabled processes, S = {p1, . . . pk} such
that ∀(pi, pj), pi R pj, then at least one process in S executes its actions in a finite
number of steps.

Obviously, the main difference between the conflict manager abstraction and the local
mutual exclusion or mutual exclusion problem is the lack of fairness requirement. That
is, the conflict manager is not required to fairly grant access to critical section to all

1Note that the knowledge of V is not mandatory

7

queriers. Hence, it does not solve the starvation problem traditionally solved by the (local)
mutual exclusion. Note that there is no deterministic implementation of conflict managers
in anonymous systems (this is a direct consequence of Angluin [1] impossibility results),
therefore probabilistic conflict managers are used whenever the anonymity of the network
has to be preserved.

Definition 8 (Probabilistic Conflict Manager) Let R be a conflict relation over the
set of processes of a system. A probabilistic conflict manager is defined by the following
two properties:

• probabilistic safety no two processes, p, q such that p R q, execute their actions
simultaneously with positive probability.

• probabilistic progress if in a configuration there are some enabled processes, S =
{p1, . . . pk} such that ∀(pi, pj), pi R pj, then at least one of the enabled processes
eventually executes its actions with high probability.

A local conflict manager is a conflict manager restricted to the local neighborhood.
That is, two processes p, q are in local conflict iff p ∈ Nq and q ∈ Np. A local conflict man-
ager has only a local cover (i.e. it solves the conflicts only in a local neighborhood). In the
following we propose deterministic and probabilistic memory optimal and distributed im-
plementations of conflict managers, along with an application for automatic transformation
of self-stabilizing algorithms.

3.1 Self-stabilizing Deterministic Conflict Managers

In this section we propose a deterministic implementation of a conflict manager, presented
as Algorithm 3.1.1. Algorithm 3.1.1 accepts as inputs the initial algorithm (using guarded
commands) and the conflict relation R. Additionally, the algorithm needs the specification
of a total order relation, ≺, defined on the processes in R. The algorithm uses a shared
variable want to act in order to capture the state of the process guards. The algorithm
idea is very simple. A process i executes its actions if it has one of the guards of the
original algorithm enabled and is maximal in the set of conflicting processes (i.e. processes
in relation R with i and that have their want to act variables set to true) 2.

In the following we prove that Algorithm 3.1.1 is a self-stabilizing implementation of a
conflict manager as specified by Definition 7.

Lemma 1 (Safety) In any configuration, no two processes in R execute their actions
simultaneously.

2For the local conflict manager, the maximal has to be computed over the set of neighboring processes.

8

Algorithm 3.1.1 Self-stabilizing Deterministic Conflict Manager
Input Conflict Relation:
R: conflict relation over processes;

Input Order Relation:
≺: total order relation over processes in R;

Input Guards:
guardA: boolean;

Input Actions(Code):
actionsA: actions;

Variables:
want to acti: boolean;

Predicates:
Allowed To Act(i): true iff i is maximal in R with respect to ≺, formally (∀j, i R j, s.t.
want to actj = want to acti = true, j ≺ i
Actions:

R1 :: 〈want to acti = ∨guardA ∧Allowed To Act(i)〉 → actionsA
actionsA corresponds to the only guard true in A

R2 :: 〈want to acti 6= ∨guardA〉 → want to acti = ∨guardA

Proof: Assume that two processes pi R pj execute their actions simultaneously. This
implies that want to actpi

= want to actpj
= true, and that simultaneously pi ≺ pj and

pj ≺ pi,which is impossible since ≺ is a total order on the processes in R. 2

Lemma 2 (Progress) If in a configuration there are some enabled processes in R then
at least one process executes its actions in a finite number of steps.

Proof: Assume some processes in R are enabled yet none of them executes its actions.
Let p be such process. There are two possible cases: the want to act variable of p is not
up to date or p is not allowed to execute (Allow To Act) predicate is false. In the former
case the process, after the execution of rule R2, p updates the variable want to act. In the
latter case, let S be the set of processes that have want to act set to true and greater than
p with respect to ≺ relation. S has a maximum since the set of processes is finite. The
maximum in S verifies Allowed To Act predicate and consequently is allowed to execute
rule R1 if at least one of its A guards is enabled. If the maximum executes R1, the system
verifies the progress property.

However, it is possible that the maximum in S has a wrong value of want to act and
none of its A guards enabled. After the execution of R2 the maximum resets its want to act
variable and the size of the set S is decreased by 1. Following the same reasoning, in a
finite number of steps a process greater than p with respect to ≺ relation executes its A
actions or, once S is empty, p itself executes its A actions. In the worst case, until at least
one process executes A actions the system takes at least ∆ steps where ∆ is the maximal
size of S. 2

9

Theorem 2 Algorithm 3.1.1 is a deterministic self-stabilizing implementation of a conflict
manager under an unfair scheduler.

Proof: The proof trivially follows from Lemmas 1 and 2. Note that the safety prop-
erty is always guaranteed. The progress property is guaranteed only after the neighbors
want to act variables are checked. 2

In the following we propose an application of the Conflict Manager to reinforce self-
stabilizing algorithms. That is, algorithms that are self-stabilizing under R-restricted
schedulers (where R is the conflict relation) are transformed into self-stabilizing algorithms
that perform under a distributed scheduler. The following theorem proves that using the
hierarchical composition [11] with Algorithm 3.1.1 any algorithm self-stabilizing under a
R-restricted scheduler transforms into an algorithm self-stabilizing under a distributed
scheduler.

Theorem 3 Let R be a conflict relation over the set of processes of a system. Let A be a
self-stabilizing algorithm for a given specification S under a R-restricted scheduler. Let AT
be the hierarchical composition of A with Algorithm 3.1.1. Algorithm AT is self-stabilizing
under an unfair distributed scheduler.

Proof: Let e be an execution of the transformed algorithm under distributed scheduler.
Let ep be the projection of e on the variables and actions of Algorithm A. Following
Lemmas 1 and 2, ep converges to an execution of A under a R-restricted scheduler. That is,
ep has an infinite suffix such that no two processes inR execute their actions simultaneously.
Since A is self-stabilizing under the R-restricted scheduler then ep converges to a legitimate
configuration for A and subsequently verifies specification S. ep is the projection of e on
the variables and actions of Algorithm A. The additional variables and actions of the
transformation do not interfere with the variables, guards and actions of A. Consequently,
e converges to a legitimate configuration for A and verifies the specification S. 2

Lemma 3 Let O(f(n)) be the stabilization time (in number of steps) of an Algorithm
A under a R-restricted scheduler. The stabilization time of the transformed algorithm,
Algorithm AT , is O(f(n)×∆) steps where ∆ is the maximum size of R.

Proof: The stabilization time of Algorithm AT depends on the stabilization time of A
and the stabilization time of the conflict manager. Following Lemma 2 the stabilization
time of AT is O(f(n)×∆) steps. 2

Since the transformation requires that a total order is defined over conflicting processes,
the system may not be both uniform and anonymous. In the following we propose a
transformation that preserves the anonymity of the network, however the specification of
the algorithm is verified only with high probability. The proposed transformation uses a
probabilistic implementation of a conflict manager (see Definition 8).

10

3.2 Self-stabilizing Probabilistic Conflict Manager

In this section we propose a probabilistic conflict manager that takes as input the original
algorithm (as guarded commands) A. The transformer general scheme is very simple: a
process executes the actions of A if it is enabled and the toss of a random coin return true.

Algorithm 3.2.1 Self-stabilizing Probabilistic Local Conflict Solver
Input Guards:

guardA: boolean
Input Actions(Code):

actionsA: actions
Predicates:
Allowed To Act(i): true iff random(0,1)=1
Actions:

R1 :: 〈∨guardA ∧Allowed To Act(i)〉 → critical actionsi

actionsA corresponds to the only guard true in A

We now prove that Algorithm 3.2.1 is a self-stabilizing implementation of a probabilistic
conflict manager as specified by Definition 8. In the following, critical actions refer to the
input actions of Algorithm 3.2.1.

Lemma 4 (Probabilistic Safety) Let R be a conflict relation over the set of processes
of a system. In any configuration, no two processes in R execute their critical actions
simultaneously with positive probability.

Proof: Let S be the set of processes with A guards enabled such that ∀i, j ∈ S, iRj.
The probability that exactly one of the processes executes the critical actions is |S| × [1

2
×

(1
2
)(|S|−1)] = |S| × (1

2
)|S|. 2

Lemma 5 (Probabilistic Progress) If in a configuration there are some enabled pro-
cesses then at least one process executes its critical section with high probability in a finite
number of steps.

Proof: Let S be the set of processes with at least one guard of A enabled. The probability
that no process executes A actions at the first trial is (1

2
)|S|. The probability no process

executes its actions after the xth trial is (1
2
)x×|S|. The probability that none of the processes

executes its actions is limx→∞(1
2
)x×|S| = 0. 2

Theorem 4 Algorithm 3.2.1 is a self-stabilizing implementation of a probabilistic conflict
manager (see Definition 8).

Proof: The proof follows from Lemmas 4 and 5. 2

In the following we show that given an Algorithm A, that is self-stabilizing for a specifi-
cation S under a R-restricted scheduler, the hierarchical composition of A with Algorithm

11

3.2.1 is a self-stabilizing algorithm under an unfair distributed scheduler that verifies Speci-
fication S with high probability. In the followingATP denotes the hierarchical composition
of A with Algorithm 3.2.1.

Lemma 6 Let e be an execution of A under a scheduler D. There exists, with positive
probability, an execution et of ATP under the unfair scheduler such that et emulates e.

Proof: In the following we show that each transition in e can be emulated by ATP with
some positive probability. In the following et is the execution emulating e. Let c0 be the
first configuration in e and let pi1 , . . . , pik be the set of processes allowed by the scheduler
to execute their actions at c. Let c1 be the configuration obtained after the execution of
pi1 , . . . , pik . Following Lemmas 4 and 5, in et we can construct a transition with positive
probability c0, c1. That is, in this transition only processes S = {pi1 , . . . , pik} execute their
action. Let S ′ be the set of processes having their A guards true in c. Since ATP is bound
to unfair scheduling all these processes may be chosen by the scheduler. The probability
of choosing only the subset S and consequently the probability of the transition c0, c1 is
(1

2
)|S| × (1

2
)|S

′\S|. Following the same scenario, each transition in e can be emulated with
high probability in et. The probability of emulating e is the the product of the probability
of each emulated transition of e. 2

Theorem 5 Let A be an algorithm that is self-stabilizing for the specification S under a
R-restricted scheduler. Let the convergence time of A be finite (in number of steps). Let
ATP be the hierarchical composition of A with Algorithm 3.2.1. ATP is probabilistically
self-stabilizing for S.

Proof: In the following we prove that the set of executions of ATP that converges to
a legitimate configuration of A and that verifies the specification S has probability 1.
Let c be an arbitrary initial configuration of ATP . Following Lemma 6 there exists with
positive probability α a finite execution of ATP that emulates an execution of A under
a R-restricted scheduler. A converges towards a legitimate configuration, consequently
the emulated execution converges towards a legitimate configuration in a finite number of
steps. Following Theorem 1, ATP is probabilistically self-stabilizing for S. 2

12

Chapter 4

Case Studies

In this section we transform the algorithms proposed and proved correct in [14] and [15]
under a locally centralized scheduler into algorithms that are self-stabilizing under an unfair
distributed scheduler. Additionally we propose the anonymous probabilistic counterpart
of those algorithms.

4.1 Vertex Coloring

In the algorithm of [14], each process maintains a color, whose domain is the set {0, . . . , δ},
where δ is the node’s degree. The neighborhood agreement of a particular process p is
defined as follows:

Definition 9 (Agreement) A process p agrees with its neighborhood if the two following
conditions are verified:

1. p’s color is different from any of p’s neighbors,

2. p’s color is minimal within the set {0, ..., δ} \ ∪j∈Ni
(Rj).

A system is in a legitimate configuration if each process agrees with its neighborhood.

When any of these two conditions is falsified, p performs the following two actions: (i)
p removes colors used by its neighbors from the set {0, . . . , δ} and (ii) takes the minimum
color of the resulting set as its new color. The resulting set is always non-empty. Core of
the algorithm is presented in Algorithm 4.1.1.

Theorem 6 ([14]) The stabilization time of Algorithm 4.1.1 is O(∆× n) steps, where ∆
is the maximal degree of the network.

The deterministic transformation is presented in the Appendix. The randomized variant
of Algorithm 4.1.1 is now presented. This algorithm works on anonymous networks and

13

Algorithm 4.1.1 Self-stabilizing Deterministic Coloring Algorithm
Shared Variable:

Ri: integer ∈ {0, . . . , δ};
Function:

Agree(i) : Ri = min
(
{0, . . . , δ} \

⋃
j∈Ni

{Rj}
)

Actions:
C : ¬Agree(i) −→ Ri := min

(
{0, . . . , δ} \

⋃
j∈Ni

{Rj}
)

Algorithm 4.1.2 Self-stabilizing Randomized Coloring Algorithm
Shared Variable:
∀j ∈ Ni, Rj : integer ∈ {0, . . . , δ};

Function:
Agree(i) : Ri = min

(
{0, . . . , δ} \

⋃
j∈Ni

{Rj}
)

Actions:
C : ¬Agree(i) ∧ random(0, 1) = 1 −→

Ri := min
(
{0, . . . , δ} \

⋃
j∈Ni

{Rj}
)

stabilizes with an unfair distributed scheduler. The algorithm is obtained via hierarchical
composition between Algorithm 4.1.1 and Algorithm 3.2.1.

Compared to Algorithm 4.1.1, a process which does not agree with one of its neighbors
tosses a coin before changing its color. Even if neighboring processes would compete for
executing their action, by randomization there exists a positive probability that only one
of those processes executes. The correctness of Algorithm 4.1.2 directly follows from the
correctness of the probabilistic conflict manager.

Lemma 7 Algorithm 4.1.2 probabilistically self-stabilize for the coloring specification (Def-
inition 9).

Proof: Algorithm 4.1.2 is the hierarchical composition between Algorithm 4.1.1 and
Algorithm 3.2.1. Algorithm 4.1.1 is self-stabilizing for the coloring specification under
a locally centralized scheduler. Following Theorem 5, Algorithm 4.1.2 is probabilistically
self-stabilizing for the coloring specification under a distributed scheduler. 2

Lemma 8 The average number of computations steps to reach a configuration c where all
processes agree with their neighbors is O(∆n log2 n) where ∆ is the maximal degree of the
network.

Proof: Let A be the set of processes which agree with their neighbors (see Definition 9).
Let R be a round during which each process in the system executes ∆ trials. The probability
for process i to move to A after a round is

pi ≥
(

1

2

)∆

×
(

1

2

)∆2

14

Therefore, for n-sized networks, the average number of processes in A after a round is at

least n×
(

1
2

)∆+∆2

. This also means that at most n×
(
1−

(
1
2

)(∆+∆2)
)

processes are not in

A.
After x rounds, the average number of processes in A is at least n×

(
1−

(
1
2

)(∆+∆2)
)x

.

The algorithm would stop when all processes agree. Then x is a solution of the following
equation [

n×
(
1−

(
1
2

)(∆+∆2)
)x

= 1
]

⇒

[
x = log 1

1− 1
2
(∆+∆2)

n

]

⇒

[
x = log2 n

log2
1

1− 1
2
(∆+∆2)

]
⇒ x = O(log2 n)

Therefore, on average, all processes agree with their neighbors within O(∆n log n) compu-
tation steps. 2

4.2 Maximal Matching

We first recall the maximal matching algorithm of [15]. The algorithm presented in this
section requires a locally centralized scheduler. Given an undirected graph, G = (V, E), a
matching is defined to be a subset of pairwise disjoint edges. A matching is maximal if it
is not included in another matching.

Each node i maintains a single pointer variable which is either null (denoted in the
following ⊥) or points to one of its neighbors j, denoted in the following i → j. A node
i is matched if and only if i and one of its neighbors j verifies the following relation
i → j ∧ j → i.

The matching algorithm proposed in [15] works as follows. When a node is unmatched
(it points to null) and one of its neighbors proposed it a matching then the node accepts
the proposal (R1). When a node is unmatched and none of its neighbors proposed it a
matching then the node propose a matching to one of its unmatched neighbors (R2). When
a node proposed a matching to another node which proposed a matching to a different node
then the initial node withdraws its proposal (R3).

Theorem 7 [15] Algorithm 4.2.1 is self-stabilizing for the maximal matching specification.
The stabilization time of Algorithm 4.2.1 is 2m + n steps where m is the number of edges
in the network.

A transformation of [15] under an asynchronous scheduler was also proposed in [13].
However, this transformation is not generic. It uses a probabilistic naming underlying
module, the memory additional cost is n2 and the transformation cannot allow to easily
derive the time complexity of the transformed algorithm.

15

Algorithm 4.2.1 Self-stabilizing Deterministic Maximal Matching under a locally cen-
tralized scheduler
Predicates:

Want To Engage(i, j) : true iff i → ⊥∧ ∃j ∈ N (i), j → i
Want To Propose(i, j) : true iff i → ⊥∧ 6 ∃j ∈ N (i), j → i ∧ ∃j ∈ N (i), j → ⊥
Want To Desengage(i) : true iff i → j ∧ j → k, k 6= i 6= ⊥

Actions:
R1 : Want To Engage(i, j) −→ i → j
R2 : Want To Propose(i, j) −→ i → j
R3 : Want To Desengage(i) −→ i → ⊥

We transform Algorithm 4.2.1 such that it stabilizes in spite of any unfair distributed
scheduler. Using the technique proposed in Chapter 3 we hierarchically compose Algo-
rithm 4.2.1 with Algorithm 3.1.1 where the R relation is instantiated to the local neigh-
borhood and the ≺ relation is instantiated to the < relation defined on the identifiers of
the neighboring nodes. The transformation result is presented as Algorithm 4.2.2.

Algorithm 4.2.2 Self-stabilizing Deterministic Maximal Matching Algorithm
Constants:
idi: integer identifier of the process (chromatic)
Variables:

want to acti: boolean;
Predicates:

Allowed To Act(i): true iff i has the maximal id in its neighborhood restricted to the
neighbors that want to execute their action, formally (∀j ∈ Ni s.t.
want to actj = want to acti = true, idj < idi

Want To Engage(i, j) : true iff i → ⊥∧ ∃j ∈ N (i), j → i
Want To Propose(i, j) : true iff i → ⊥∧ 6 ∃j ∈ N (i), j → i ∧ ∃j ∈ N (i), j → ⊥
Want To Desengage(i) : true iff i → j ∧ j → k, k 6= i 6= ⊥

Actions:
R0 :: 〈want to acti = Want To Engage(i, j) ∧Allowed To Act(i)〉 → i → j
R1 :: 〈want to acti = Want To Propose(i, j) ∧Allowed To Act(i)〉 → i → j
R2 :: 〈want to acti = Want To Desengage(i) ∧Allowed To Act(i)〉 → i → ⊥
R1 :: 〈want to acti 6= Want To Engage ∨Want To Propose ∨Want To Desengage〉 →

want to acti := Want To Engage ∨Want To Propose ∨Want To Desengage

Lemma 9 Algorithm 4.2.2 is self-stabilizing under an unfair distributed scheduler for the
maximal matching specification.

Proof: The proof is a consequence of Theorem 3. 2

Lemma 10 The stabilization time of the transformed algorithm is O(∆×m) steps.

Proof: The proof follows from Lemma 3 and Theorem 7. 2

16

Chapter 5

Conclusions

In this paper we proposed the specification and both probabilistic and deterministic self-
stabilizing implementations of a new abstraction, the Conflict Manager. The conflict man-
ager generalizes various kinds of schedulers used in the self-stabilizing literature. Addition-
ally we presented as an application of our abstraction two transformers, that transform
algorithms written for essentially sequential schedulers into algorithms that can perform
under the general unfair distributed scheduler. The transformation cost is only one mem-
ory bit for the deterministic algorithms and zero memory bit for the probabilistic ones.
The time complexity is order of the maximal degree of the network for the deterministic
transformer. We demonstrate the effectiveness with two case studies: the coloring algo-
rithm of [14] and the maximal matching algorithm of [15]. Of course, any self-stabilizing
algorithm that has bounded step complexity can be transformed using our approach. There
remains the interesting open question of the necessity of the step complexity boundedness
for our scheme to permit transformation under the unfair distributed scheduler.

17

Bibliography

[1] D. Angluin. Local and global properties in networks of processors. In Proc. Symp. on
Theory of Computing(STOC’80), pages 82–93, 1980.

[2] A. Arora and M. Nesterenko. Stabilization-preserving atomicity refinement. DISC’99,
pages 254–268, 1999.

[3] J. Beauquier, A. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local mutual
exclusion and daemon refinement. In Proceedings of DISC’2000, October 2000.

[4] J Beauquier, M Gradinariu, and C Johnen. Crossover composition. In Proceedings of
the Fifth Workshop on Self-stabilizing Systems (WSS 2001), pages 19–34, 2001.

[5] Christian Boulinier, Franck Petit, and Vincent Villain. When graph theory helps
self-stabilization. In PODC, pages 150–159, 2004.

[6] Sébastien Cantarell, Ajoy Kumar Datta, and Franck Petit. Self-stabilizing atomicity
refinement allowing neighborhood concurrency. In Self-Stabilizing Systems, 6th Inter-
national Symposium, SSS 2003, San Francisco, CA, USA, June 24-25, 2003, Proceed-
ings, volume 2704 of Lecture Notes in Computer Science, pages 102–112. Springer,
2003.

[7] Alain Cournier, Ajoy Kumar Datta, Franck Petit, and Vincent Villain. Enabling
snap-stabilization. In ICDCS, pages 12–19, 2003.

[8] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643–644, 1974.

[9] S. Dolev. Self-stabilization. MIT Press, March 2000.

[10] M. Gouda and F. Hadix. The alternator. In Proceedings of the Third Workshop
on Self-Stabilizing Systems (published in association with ICDCS99 The 19th IEEE
International Conference on Distributed Computing Systems), pages 48–53, 1999.

[11] Mohamed G. Gouda and Ted Herman. Adaptive programming. IEEE Trans. Software
Eng., 17(9):911–921, 1991.

18

[12] M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloring of arbitrary graphs. In
Proceedings of OPODIS 2000, STUDIA INFORMATICA, pages 55–70, 2000.

[13] Maria Gradinariu and Colette Johnen. Self-stabilizing neighborhood unique naming
under unfair scheduler. In Euro-Par, pages 458–465, 2001.

[14] Stephen T. Hedetniemi, David Pokrass Jacobs, and Pradip K. Srimani. Linear time
self-stabilizing colorings. Inf. Process. Lett., 87(5):251–255, 2003.

[15] Su-Chu Hsu and Shing-Tsaan Huang. A self-stabilizing algorithm for maximal match-
ing. Inf. Process. Lett., 43(2):77–81, 1992.

[16] Hirotsugu Kakugawa and Masafumi Yamashita. Self-stabilizing local mutual exclusion
on networks in which process identifiers are not distinct. In SRDS, pages 202–211,
2002.

[17] Mehmet Hakan Karaata. Self-stabilizing strong fairness under weak fairness. IEEE
Trans. Parallel Distrib. Syst., 12(4):337–345, 2001.

[18] A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus
algorithm of Aspen and Herlihy: a case study. Distributed Computing, 13(4):155–186,
2000.

[19] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, MIT, Departament of Electrical Engineering and Computer Science, 1995.

[20] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Springer-Verlag, editor, Proceedings of the Fifth International Conference on Concur-
rency Theory (CONCUR’94) LNCS:836, Uppsala, Sweden, August 1994.

[21] S. H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic
i/o automata. In Proceedings of the Fifth International Conference on Concurrency
Theory (CONCUR’94) LNCS:836, pages 513–528, 994.

19

Appendix A

Deterministic Coloring under
Distributed Scheduler

We now transform Algorithm 4.1.1 such that it stabilizes in spite of any unfair distributed
scheduler. Using the technique we proposed in Chapter 3, we hierarchically compose
Algorithm 4.1.1 with Algorithm 3.1.1 where the R relation is instantiated to the local
neighborhood and the ≺ relation is instantiated to the < relation defined on the identifiers
of the neighboring nodes. The transformation result is presented as Algorithm A.0.3.

Algorithm A.0.3 Self-stabilizing Deterministic Coloring Algorithm
Shared Variable:

Ri: integer ∈ {0, . . . , δ};
Constants:
idi: integer identifier of the process (chromatic)
Variables:

want to acti: boolean;
Predicates:
Allowed To Act(i): true iff i has the maximal id in its neighborhood restricted to the neighbors
that want to execute their action, formally (∀j ∈ Ni s.t. want to actj = want to acti = true,
idj < idi

Function:
Agree(i) : Ri = min

(
{0, . . . , δ} \

⋃
j∈Ni

{Rj}
)

Actions:
R0 :: 〈want to acti = ¬Agree(i) ∧Allowed To Act(i)〉 → Ri := min

(
{0, . . . , δ} \

⋃
j∈Ni

{Rj}
)

R1 :: 〈want to acti 6= ¬Agree(i)〉 → want to acti := ¬Agree(i)

Lemma 11 Any computation of Algorithm A.0.3 under a distributed scheduler eventually
achieves a legitimate configuration.

Proof: The proof is a consequence of Theorem 3. 2

Lemma 12 The stabilization time of the transformed algorithm is O(∆2×n) steps, where
∆ is the maximal degree of the network.

20

Proof: The proof trivially follows from Lemma 3 and Theorem 6. 2

21

Appendix B

Probabilistic Maximal Matching with
Distributed Scheduler

In this section we present the randomized variant of Algorithm 4.2.1. This algorithm works
on anonymous networks and stabilizes with an unfair scheduler. The algorithm is obtained
via the hierarchical composition between Algorithm 4.2.1 with Algorithm 3.2.1.

Algorithm B.0.4 Self-stabilizing Randomized Maximal Matching Algorithm
Predicates:

Want To Engage(i, j) : true iff i → ⊥∧ ∃j ∈ N (i), j → i
Want To Propose(i, j) : true iff i → ⊥∧ 6 ∃j ∈ N (i), j → i ∧ ∃j ∈ N (i), j → ⊥
Want To Desengage(i) : true iff i → j ∧ j → k, k 6= i 6= ⊥

Actions:
R1 : Want To Engage(i, j) ∧ random(0, 1) = 1 −→ i → j
R2 : Want To Propose(i, j) ∧ random(0, 1) = 1 −→ i → j
R3 : Want To Desengage(i) ∧ random(0, 1) = 1 −→ i → ⊥

Compared to Algorithm 4.2.1, an enabled process tosses a coin before changing its
status. Even if neighboring processes would compete for executing their action, by ran-
domization there exists a positive probability that only one of those processes executes.

The correctness of Algorithm B.0.4 directly follows from the correctness of the proba-
bilistic conflict manager.

Lemma 13 Algorithm B.0.4 probabilistically self-stabilizes for the maximal matching
specification.

Proof: Algorithm B.0.4 is the hierarchical composition between Algorithm 4.2.1 and
Algorithm 3.2.1. Algorithm 4.2.1 is self-stabilizing for the maximal matching specifi-
cation under a locally centralized scheduler. Following Theorem 5, Algorithm B.0.4 is
probabilistically self-stabilizing for the coloring specification under a distributed scheduler.
2

22

	RR1459entête.pdf
	RR1459rapp.pdf

