L R I

COLOR DEGREE AND HETEROCHROMATIC CYCLES IN EDGE-COLORED GRAPHS

LI H / WANG G

Unité Mixte de Recherche 8623 CNRS-Université Paris Sud – LRI

11/2006

Rapport de Recherche N° 1460

CNRS – Université de Paris Sud Centre d'Orsay LABORATOIRE DE RECHERCHE EN INFORMATIQUE Bâtiment 490 91405 ORSAY Cedex (France)

Color degree and heterochromatic cycles in edge-colored graphs *

Hao Li^{1,2}, Guanghui Wang^{1,3}

¹ Laboratoire de Recherche en Informatique UMR 8623, C.N.R.S.-Université de Paris-sud 91405-Orsay cedex, France e-mail: li@lri.fr, wgh@lri.fr

² School of Mathematics and Statistics Lanzhou University Lanzhou 730000, China

³ School of Mathematics and System Science Shandong University 250100 Jinan, Shandong, China

Abstract

Given a graph G and an edge coloring C of G, a heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let $d^{c}(v)$, named the color degree of a vertex v, be the maximum number of distinct colored edges incident with v. In this paper, some color degree conditions for the existence of heterochromatic cycles are obtained.

Keywords: heterochromatic cycle, color neighborhood, color degree

1 Introduction and notation

We use [3] for terminology and notations not defined here. Let G = (V, E) be a graph. An *edge-coloring* of G is a function $C : E \to N(N)$ is the set of nonnegative integers). If

^{*}This research is supported by the NSFC (60373012 and 10471078), SRSDP(20040422004) and PDSF(2004036402)

G is assigned such a coloring *C*, then we say that *G* is an *edge-colored graph*, or simply *colored graph*. Denote by (G, C) the graph *G* together with the coloring *C* and by C(e) the *color* of the edge $e \in E$. The CN(v) of v is defined as the set $\{C(e) : e \text{ is incident with } v\}$. For a subgraph *H* of *G*, let $C(H) = \{C(e) : e \in E(H)\}$ and c(H) = |C(H)|. Given a subset $S \subseteq V(G)$, the subgraph of *G* induced by *S* is denoted by G[S].

A subgraph H of G is called *heterochromatic*, or *rainbow*, or *color ful* if any pair of edges in H have distinct colors. Existences of heterochromatic subgraphs have been studied since long time ago. In particular, there are many results on heterochromatic hamiltonian cycles and heterochromatic matchings. A problem of heterochromatic hamiltonian cycles in a colored complete graphs was mentioned in [9] by Erdös, Nešetřil and Rödl. This problem was also studied by Hahn and Thomassen(see [11]), Rödl and Winkler(see [10]), Albert,Frieze and Reed (see [1]), respectively. For the heterochromatic matchings, see the references [12, 14, 15, 16]. It can be easily seen that the heterochromatic matchings in colored bipartite graphs are in another terminology matchings in 3-partite 3-uniform hypergraphs.

If we regard an uncolored graph G as a colored graph (G, C) in which all edges have different colors, then G contains a cycle of length at least l if and only if (G, C) contains a heterochromatic cycle of length at least l. The problem of deciding whether there is a cycle of length at least l in an (uncolored) graph is NP-complete. Therefore the problem of deciding whether there is a heterochromatic cycle of length at least l in a colored graph is NP-complete, too.

For a vertex set $S \subseteq V(G)$, a color neighbourhood of S is defined as a set $T \subseteq N(S)$ such that there are |T| distinct colored edges between S and T that are incident with distinct vertices of T. A maximum color neighborhood $N^c(S)$ of S is a color neighborhood of S with maximum size. Given a set S and a color neighborhood T of S, denote by C(S,T) a set of |T| distinct colors on the |T| edges between S and distinct vertices of T. In particular, if $S = \{v\}$, we denote $d^c(v) = |N^c(v)|$ and call it the color degree of v. Clearly $d^c(v) = |CN(v)|$.

For $l \geq 3$, let HC_l denote a heterochromatic cycle with length l. The existence of heterochromatic cycles has been studied in [4] by Broersma, Li, Woegingerr and Zhang and they obtained the following results.

Theorem 1[4]. Let G be a colored graph of order n such that $c(G) \ge n$. Then G contains a heterochromatic cycle of length at least $\frac{2c(G)}{n-1}$.

Theorem 2[4]. Let G be a colored graph of order $n \ge 4$, such that $|CN(u) \cup CN(v)| \ge n-1$ for every pair of vertices u and v of G. Then G contains at least one HC_3 or one HC_4 .

2 The main results

We are interested in Dirac type conditions (*i.e.*, minimum color degree conditions) for existence of heterochromatic cycle, in particular the shortest heterochromatic cycles (heterochromatic girth) and the longest heterochromatic cycles (heterochromatic circumference).

We begin with a study of the existence of a heterochromatic cycle. Existence of a heterochromatic cycle can be insured by Theorem 1 when $c(G) \ge n$. Under color degree conditions, we have

Theorem 3. Let G be a colored graph with order $n \ge 3$. If $d^c(v) \ge \frac{n+1}{2}$ for every $v \in V(G)$, then G has a heterochromatic cycle.

For the shortest heterochromatic cycles (heterochromatic girth), we get results on HC_3 or HC_4 with minimum color degree conditions.

Theorem 4. Let G be a colored graph with order $n \geq 3$. If for every $v \in V(G)$, $d^{c}(v) \geq (\frac{4\sqrt{7}}{7}-1)n+3-\frac{4\sqrt{7}}{7}$, then G has either an HC_{3} or an HC_{4} .

Note that $\frac{4\sqrt{7}}{7} - 1 \approx 0.515 \cdots$ and $3 - \frac{4\sqrt{7}}{7} \approx 1.488 \cdots$.

Theorem 5. Let G be a colored graph with order $n \geq 3$. If for every $v \in V(G)$, $d^{c}(v) \geq \frac{\sqrt{7}+1}{6}n$, then G has an HC_{3} .

Note that $\frac{\sqrt{7}+1}{6} \approx 0.608 \cdots$. In fact, we think that the bound in Theorem 5 is not sharp. We propose the following conjecture.

Conjecture. Let G be a colored graph with order $n \ge 3$. If $d^c(v) \ge \frac{n+1}{2}$ for every $v \in V(G)$, then G has an HC_3 .

We have the following example to show that if the above conjecture is true, it would be best possible. For any even integer n, let $B_{n/2,n/2}$ be an edge-proper-colored complete balance bipartite graph with order n. Then for every vertex v of $B_{n/2,n/2}$, it holds that $d^c(v) = \frac{n}{2}$, and $B_{n/2,n/2}$ has no HC_3 .

It is natural to ask the following problem about the existence of the heterochromatic cycles:

Does there exists a function f(n) such that for any colored graph G with order n, if $d^{c}(v) \geq f(n)$ for every vertex $v \in V(G)$, then G contains a heterochromatic cycle?

The following two propositions show that the function f(n) must be greater than $\log_2 n$.

Proposition 1. For any non-negative integer k, there exists an edge colored bipartite graph B with order $n = 2^k$ such that $d^c(v) = k = \log_2 n$, for every vertex $v \in V(B)$, and B has no heterochromatic cycles.

To show Proposition 1, we construct the following example by induction.

Let G_1 be an edge e with colors C(e) = 1. Given a G_i for $i \ge 1$, define G_{i+1} as follows. First we construct a graph G'_i which is a copy of G_i . Then add the edges between $v \in V(G_i)$ and $v' \in V(G'_i)$, in which v' is the copy of v in G'_i . And color the new edge with color i + 1.

Then put $B = G_i$ which is an edge colored bipartite graphs with order $n = 2^i$. Thus $d^c(v) = i = \log_2 n$ for every vertex $v \in B$. Clearly B has no any heterochromatic cycles.

Proposition 2. For any non-negative integer k, there exists an edge colored complete graph K with order $n = 2^k$ such that $d^c(v) = k = \log_2 n$, for every vertex $v \in V(K)$, and K has no heterochromatic cycles.

We construct graphs in a way slightly different with the above example. Let G_1^* be an edge e with colors C(e) = 1. Given a G_i^* for $i \ge 1$, we construct G_{i+1}^* as follows. Let the graph G_i^{**} be a copy of G_i^* . For any $u \in V(G_i^*), u' \in V(G_i^{**})$, we add the new edge uu' and let C(uu') = i + 1.

Then $K = G_i^*$ is a colored complete graph with order $n = 2^i$. It gives $d^c(v) = i = \log_2 n$ for every vertex $v \in K$. Clearly, K has no heterochromatic cycles.

Here we obtain a bound for the longest heterochromatic cycles (heterochromatic circumference) and we think it may not be the best.

Theorem 6. Let G be a colored graph with order $n \ge 3$. If $d^c(v) \ge d \ge \frac{3n}{4} + 1$ for every $v \in V(G)$, then G has an HC_l such that $l \ge d - \frac{3n}{4} + 2$.

The proofs of the main results in Theorems 3,4,5 and 6 will be given in Section 3.

3 Proofs of the main results

Proof of Theorem 5.

By contradiction. Suppose G is a colored graphs with $d^c(v) \ge \frac{\sqrt{7}+1}{6}n$ for every vertex v of G, and G contains no heterochromatic triangles. Let v be an arbitrary vertex of G. Choose a maximum color neighborhood $N^c(v)$ of v. And assume that $T = N^c(v) = \{v_1, v_2, \dots, v_k\}$, where $k = d^c(v)$. Since G has no heterochromatic triangles, if $e = v_i v_j \in E(G[T]), 1 \le i, j \le k$, then $C(e) = vv_i$ or $C(e) = vv_j$.

Give an orientation of G[T] by the following rule: For an edge $e = v_i v_j$, if $C(e) = v v_i$, then the orientation of $v_i v_j$ is from v_j to v_i ; Otherwise the orientation is from v_i to v_j . After the orientation, the oriented graph is denoted by D. For any vertex $u \in V(D)$, let $N_D^+(u)$ denote the outneighbors of u in D and $d_D^+(u) = |N_D^+(u)|$.

Lemma 1.1. Let $q \geq 3$. If there exists a directed cycle $\overrightarrow{C_q}$ in D, then C_q is a heterochromatic cycle of G.

Proof. Without loss of generality, we assume that the directed cycle of D is $\overrightarrow{C_q}: v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_q \rightarrow v_1$. Then by the above orientation rule, we conclude that $C(v_i v_{i+1}) = C(vv_{i+1})$ for $1 \leq i \leq q-1$ and $C(v_q v_1) = C(vv_1)$. Since $T = N^c(v)$ is a maximum color neighborhood of v, we have that $C(vv_i) \neq C(vv_j)$ for $i \neq j$. Thus C_q is a heterochromatic cycle of G.

Lemma 1.2[17]. If $\alpha = 3 - \sqrt{7} = 0.3542 \cdots$, then any digraph on *m* vertices with minimum outdegree at least αm contains a directed triangle.

Since G has no heterochromatic triangles, by Lemma 1.1, D has no directed triangles. Then by Lemma 1.2, we conclude that there exists a vertex v_i in D such that $d_D^+(v_i) < \alpha d^c(v)$. Let $G_0 = G[T \cup \{v\}]$, and denote a maximum color neighborhood of v_i in graph G_0 by $N_{G_0}^c(v_i)$. Then by the orientation rule, $|N_{G_0}^c(v_i)| = |N_D^+(v_i)| + |v| = |d_D^+(v_i)| + 1 < \alpha d^c(v) + 1$. Let $N^c(v_i)$ be a maximum color neighborhood of v_i in G. Then it follows that $|N^c(v_i) \setminus (T \cup \{v\})| \ge d^c(v_i) - |N_{G_0}^c(v_i)| > d^c(v_i) - \alpha d^c(v) - 1$. It follows that

$$n \ge |N^c(v_i) \setminus (T \cup \{v\})| + |T| + |v| > d^c(v_i) + (1 - \alpha)d^c(v) \ge (2 - \alpha)\frac{\sqrt{7} + 1}{6}n = n.$$

This contradiction completes the proof of Theorem 5.

The technique is similar to the proof of Theorem 5. By contradiction. Otherwise let G be a graph with $d^c(v) \ge \frac{n+1}{2}$ for every vertex v of G, and G has no heterochromatic cycles. Let v be an arbitrary vertex of G. Similarly we choose a maximum color neighborhood $N^c(v)$ of v. Since G contains no heterochromatic cycles, by the same orientation rule as above, we can get an oriented graph D_0 . The following fact is clear.

Fact 2.1. Every simple m-vertex digraph with minimum out-degree at least 1 has a directed cycle.

By Lemma 1.1 and the above fact, we know that there exists a vertex v_j of D_0 such that $d_{D_0}^+(v_j) = 0$. Let $N^c(v_j)$ be a maximum color neighborhood of v_j in G. Then we conclude that $|N^c(v_j) \setminus (T \cup \{v\})| \ge d^c(v_j) - 1$. Thus it follows that

$$n \ge |N^c(v_j) \setminus (T \cup \{v\})| + |T| + |v| \ge d^c(v_j) - 1 + d^c(v) + 1 \ge 2(\frac{n+1}{2}) = n+1.$$

This contradiction completes the proof of Theorem 3.

Proof of Theorem 4.

By contradiction. Suppose that G is a colored graph such that $d^c(v) \ge (\frac{4\sqrt{7}}{7} - 1)n + 3 - \frac{4\sqrt{7}}{7}$ for every vertex $v \in V(G)$, and G contains neither HC_3 and nor HC_4 .

For an edge uv, let $N_1^c(u), N_1^c(v)$ denote a maximum color neighborhood of u, v, respectively, such that $v \in N_1^c(u)$ and $u \in N_1^c(v)$. Let $N^c(u, v)$ denote $N_1^c(u) \cup N_1^c(v)$ such that $|N_1^c(u) \cup N_1^c(v)|$ is maximum. And we choose an edge $uv \in E(G)$ such that $|N^c(u, v)|$ is maximum.

Assume that $N_1^c(u) = \{v, u_1, u_2, \dots, u_s\}$ and $N_1^c(v) \setminus N_1^c(u) = \{u, v_1, v_2, \dots, v_t\}$, in which $s = d^c(u) - 1$. Let $X = \{u_1, \dots, u_s, v_1, \dots, v_t\}$. Note that $|N^c(u, v)| = s + t + 2$. Consider the graph G[X], and we have the following lemma.

Lemma 3.1. Suppose $e \in E(G[X])$, then the following hold: (i) If $e = u_i u_j (1 \le i, j \le s)$, then $C(e) \in \{C(uu_i), C(uu_j)\}$. (ii) If $e = v_i v_j (1 \le i, j \le t)$, then $C(e) \in \{C(vv_i), C(vv_j)\}$. (iii) If $e = u_i v_j (1 \le i \le s, 1 \le j \le t)$ and $C(uu_i) \ne C(vv_j)$, then $C(e) \in \{C(uu_i), C(vv_j), C(uv)\}$.

Proof. Clearly (i) and (ii) hold, otherwise we can obtain an HC_3 , which gets a contradiction.

If (iii) does not hold, then there exists an edge $e = u_i v_j$ $(1 \le i \le s, 1 \le j \le t)$ such that $C(uu_i) \ne C(vv_j)$ and $C(e) \notin \{C(uu_i), C(vv_j), C(uv)\}$. Since $v, u_i \in N_1^c(u)$, then $C(uu_i) \ne C(uv)$. Similarly, we obtain that $C(vv_j) \ne C(uv)$. Thus we can get an $HC_4 = uvv_j u_i u$, a contradiction.

Construct an oriented graph as follows.

(1). In graph G[X], do the following operation: deleting the edges $e = v_i u_j$ if C(e) = C(uv) or $C(uu_i) = C(vv_j)$, $1 \le i \le s$ and $1 \le j \le t$. After the operation, the graph is named $G_1[X]$.

(2). Then give an orientation of $G_1[X]$: For an edge $xy \in E(G_1[X])$, if C(xy) = C(uy) or C(xy) = C(vy), then the orientation of xy is from x to y; Otherwise, by Lemma 3.1, C(xy) = C(ux) or C(xy) = C(vx), then the orientation of xy is from y to x.

After the orientation, the oriented graph is denoted by D_1 . For any vertex $w \in V(D_1)$, let $N_{D_1}^+(w)$ denote the outneighbors of w in D_1 and $d_{D_1}^+(w) = |N_{D_1}^+(w)|$. Let $G_0 = G[X \cup \{u, v\}]$.

Lemma 3.2. If there exists a directed triangle $\overrightarrow{C_3}$ in D_1 , then C_3 is a heterochromatic triangle in G.

Proof. Suppose that $\overrightarrow{C_3}: x \to y \to z \to x$ is a directed triangle in D_1 . If $x, y, z \in N_1^c(u)$, then by the orientation rule, it holds that C(xy) = C(uy), C(yz) = C(uz) and C(zx) = C(ux). Then by the definition of $N_1^c(u)$, we conclude that C(ux), C(uy), C(uz) are distinct pairwise. Thus, $C_3 = xyzx$ is a heterochromatic triangle of G.

Thus, without loss of generality, we assume that $x, y \in N_1^c(u)$ and $z \in N_1^c(v)$. By the orientation rule, C(xy) = C(uy), C(yz) = C(vz), and C(zx) = C(ux). By the definition of $N_1^c(u)$ and Lemma 3.1(*iii*), we have that C(ux), C(uy) and C(vz) are distinct pairwise, then it follows that $C_3 = xyzx$ is a heterochromatic triangle of G.

Let $\alpha = 3 - \sqrt{7}$. By Lemma 3.2, there is no directed triangles in D_1 . Then by Lemma 1.2, there is a vertex w such that $d_{D_1}^+(w) < \alpha |V(D_1)| = \alpha(s+t) = \alpha(d^c(u)+t-1)$. Without loss of generality, assume that $w \in N_1^c(u)$. Denote a maximum color neighborhood of w in G_0 by $N_{G_0}^c(w)$. Note that, in the deleting operation, at most two colors of the edges incident with w are deleted. Thus it holds that $|N_{G_0}^c(w)| \leq |N_{D_1}^+(w)| + |v|(or|u|) + 2 = d_{D_1}^+(w) + 3$. Let $N^c(w)$ be a maximum color neighborhood of w in G. It follows that

$$|N^{c}(w) \setminus (X \cup \{u, v\})| \ge d^{c}(w) - |N^{c}_{G_{0}}(w)| > d^{c}(w) - \alpha(d^{c}(u) + t - 1) - 3.$$

If $d^{c}(w) - \alpha(d^{c}(u) + t - 1) - 3 > t$, then we consider the edge uw. It follows that

$$|N^{c}(u,w)| \geq |\{u_{1}, u_{2}, \cdots, u_{s}\} \cup \{v\}| + |N^{c}(w) \setminus (X \cup \{u,v\})| + |w|$$

> s + t + 2
= |N^{c}(u,v)|,

a contradiction with the choice of uv.

$$\begin{aligned} \text{Thus } d^c(w) &- \alpha (d^c(u) + t - 1) - 3 \leq t, \text{ then } t \geq \frac{d^c(w)}{1 + \alpha} - \frac{\alpha d^c(u)}{1 + \alpha} + \frac{\alpha - 3}{1 + \alpha}. \text{ It follows that} \\ n &\geq |X| + |u| + |v| + |N^c(w) \setminus (X \cup \{u, v\})| \\ &> d^c(u) + t - 1 + 2 + d^c(w) - \alpha (d^c(u) + t - 1) - 3 \\ &\geq (1 - \alpha) d^c(u) + d^c(w) + (1 - \alpha) (\frac{d^c(w)}{1 + \alpha} - \frac{\alpha d^c(u)}{1 + \alpha} + \frac{\alpha - 3}{1 + \alpha}) + \alpha - 2 \\ &\geq \frac{1 - \alpha}{1 + \alpha} d^c(u) + \frac{2}{1 + \alpha} d^c(w) + \frac{3\alpha - 5}{1 + \alpha}. \end{aligned}$$

Since $d^c(v) \ge (\frac{4\sqrt{7}}{7} - 1)n + 3 - \frac{4\sqrt{7}}{7}$ for every vertex $v \in V(G)$ and $\alpha = 3 - \sqrt{7}$, the above inequality is

$$n > \frac{3-\alpha}{1+\alpha} [(\frac{4\sqrt{7}}{7} - 1)n + 3 - \frac{4\sqrt{7}}{7}] + \frac{3\alpha - 5}{1+\alpha} \ge n.$$

This contradiction completes the proof of Theorem 4.

Proof of Theorem 6.

By contradiction, since $d^c(v) \geq \frac{3n}{4} + 1 > \frac{n+1}{2}$, by Theorem 4, *G* has a heterochromatic cycle. Then we choose a longest heterochromatic cycle HC_l with length *l*. If the conclusion fails, it holds that $l < d - \frac{3n}{4} + 2$. Note that now $d > \frac{3n}{4} + 1$.

Assume that $xy \in E(HC_l)$. Let $N^c(x), N^c(y)$ be a maximum color neighborhood of x, y, respectively. Then choose a set S_x such that:

- $(R_1). \ S_x \in N^c(x) \setminus V(HC_l).$ (R_2). For each $v \in S_x, \ C(xv) \notin C(HC_l).$
- (R_3) . Subject to $R_1, R_2, |S_x|$ is maximum.

Similarly, choose a set S_y satisfying the following:

 $\begin{array}{ll} (R_1'). \ S_y \in N^c(y) \backslash V(HC_l). \\ (R_2'). \ \text{For each } v \in S_y, \ C(yv) \notin C(HC_l). \\ (R_3'). \ \text{Subject to } R_1', R_2', \ |S_y| \ \text{is maximum.} \end{array}$

Let $P = S_x \cap S_y$ and p = |P|. And we have the following lemmas.

Lemma 4.1. $p \ge 2d - n + 6 - 3l > 0$.

Proof. Clearly, we conclude that $|S_x| \ge d^c(x) - l - (l-3) \ge d+3-2l$. Similarly, $|S_y| \ge d+3-2l$. Then $p \ge |S_x| + |S_y| - (n-l) \ge 2d - n + 6 - 3l > 0$.

Lemma 4.2. If $u \in P$, then C(ux) = C(uy).

Proof. Otherwise, if $C(ux) \neq C(uy)$, since $C(ux), C(uy) \notin C(HC_l)$, we can get a heterochromatic cycle: $HC_l \cup \{xu, uy\} \setminus \{xy\}$ with length l + 1, a contradiction. \Box

Lemma 4.3. If $uv \in E(G[P])$, then $C(uv) \in \{C(ux), C(vy), C(HC_l) \setminus C(xy)\}$.

Proof. If $uv \in E(G[P])$, then by Lemma 4.2, C(ux) = C(uy) and C(vx) = C(vy). Clearly, we have that $C(ux) \neq C(vy)$. So if $C(uv) \notin \{C(ux), C(vy), C(HC_l) \setminus C(xy)\}$. Then we can get a heterochromatic cycle: $HC_l \cup \{xu, uv, vy\} \setminus \{xy\}$ with length l + 2, a contradiction.

Construct an oriented graph as follows.

(a). In graph G[P], do the following operation: deleting the edges uv if $C(uv) \in C(HC_l) \setminus C(xy)$. After the operation, the graph is named $G_1[P]$.

(b). Then give an orientation of $G_1[P]$: For an edge $uv \in E(G_1[P])$, if C(uv) = C(xu), then the orientation of uv is from v to u; Otherwise, by Lemma 4.3, C(uv) = C(xv), then the orientation of uv is from u to v.

After the orientation, the oriented graph is denoted by D_2 . Let v_0 be a vertex in D_2 with minimum outdegree, $d_{D_2}^+(v_0)$. Clearly, $d_{D_2}^+(v_0) \leq \frac{p-1}{2}$. Let $N^c(v_0)$ denote a maximum color neighborhood of v_0 in G. And assume that $N^c(v_0) = V_1 \cup V_2 \cup V_3 \cup V_4$, in which

$$V_{1} = \{v : v \in P \text{ and } C(v_{0}v) \notin C(HC_{l})\},\$$

$$V_{2} = \{v : v \in V(HC_{l}) \text{ and } C(v_{0}v) \notin C(HC_{l})\},\$$

$$V_{3} = \{v : v \in P \cup V(HC_{l}) \text{ and } C(v_{0}v) \in C(HC_{l})\},\$$

$$V_{4} = \{v : v \notin P \cup V(HC_{l})\},\$$

and $V_i \cap V_j = \phi$, for $1 \le i \ne j \le 4$. We can conclude that $|V_1| \le d_{D_2}^+(v_0) + 1 \le \frac{p-1}{2} + 1$ and $|V_3| \le l$.

Lemma 4.4. $|V_1| + |V_2| \le \frac{p-1}{2} + \frac{l-1}{2}$.

Proof. First, we conclude that $|V_2| \leq \frac{l-1}{2}$. Otherwise if $|V_2| > \frac{l-1}{2}$, by $C(xv_0) = C(yv_0) \notin C(HC_l)$, then there exists two consecutive vertices v_i, v_{i+1} of HC_l , such that $C(v_0v_i), C(v_0v_{i+1}) \notin C(HC_l)$ and $C(v_0v_i) \neq C(v_0v_{i+1})$. Thus we can get a heterochromatic cycle: $HC_l \cup \{v_iv_0, v_0v_{i+1}\} \setminus \{v_iv_{i+1}\}$ with length l + 1, a contradiction. So if $|V_1| \leq \frac{p-1}{2}$, then $|V_1| + |V_2| \leq \frac{p-1}{2} + \frac{l-1}{2}$.

Moreover if $|V_1| = \frac{p-1}{2} + 1$, then $C(xv_0) \in C(v_0, V_1)$. By the definition of a maximum color neighborhood $N^c(v_0)$ of v_0 and $V_1 \cap V_2 = \phi$, we conclude that $C(xv_0) \notin C(v_0, V_2)$. Then if $|V_2| > \frac{l-3}{2}$, use the same method as above, we can get a heterochromatic cycle with length l+1, a contradiction. So it holds that $|V_2| \le \frac{l-3}{2}$, thus $|V_1| + |V_2| \le \frac{p-1}{2} + \frac{l-1}{2}$. \Box

Now we complete the proof of Theorem 6 as follows. Since $\sum_{i=1}^{4} |V_i| = d^c(v_0) \ge d$ and $V_i \cap V_j = \phi$, for $1 \le i \ne j \le 4$, then $|V_4| \ge d - \sum_{i=1}^{3} |V_i| \ge d - l - \frac{p-1}{2} - \frac{l-1}{2}$. Clearly $V_4 \subseteq V(G) \setminus (P \cup V(HC_l))$. So we have $d - l - \frac{p-1}{2} - \frac{l-1}{2} \le n - p - l$. It follows that $p \le 2(n-d) + l - 2$. We also have that $p \ge 2d - n + 6 - 3l$ by Lemma 4.1. Thus $l \ge d - \frac{3n}{4} + 2$. This contradiction completes the proof.

References

- [1] M. Albert, A. Frieze and B. Reed, Multicolored Hamilton cycles, Electronic J.Combin. 2(1995), Research Paper R10.
- [2] N. Alon, T. Jiang, Z. Miller and D. Pritikin, Properly colored subgraphs and rainbow subgraphs in edge-colored graphs with local constraints, Random Struct. Algorithms 23(2003), No.4,409-433.
- [3] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications, Macmillan Press[M]. New York, 1976.

- [4] H.J. Broersma, X. Li, G. Woegingerr and S. Zhang, Paths and cycles in colored graphs, Australian J.combin. 31(2005), 297-309.
- [5] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, in "Proceedings, Ninth S-E Conference on Combinatorics, Graph Theory and Computing, 1978", pp. 181-187.
- [6] H. Chen and X. Li, Long heterochromatic paths in edge-colored graphs, The Electronic J. Combin. 12(1)(2005), Research Paper R33.
- [7] G.A.Dirac, Some theorems on abstract graphs, Proc. London Math. Soc 2(1952)
- [8] P. Erdös and Zs. Tuza, Rainbow subgraphs in edge-colorings of complete graphs, Ann. Discrete Math. 55(1993), 81-83.
- [9] P. Erdös, J. Nešetřil and V. Rödl, Some problems related to partitions of edges of a graph, in Graphs and Other Combinatorial Topics, Teubner, Leipzig (1983), 54-63.
- [10] A.M. Frieze and B.A. Reed, Polychromatic Hamilton cycles, Discrete Math. 118 (1993), 69-74.
- [11] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and edge-coloring conjecture, Discrete Math. 62(1)(1986), 29-33.
- [12] L. Hu and X. Li, Sufficient conditions for the existence of perfect heterochromatic matcings in colored graphs, arXiv:math.Co/051160v1 24Nov 2005.
- [13] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.
- [14] H. Li, X. Li, G. Liu, and G. Wang, The heterochromatic matchings in edge-colored bipartite graphs, Ars Combinatoria, to appear.
- [15] H. Li and G. Wang, Color degree and heterochromatic matchings in edge-colored bipartite graphs, Utilitas Math, to appear.
- [16] H. Li and G. Wang, Color neighborhood and heterochromatic matchings in edgecolored bipartite graphs, RR L.R.I NO(2006)1443.
- [17] J. Shen, Directed triangles in digraphs, J. Combin. Theory Ser. B 74(1998)405-407.