L

COLOR DEGREE AND HETEROCHROMATIC CYCLES IN EDGE-COLORED GRAPHS

LI H / WANG G

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI

11/2006
Rapport de Recherche $\mathbf{N}^{\circ} 1460$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

Color degree and heterochromatic cycles in edge-colored graphs *

Hao Li ${ }^{1,2}$, Guanghui Wang ${ }^{1,3}$
${ }^{1}$ Laboratoire de Recherche en Informatique
UMR 8623, C.N.R.S.-Université de Paris-sud
91405-Orsay cedex, France
e-mail: li@lri.fr, wgh@lri.fr
${ }^{2}$ School of Mathematics and Statistics
Lanzhou University
Lanzhou 730000, China
${ }^{3}$ School of Mathematics and System Science
Shandong University
250100 Jinan, Shandong, China

Abstract

Given a graph G and an edge coloring C of G, a heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let $d^{c}(v)$, named the color degree of a vertex v, be the maximum number of distinct colored edges incident with v. In this paper, some color degree conditions for the existence of heterochromatic cycles are obtained.

Keywords: heterochromatic cycle, color neighborhood, color degree

1 Introduction and notation

We use [3] for terminology and notations not defined here. Let $G=(V, E)$ be a graph. An edge-coloring of G is a function $C: E \rightarrow N(N$ is the set of nonnegative integers). If

[^0]G is assigned such a coloring C, then we say that G is an edge-colored graph, or simply colored graph. Denote by (G, C) the graph G together with the coloring C and by $C(e)$ the color of the edge $e \in E$. The $C N(v)$ of v is defined as the set $\{C(e)$: e is incident with $v\}$. For a subgraph H of G, let $C(H)=\{C(e): e \in E(H)\}$ and $c(H)=|C(H)|$. Given a subset $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S]$.

A subgraph H of G is called heterochromatic, or rainbow, or colorful if any pair of edges in H have distinct colors. Existences of heterochromatic subgraphs have been studied since long time ago. In particular, there are many results on heterochromatic hamiltonian cycles and heterochromatic matchings. A problem of heterochromatic hamiltonian cycles in a colored complete graphs was mentioned in [9] by Erdös, Nešetřil and Rödl. This problem was also studied by Hahn and Thomassen(see [11]), Rödl and Winkler(see [10]), Albert,Frieze and Reed (see [1]), respectively. For the heterochromatic matchings, see the references $[12,14,15,16]$. It can be easily seen that the heterochromatic matchings in colored bipartite graphs are in another terminology matchings in 3-partite 3-uniform hypergraphs.

If we regard an uncolored graph G as a colored graph (G, C) in which all edges have different colors, then G contains a cycle of length at least l if and only if (G, C) contains a heterochromatic cycle of length at least l. The problem of deciding whether there is a cycle of length at least l in an (uncolored) graph is $N P$-complete. Therefore the problem of deciding whether there is a heterochromatic cycle of length at least l in a colored graph is $N P$-complete, too.

For a vertex set $S \subseteq V(G)$, a color neighbourhood of S is defined as a set $T \subseteq N(S)$ such that there are $|T|$ distinct colored edges between S and T that are incident with distinct vertices of T. A maximum color neighborhood $N^{c}(S)$ of S is a color neighborhood of S with maximum size. Given a set S and a color neighborhood T of S, denote by $C(S, T)$ a set of $|T|$ distinct colors on the $|T|$ edges between S and distinct vertices of T. In particular, if $S=\{v\}$, we denote $d^{c}(v)=\left|N^{c}(v)\right|$ and call it the color degree of v. Clearly $d^{c}(v)=|C N(v)|$.

For $l \geq 3$, let $H C_{l}$ denote a heterochromatic cycle with length l. The existence of heterochromatic cycles has been studied in [4] by Broersma, Li, Woegingerr and Zhang and they obtained the following results.

Theorem 1[4]. Let G be a colored graph of order n such that $c(G) \geq n$. Then G contains a heterochromatic cycle of length at least $\frac{2 c(G)}{n-1}$.

Theorem 2[4]. Let G be a colored graph of order $n \geq 4$, such that $|C N(u) \cup C N(v)| \geq$ $n-1$ for every pair of vertices u and v of G. Then G contains at least one H_{3} or one $H C_{4}$.

2 The main results

We are interested in Dirac type conditions (i.e., minimum color degree conditions) for existence of heterochromatic cycle, in particular the shortest heterochromatic cycles (heterochromatic girth) and the longest heterochromatic cycles (heterochromatic circumference).

We begin with a study of the existence of a heterochromatic cycle. Existence of a heterochromatic cycle can be insured by Theorem 1 when $c(G) \geq n$. Under color degree conditions, we have

Theorem 3. Let G be a colored graph with order $n \geq 3$. If $d^{c}(v) \geq \frac{n+1}{2}$ for every $v \in V(G)$, then G has a heterochromatic cycle.

For the shortest heterochromatic cycles (heterochromatic girth), we get results on HC_{3} or HC_{4} with minimum color degree conditions.

Theorem 4. Let G be a colored graph with order $n \geq 3$. If for every $v \in V(G)$, $d^{c}(v) \geq\left(\frac{4 \sqrt{7}}{7}-1\right) n+3-\frac{4 \sqrt{7}}{7}$, then G has either an $H C_{3}$ or an H_{4}.

Note that $\frac{4 \sqrt{7}}{7}-1 \approx 0.515 \cdots$ and $3-\frac{4 \sqrt{7}}{7} \approx 1.488 \cdots$.
Theorem 5. Let G be a colored graph with order $n \geq 3$. If for every $v \in V(G)$, $d^{c}(v) \geq \frac{\sqrt{7}+1}{6} n$, then G has an $H C_{3}$.

Note that $\frac{\sqrt{7}+1}{6} \approx 0.608 \cdots$. In fact, we think that the bound in Theorem 5 is not sharp. We propose the following conjecture.

Conjecture. Let G be a colored graph with order $n \geq 3$. If $d^{c}(v) \geq \frac{n+1}{2}$ for every $v \in V(G)$, then G has an H_{3}.

We have the following example to show that if the above conjecture is true, it would be best possible. For any even integer n, let $B_{n / 2, n / 2}$ be an edge-proper-colored complete balance bipartite graph with order n. Then for every vertex v of $B_{n / 2, n / 2}$, it holds that $d^{c}(v)=\frac{n}{2}$, and $B_{n / 2, n / 2}$ has no $H C_{3}$.

It is natural to ask the following problem about the existence of the heterochromatic cycles:

Does there exists a function $f(n)$ such that for any colored graph G with order n, if $d^{c}(v) \geq f(n)$ for every vertex $v \in V(G)$, then G contains a heterochromatic cycle?

The following two propositions show that the function $f(n)$ must be greater than $\log _{2} n$.

Proposition 1. For any non-negative integer k, there exists an edge colored bipartite graph B with order $n=2^{k}$ such that $d^{c}(v)=k=\log _{2} n$, for every vertex $v \in V(B)$, and B has no heterochromatic cycles.

To show Proposition 1, we construct the following example by induction.
Let G_{1} be an edge e with colors $C(e)=1$. Given a G_{i} for $i \geq 1$, define G_{i+1} as follows. First we construct a graph G_{i}^{\prime} which is a copy of G_{i}. Then add the edges between $v \in V\left(G_{i}\right)$ and $v^{\prime} \in V\left(G_{i}^{\prime}\right)$, in which v^{\prime} is the copy of v in G_{i}^{\prime}. And color the new edge with color $i+1$.

Then put $B=G_{i}$ which is an edge colored bipartite graphs with order $n=2^{i}$. Thus $d^{c}(v)=i=\log _{2} n$ for every vertex $v \in B$. Clearly B has no any heterochromatic cycles.

Proposition 2. For any non-negative integer k, there exists an edge colored complete graph K with order $n=2^{k}$ such that $d^{c}(v)=k=\log _{2} n$, for every vertex $v \in V(K)$, and K has no heterochromatic cycles.

We construct graphs in a way slightly different with the above example. Let G_{1}^{*} be an edge e with colors $C(e)=1$. Given a G_{i}^{*} for $i \geq 1$, we construct G_{i+1}^{*} as follows. Let the graph $G_{i}^{* *}$ be a copy of G_{i}^{*}. For any $u \in V\left(G_{i}^{*}\right), u^{\prime} \in V\left(G_{i}^{* *}\right)$, we add the new edge uu' and let $C\left(u u^{\prime}\right)=i+1$.

Then $K=G_{i}^{*}$ is a colored complete graph with order $n=2^{i}$. It gives $d^{c}(v)=i=\log _{2} n$ for every vertex $v \in K$. Clearly, K has no heterochromatic cycles.

Here we obtain a bound for the longest heterochromatic cycles (heterochromatic circumference) and we think it may not be the best.

Theorem 6. Let G be a colored graph with order $n \geq 3$. If $d^{c}(v) \geq d \geq \frac{3 n}{4}+1$ for every $v \in V(G)$, then G has an $H C_{l}$ such that $l \geq d-\frac{3 n}{4}+2$.

The proofs of the main results in Theorems $3,4,5$ and 6 will be given in Section 3.

3 Proofs of the main results

Proof of Theorem 5.

By contradiction. Suppose G is a colored graphs with $d^{c}(v) \geq \frac{\sqrt{7}+1}{6} n$ for every vertex v of G, and G contains no heterochromatic triangles. Let v be an arbitrary vertex of G. Choose a maximum color neighborhood $N^{c}(v)$ of v. And assume that $T=N^{c}(v)=$ $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$, where $k=d^{c}(v)$. Since G has no heterochromatic triangles, if $e=v_{i} v_{j} \in$ $E(G[T]), 1 \leq i, j \leq k$, then $C(e)=v v_{i}$ or $C(e)=v v_{j}$.

Give an orientation of $G[T]$ by the following rule: For an edge $e=v_{i} v_{j}$, if $C(e)=v v_{i}$, then the orientation of $v_{i} v_{j}$ is from v_{j} to v_{i}; Otherwise the orientation is from v_{i} to v_{j}. After the orientation, the oriented graph is denoted by D. For any vertex $u \in V(D)$, let $N_{D}^{+}(u)$ denote the outneighbors of u in D and $d_{D}^{+}(u)=\left|N_{D}^{+}(u)\right|$.

Lemma 1.1. Let $q \geq 3$. If there exists a directed cycle $\overrightarrow{C_{q}}$ in D, then C_{q} is a heterochromatic cycle of G.

Proof. Without loss of generality, we assume that the directed cycle of D is $\overrightarrow{C_{q}}: v_{1} \rightarrow$ $v_{2} \rightarrow \cdots \rightarrow v_{q} \rightarrow v_{1}$. Then by the above orientation rule, we conclude that $C\left(v_{i} v_{i+1}\right)=$ $C\left(v v_{i+1}\right)$ for $1 \leq i \leq q-1$ and $C\left(v_{q} v_{1}\right)=C\left(v v_{1}\right)$. Since $T=N^{c}(v)$ is a maximum color neighborhood of v, we have that $C\left(v v_{i}\right) \neq C\left(v v_{j}\right)$ for $i \neq j$. Thus C_{q} is a heterochromatic cycle of G.

Lemma 1.2[17]. If $\alpha=3-\sqrt{7}=0.3542 \cdots$, then any digraph on m vertices with minimum outdegree at least αm contains a directed triangle.

Since G has no heterochromatic triangles, by Lemma 1.1, D has no directed triangles. Then by Lemma 1.2, we conclude that there exists a vertex v_{i} in D such that $d_{D}^{+}\left(v_{i}\right)<$ $\alpha d^{c}(v)$. Let $G_{0}=G[T \cup\{v\}]$, and denote a maximum color neighborhood of v_{i} in graph G_{0} by $N_{G_{0}}^{c}\left(v_{i}\right)$. Then by the orientation rule, $\left|N_{G_{0}}^{c}\left(v_{i}\right)\right|=\left|N_{D}^{+}\left(v_{i}\right)\right|+|v|=\left|d_{D}^{+}\left(v_{i}\right)\right|+1<$ $\alpha d^{c}(v)+1$. Let $N^{c}\left(v_{i}\right)$ be a maximum color neighborhood of v_{i} in G. Then it follows that $\left|N^{c}\left(v_{i}\right) \backslash(T \cup\{v\})\right| \geq d^{c}\left(v_{i}\right)-\left|N_{G_{0}}^{c}\left(v_{i}\right)\right|>d^{c}\left(v_{i}\right)-\alpha d^{c}(v)-1$. It follows that

$$
n \geq\left|N^{c}\left(v_{i}\right) \backslash(T \cup\{v\})\right|+|T|+|v|>d^{c}\left(v_{i}\right)+(1-\alpha) d^{c}(v) \geq(2-\alpha) \frac{\sqrt{7}+1}{6} n=n .
$$

This contradiction completes the proof of Theorem 5.

Proof of Theorem 3.

The technique is similar to the proof of Theorem 5. By contradiction. Otherwise let G be a graph with $d^{c}(v) \geq \frac{n+1}{2}$ for every vertex v of G, and G has no heterochromatic cycles. Let v be an arbitrary vertex of G. Similarly we choose a maximum color neighborhood $N^{c}(v)$ of v. Since G contains no heterochromatic cycles, by the same orientation rule as above, we can get an oriented graph D_{0}. The following fact is clear.

Fact 2.1. Every simple m-vertex digraph with minimum out-degree at least 1 has a directed cycle.

By Lemma 1.1 and the above fact, we know that there exists a vertex v_{j} of D_{0} such that $d_{D_{0}}^{+}\left(v_{j}\right)=0$. Let $N^{c}\left(v_{j}\right)$ be a maximum color neighborhood of v_{j} in G. Then we conclude that $\left|N^{c}\left(v_{j}\right) \backslash(T \cup\{v\})\right| \geq d^{c}\left(v_{j}\right)-1$. Thus it follows that

$$
n \geq\left|N^{c}\left(v_{j}\right) \backslash(T \cup\{v\})\right|+|T|+|v| \geq d^{c}\left(v_{j}\right)-1+d^{c}(v)+1 \geq 2\left(\frac{n+1}{2}\right)=n+1
$$

This contradiction completes the proof of Theorem 3.

Proof of Theorem 4.

By contradiction. Suppose that G is a colored graph such that $d^{c}(v) \geq\left(\frac{4 \sqrt{7}}{7}-1\right) n+$ $3-\frac{4 \sqrt{7}}{7}$ for every vertex $v \in V(G)$, and G contains neither $H C_{3}$ and nor $H C_{4}$.

For an edge $u v$, let $N_{1}^{c}(u), N_{1}^{c}(v)$ denote a maximum color neighborhood of u, v, respectively, such that $v \in N_{1}^{c}(u)$ and $u \in N_{1}^{c}(v)$. Let $N^{c}(u, v)$ denote $N_{1}^{c}(u) \cup N_{1}^{c}(v)$ such that $\left|N_{1}^{c}(u) \cup N_{1}^{c}(v)\right|$ is maximum. And we choose an edge $u v \in E(G)$ such that $\left|N^{c}(u, v)\right|$ is maximum.

Assume that $N_{1}^{c}(u)=\left\{v, u_{1}, u_{2}, \cdots, u_{s}\right\}$ and $N_{1}^{c}(v) \backslash N_{1}^{c}(u)=\left\{u, v_{1}, v_{2}, \cdots, v_{t}\right\}$, in which $s=d^{c}(u)-1$. Let $X=\left\{u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{t}\right\}$. Note that $\left|N^{c}(u, v)\right|=s+t+2$. Consider the graph $G[X]$, and we have the following lemma.

Lemma 3.1. Suppose $e \in E(G[X])$, then the following hold:
(i) If $e=u_{i} u_{j}(1 \leq i, j \leq s)$, then $C(e) \in\left\{C\left(u u_{i}\right), C\left(u u_{j}\right)\right\}$.
(ii) If $e=v_{i} v_{j}(1 \leq i, j \leq t)$, then $C(e) \in\left\{C\left(v v_{i}\right), C\left(v v_{j}\right)\right\}$.
(iii) If $e=u_{i} v_{j}(1 \leq i \leq s, 1 \leq j \leq t)$ and $C\left(u u_{i}\right) \neq C\left(v v_{j}\right)$, then $C(e) \in\left\{C\left(u u_{i}\right), C\left(v v_{j}\right), C(u v)\right\}$.

Proof. Clearly (i) and (ii) hold, otherwise we can obtain an $H C_{3}$, which gets a contradiction.

If (iii) does not hold, then there exists an edge $e=u_{i} v_{j}(1 \leq i \leq s, 1 \leq j \leq t)$ such that $C\left(u u_{i}\right) \neq C\left(v v_{j}\right)$ and $C(e) \notin\left\{C\left(u u_{i}\right), C\left(v v_{j}\right), C(u v)\right\}$. Since $v, u_{i} \in N_{1}^{c}(u)$, then $C\left(u u_{i}\right) \neq C(u v)$. Similarly, we obtain that $C\left(v v_{j}\right) \neq C(u v)$. Thus we can get an $H C_{4}=u v v_{j} u_{i} u$, a contradiction.

Construct an oriented graph as follows.
(1). In graph $G[X]$, do the following operation: deleting the edges $e=v_{i} u_{j}$ if $C(e)=$ $C(u v)$ or $C\left(u u_{i}\right)=C\left(v v_{j}\right), 1 \leq i \leq s$ and $1 \leq j \leq t$. After the operation, the graph is named $G_{1}[X]$.
(2). Then give an orientation of $G_{1}[X]$: For an edge $x y \in E\left(G_{1}[X]\right)$, if $C(x y)=C(u y)$ or $C(x y)=C(v y)$, then the orientation of $x y$ is from x to y; Otherwise, by Lemma 3.1, $C(x y)=C(u x)$ or $C(x y)=C(v x)$, then the orientation of $x y$ is from y to x.

After the orientation, the oriented graph is denoted by D_{1}. For any vertex $w \in$ $V\left(D_{1}\right)$, let $N_{D_{1}}^{+}(w)$ denote the outneighbors of w in D_{1} and $d_{D_{1}}^{+}(w)=\left|N_{D_{1}}^{+}(w)\right|$. Let $G_{0}=G[X \cup\{u, v\}]$.

Lemma 3.2. If there exists a directed triangle $\overrightarrow{C_{3}}$ in D_{1}, then C_{3} is a heterochromatic triangle in G.

Proof. Suppose that $\overrightarrow{C_{3}}: x \rightarrow y \rightarrow z \rightarrow x$ is a directed triangle in D_{1}. If $x, y, z \in$ $N_{1}^{c}(u)$, then by the orientation rule, it holds that $C(x y)=C(u y), C(y z)=C(u z)$ and $C(z x)=C(u x)$. Then by the definition of $N_{1}^{c}(u)$, we conclude that $C(u x), C(u y), C(u z)$ are distinct pairwise. Thus, $C_{3}=x y z x$ is a heterochromatic triangle of G.

Thus, without loss of generality, we assume that $x, y \in N_{1}^{c}(u)$ and $z \in N_{1}^{c}(v)$. By the orientation rule, $C(x y)=C(u y), C(y z)=C(v z)$, and $C(z x)=C(u x)$. By the definition of $N_{1}^{c}(u)$ and Lemma 3.1(iii), we have that $C(u x), C(u y)$ and $C(v z)$ are distinct pairwise, then it follows that $C_{3}=x y z x$ is a heterochromatic triangle of G.

Let $\alpha=3-\sqrt{7}$. By Lemma 3.2, there is no directed triangles in D_{1}. Then by Lemma 1.2 , there is a vertex w such that $d_{D_{1}}^{+}(w)<\alpha\left|V\left(D_{1}\right)\right|=\alpha(s+t)=\alpha\left(d^{c}(u)+t-1\right)$. Without loss of generality, assume that $w \in N_{1}^{c}(u)$. Denote a maximum color neighborhood of w in G_{0} by $N_{G_{0}}^{c}(w)$. Note that, in the deleting operation, at most two colors of the edges incident with w are deleted. Thus it holds that $\left|N_{G_{0}}^{c}(w)\right| \leq\left|N_{D_{1}}^{+}(w)\right|+|v|(o r|u|)+2=$ $d_{D_{1}}^{+}(w)+3$. Let $N^{c}(w)$ be a maximum color neighborhood of w in G. It follows that

$$
\left|N^{c}(w) \backslash(X \cup\{u, v\})\right| \geq d^{c}(w)-\left|N_{G_{0}}^{c}(w)\right|>d^{c}(w)-\alpha\left(d^{c}(u)+t-1\right)-3 .
$$

If $d^{c}(w)-\alpha\left(d^{c}(u)+t-1\right)-3>t$, then we consider the edge $u w$. It follows that

$$
\begin{aligned}
\left|N^{c}(u, w)\right| & \geq\left|\left\{u_{1}, u_{2}, \cdots, u_{s}\right\} \cup\{v\}\right|+\left|N^{c}(w) \backslash(X \cup\{u, v\})\right|+|w| \\
& >s+t+2 \\
& =\left|N^{c}(u, v)\right|,
\end{aligned}
$$

a contradiction with the choice of $u v$.
Thus $d^{c}(w)-\alpha\left(d^{c}(u)+t-1\right)-3 \leq t$, then $t \geq \frac{d^{c}(w)}{1+\alpha}-\frac{\alpha d^{c}(u)}{1+\alpha}+\frac{\alpha-3}{1+\alpha}$. It follows that

$$
\begin{aligned}
n & \geq|X|+|u|+|v|+\left|N^{c}(w) \backslash(X \cup\{u, v\})\right| \\
& >d^{c}(u)+t-1+2+d^{c}(w)-\alpha\left(d^{c}(u)+t-1\right)-3 \\
& \geq(1-\alpha) d^{c}(u)+d^{c}(w)+(1-\alpha)\left(\frac{d^{c}(w)}{1+\alpha}-\frac{\alpha d^{c}(u)}{1+\alpha}+\frac{\alpha-3}{1+\alpha}\right)+\alpha-2 \\
& \geq \frac{1-\alpha}{1+\alpha} d^{c}(u)+\frac{2}{1+\alpha} d^{c}(w)+\frac{3 \alpha-5}{1+\alpha} .
\end{aligned}
$$

Since $d^{c}(v) \geq\left(\frac{4 \sqrt{7}}{7}-1\right) n+3-\frac{4 \sqrt{7}}{7}$ for every vertex $v \in V(G)$ and $\alpha=3-\sqrt{7}$, the above inequality is

$$
n>\frac{3-\alpha}{1+\alpha}\left[\left(\frac{4 \sqrt{7}}{7}-1\right) n+3-\frac{4 \sqrt{7}}{7}\right]+\frac{3 \alpha-5}{1+\alpha} \geq n
$$

This contradiction completes the proof of Theorem 4.

By contradiction, since $d^{c}(v) \geq \frac{3 n}{4}+1>\frac{n+1}{2}$, by Theorem $4, G$ has a heterochromatic cycle. Then we choose a longest heterochromatic cycle $H C_{l}$ with length l. If the conclusion fails, it holds that $l<d-\frac{3 n}{4}+2$. Note that now $d>\frac{3 n}{4}+1$.

Assume that $x y \in E\left(H C_{l}\right)$. Let $N^{c}(x), N^{c}(y)$ be a maximum color neighborhood of x, y, respectively. Then choose a set S_{x} such that:
$\left(R_{1}\right) . S_{x} \in N^{c}(x) \backslash V\left(H C_{l}\right)$.
$\left(R_{2}\right)$. For each $v \in S_{x}, C(x v) \notin C\left(H C_{l}\right)$.
$\left(R_{3}\right)$. Subject to $R_{1}, R_{2},\left|S_{x}\right|$ is maximum.
Similarly, choose a set S_{y} satisfying the following:
$\left(R_{1}^{\prime}\right) . S_{y} \in N^{c}(y) \backslash V\left(H C_{l}\right)$.
$\left(R_{2}^{\prime}\right)$. For each $v \in S_{y}, C(y v) \notin C\left(H C_{l}\right)$.
$\left(R_{3}^{\prime}\right)$. Subject to $R_{1}^{\prime}, R_{2}^{\prime},\left|S_{y}\right|$ is maximum.
Let $P=S_{x} \cap S_{y}$ and $p=|P|$. And we have the following lemmas.
Lemma 4.1. $p \geq 2 d-n+6-3 l>0$.
Proof. Clearly, we conclude that $\left|S_{x}\right| \geq d^{c}(x)-l-(l-3) \geq d+3-2 l$. Similarly, $\left|S_{y}\right| \geq d+3-2 l$. Then $p \geq\left|S_{x}\right|+\left|S_{y}\right|-(n-l) \geq 2 d-n+6-3 l>0$.

Lemma 4.2. If $u \in P$, then $C(u x)=C(u y)$.
Proof. Otherwise, if $C(u x) \neq C(u y)$, since $C(u x), C(u y) \notin C\left(H C_{l}\right)$, we can get a heterochromatic cycle: $H C_{l} \cup\{x u, u y\} \backslash\{x y\}$ with length $l+1$, a contradiction.

Lemma 4.3. If $u v \in E(G[P])$, then $C(u v) \in\left\{C(u x), C(v y), C\left(H C_{l}\right) \backslash C(x y)\right\}$.
Proof. If $u v \in E(G[P])$, then by Lemma 4.2, $C(u x)=C(u y)$ and $C(v x)=C(v y)$. Clearly, we have that $C(u x) \neq C(v y)$. So if $C(u v) \notin\left\{C(u x), C(v y), C\left(H C_{l}\right) \backslash C(x y)\right\}$. Then we can get a heterochromatic cycle: $H C_{l} \cup\{x u, u v, v y\} \backslash\{x y\}$ with length $l+2$, a contradiction.

Construct an oriented graph as follows.
(a). In graph $G[P]$, do the following operation: deleting the edges $u v$ if $C(u v) \in$ $C\left(H C_{l}\right) \backslash C(x y)$. After the operation, the graph is named $G_{1}[P]$.
(b). Then give an orientation of $G_{1}[P]$: For an edge $u v \in E\left(G_{1}[P]\right)$, if $C(u v)=C(x u)$, then the orientation of $u v$ is from v to u; Otherwise, by Lemma 4.3, $C(u v)=C(x v)$, then the orientation of $u v$ is from u to v.

After the orientation, the oriented graph is denoted by D_{2}. Let v_{0} be a vertex in D_{2} with minimum outdegree, $d_{D_{2}}^{+}\left(v_{0}\right)$. Clearly, $d_{D_{2}}^{+}\left(v_{0}\right) \leq \frac{p-1}{2}$. Let $N^{c}\left(v_{0}\right)$ denote a maximum color neighborhood of v_{0} in G. And assume that $N^{c}\left(v_{0}\right)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, in which

$$
\begin{aligned}
& V_{1}=\left\{v: v \in P \text { and } C\left(v_{0} v\right) \notin C\left(H C_{l}\right)\right\}, \\
& V_{2}=\left\{v: v \in V\left(H C_{l}\right) \text { and } C\left(v_{0} v\right) \notin C\left(H C_{l}\right)\right\}, \\
& V_{3}=\left\{v: v \in P \cup V\left(H C_{l}\right) \text { and } C\left(v_{0} v\right) \in C\left(H C_{l}\right)\right\}, \\
& V_{4}=\left\{v: v \notin P \cup V\left(H C_{l}\right)\right\},
\end{aligned}
$$

and $V_{i} \cap V_{j}=\phi$, for $1 \leq i \neq j \leq 4$. We can conclude that $\left|V_{1}\right| \leq d_{D_{2}}^{+}\left(v_{0}\right)+1 \leq \frac{p-1}{2}+1$ and $\left|V_{3}\right| \leq l$.

Lemma 4.4. $\left|V_{1}\right|+\left|V_{2}\right| \leq \frac{p-1}{2}+\frac{l-1}{2}$.
Proof. First, we conclude that $\left|V_{2}\right| \leq \frac{l-1}{2}$. Otherwise if $\left|V_{2}\right|>\frac{l-1}{2}$, by $C\left(x v_{0}\right)=$ $C\left(y v_{0}\right) \notin C\left(H C_{l}\right)$, then there exists two consecutive vertices v_{i}, v_{i+1} of $H C_{l}$, such that $C\left(v_{0} v_{i}\right), C\left(v_{0} v_{i+1}\right) \notin C\left(H C_{l}\right)$ and $C\left(v_{0} v_{i}\right) \neq C\left(v_{0} v_{i+1}\right)$. Thus we can get a heterochromatic cycle: $H C_{l} \cup\left\{v_{i} v_{0}, v_{0} v_{i+1}\right\} \backslash\left\{v_{i} v_{i+1}\right\}$ with length $l+1$, a contradiction. So if $\left|V_{1}\right| \leq \frac{p-1}{2}$, then $\left|V_{1}\right|+\left|V_{2}\right| \leq \frac{p-1}{2}+\frac{l-1}{2}$.

Moreover if $\left|V_{1}\right|=\frac{p-1}{2}+1$, then $C\left(x v_{0}\right) \in C\left(v_{0}, V_{1}\right)$. By the definition of a maximum color neighborhood $N^{c}\left(v_{0}\right)$ of v_{0} and $V_{1} \cap V_{2}=\phi$, we conclude that $C\left(x v_{0}\right) \notin C\left(v_{0}, V_{2}\right)$. Then if $\left|V_{2}\right|>\frac{l-3}{2}$, use the same method as above, we can get a heterochromatic cycle with length $l+1$, a contradiction. So it holds that $\left|V_{2}\right| \leq \frac{l-3}{2}$, thus $\left|V_{1}\right|+\left|V_{2}\right| \leq \frac{p-1}{2}+\frac{l-1}{2}$.

Now we complete the proof of Theorem 6 as follows. Since $\sum_{i=1}^{4}\left|V_{i}\right|=d^{c}\left(v_{0}\right) \geq d$ and $V_{i} \cap V_{j}=\phi$, for $1 \leq i \neq j \leq 4$, then $\left|V_{4}\right| \geq d-\sum_{i=1}^{3}\left|V_{i}\right| \geq d-l-\frac{p-1}{2}-\frac{l-1}{2}$. Clearly $V_{4} \subseteq V(G) \backslash\left(P \cup V\left(H C_{l}\right)\right)$. So we have $d-l-\frac{p-1}{2}-\frac{l-1}{2} \leq n-p-l$. It follows that $p \leq 2(n-d)+l-2$. We also have that $p \geq 2 d-n+6-3 l$ by Lemma 4.1. Thus $l \geq d-\frac{3 n}{4}+2$. This contradiction completes the proof.

References

[1] M. Albert, A. Frieze and B. Reed, Multicolored Hamilton cycles, Electronic J.Combin. 2(1995), Research Paper R10.
[2] N. Alon, T. Jiang, Z. Miller and D. Pritikin, Properly colored subgraphs and rainbow subgraphs in edge-colored graphs with local constraints, Random Struct. Algorithms 23(2003), No.4,409-433.
[3] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications, Macmillan Press [M]. New York, 1976.
[4] H.J. Broersma, X. Li, G. Woegingerr and S. Zhang, Paths and cycles in colored graphs, Australian J.combin. 31(2005), 297-309.
[5] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, in "Proceedings, Ninth S-E Conference on Combinatorics, Graph Theory and Computing, 1978", pp. 181-187.
[6] H. Chen and X. Li, Long heterochromatic paths in edge-colored graphs, The Electronic J. Combin. 12(1)(2005), Research Paper R33.
[7] G.A.Dirac, Some theorems on abstract graphs, Proc. London Math. Soc 2(1952)
[8] P. Erdös and Zs. Tuza, Rainbow subgraphs in edge-colorings of complete graphs, Ann. Discrete Math. 55(1993), 81-83.
[9] P. Erdös, J. Nešetřil and V. Rödl, Some problems related to partitions of edges of a graph, in Graphs and Other Combinatorial Topics, Teubner, Leipzig (1983), 54-63.
[10] A.M. Frieze and B.A. Reed, Polychromatic Hamilton cycles, Discrete Math. 118 (1993), 69-74.
[11] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and edge-coloring conjecture, Discrete Math. 62(1)(1986), 29-33.
[12] L. Hu and X. Li, Sufficient conditions for the existence of perfect heterochromatic matcings in colored graphs, arXiv:math.Co/051160v1 24Nov 2005.
[13] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.
[14] H. Li, X. Li, G. Liu, and G. Wang, The heterochromatic matchings in edge-colored bipartite graphs, Ars Combinatoria, to appear.
[15] H. Li and G. Wang, Color degree and heterochromatic matchings in edge-colored bipartite graphs, Utilitas Math, to appear.
[16] H. Li and G. Wang, Color neighborhood and heterochromatic matchings in edgecolored bipartite graphs, RR L.R.I NO(2006)1443.
[17] J. Shen, Directed triangles in digraphs, J. Combin. Theory Ser. B 74(1998)405-407.

[^0]: *This research is supported by the $\operatorname{NSFC}(60373012$ and 10471078) , $\operatorname{SRSDP}(20040422004)$ and PDSF (2004036402)

