GRAPH SEARCHING WITH ADVICE

NISSE N / SOGUET D
Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI
03/2007
Rapport de Recherche ${ }^{\circ} 1469$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

Graph searching with advice

Nicolas Nisse * and David Soguet
LRI, Université Paris-Sud, Orsay, France
\{nisse, soguet\}@lri.fr

Abstract

Fraigniaud et al. (2006) introduced a new measure of difficulty for a distributed task in a network. The smallest number of bits of advice of a distributed problem is the smallest number of bits of information that has to be available to nodes in order to accomplish the task efficiently. Our paper deals with the number of bits of advice required to perform efficiently the graph searching problem in a distributed setting. In this variant of the problem, all searchers are initially placed at a particular node of the network. The aim of the team of searchers is to capture an invisible and arbitrarily fast fugitive in a monotone connected way, i.e., the cleared part of the graph is permanently connected, and never decreases while the search strategy is executed. We show that the minimum number of bits of advice permitting the monotone connected clearing of a network in a distributed setting is $O(n \log n)$, where n is the number of nodes of the network, and this bound is tight. More precisely, we first provide a labelling of the vertices of any graph G, using a total of $O(n \log n)$ bits, and a protocol using this labelling that enables clearing G in a monotone connected distributed way. Then, we show that this number of bits of advice is almost optimal: no protocol using an oracle providing $o(n \log n)$ bits of advice permits the monotone connected clearing of a network using the smallest number of searchers.

Keywords: Graph searching, Monotonicity, Bits of advice.

1 Introduction

The search problem has been widely used in the design of distributed protocols for clearing graphs in a decentralized manner $[1,6,10,11]$. In the search problem, the graph is regarded as a "contaminated" network that a team of searchers is aiming at clearing. Initially, the whole graph is contaminated. The searchers stand at some vertices of the graph and they are allowed to move along edges. An edge is cleared when it is traversed by a searcher. A clear edge e is preserved from recontamination if, for any path between e and a contaminated edge, a searcher is occupying a vertex of this path. The search problem deals with a sequence of moves of searchers, that satisfies: (1) initially all searchers stand at a particular vertex of the graph, the homebase, and (2) a searcher is allowed to move along an edge if it does not imply any recontamination. Such a sequence

[^0]of moves, or steps, is called a search strategy. Given a connected graph G and a vertex $v_{0} \in V(G)$, the search problem consists in computing, in a distributed setting, a search strategy of G, with v_{0} as the homebase, and using the fewest searchers as possible that results in all edges being simultaneously clear. The strategy is computed online by the searchers themselves. Note that, during the execution of a search strategy, the contaminated part of the graph never grows. The strategy is said monotone [5,15]. Moreover, the cleared part of the graph remains connected at any step. The strategy is said connected $[1,2]$.

The main difference between the existing distributed protocols for clearing a graph is the amount of knowledge about the topology of the graph that searchers have a priori. In $[1,10,11]$, the searchers know in advance the topology of the network in which they are launched, and clear the network in a polynomial time. Conversely, the protocol provided in [6] enables to clear any network without having any a priori information about its topology. However, the clearing of the network is connected but not monotone and it is performed in an exponential time. Thus, not surprisingly, it appears that there is a tradeoff between the amount of knowledge provided to the searchers and the performance of the search strategy.

In [12], Fraigniaud et al. propose a new framework for measuring the difficulty of a distributed task: the number of bits of advice. Given a distributed task, the minimum number of bits of advice for this problem represents the minimum total number of bits of information that has to be given to nodes or mobile agents to efficiently perform the task. This approach is quantitative, i.e. it considers the amount of knowledge without regarding what kind of knowledge is supplied. This paper addresses the problem of the minimum number of bits of advice permitting to solve the search problem.

1.1 Our model

The searchers are modeled by synchronous autonomous mobile computing entities with distinct IDs. Otherwise searchers are all identical, run the same program and use at most $O(\log n)$ bits of memory, where n is the number of nodes of the network. A network is modeled by a synchronous undirected connected graph. A priori, the network is anonymous, that is, the nodes are not labelled. The $\operatorname{deg}(u)$ edges incident to any node u are labelled from 1 to $\operatorname{deg}(u)$, so that the searchers can distinguish the different edges incident to a node. These labels are called port numbers. Every node of the network has a zone of local memory, whiteboard, of size $O(\log n)$ bits in which searchers can read, erase, and write symbols. It is moreover assumed that searchers can access these whiteboards in fair mutual exclusion. An instance of the problem consists of a couple $\left(G, v_{0}\right)$, where $G=(V, E)$ is a graph and $v_{0} \in V$ is the homebase. An oracle $[12,13]$ is a function \mathcal{O} that maps any instance $\left(G, v_{0}\right)$ to a function $f: V \rightarrow\{0,1\}^{*}$ assigning a binary string, called advice, to any node of the network. The size of the advice, i.e. the number of bits of advice, on a given instance, is the sum of the lengths of all the strings assigned to the nodes. Intuitively, the oracle provides additional knowledge to the nodes of the network.

The search problem consists in designing an oracle \mathcal{O} and a protocol \mathcal{P} using \mathcal{O}, with the following characteristics. For any instance $\left(G=(V, E), v_{0}\right)$, any vertex $v \in V$ is provided with the string $f(v), f=\mathcal{O}\left(G, v_{0}\right)$. Protocol \mathcal{P} must enable the optimal number of searchers to clear G starting from v_{0}. Moreover, the search strategy performed by searchers is computed locally. That is, the decision of the searcher at a vertex v (moving via some specific port number, switching its state, writing on the whiteboard) only depends on (1) the current state of the searcher, (2) the label $f(v)$ of the current vertex (3) the content of the current node's whiteboard (plus possibly the incoming port number if the searcher just entered the node). In particular, the searchers do not know in advance in which graph they are launched. The only information about the graph is the bit strings available locally at each node.

1.2 Our results

We show that the minimum number of bits of advice permitting the clearing of any n-node graph, in a distributed setting, is $O(n \log n)$, and this bound is tight. More precisely, on one hand, we define an oracle \mathcal{O} and a distributed protocol Cleaner that allow to solve the search problem for any connected n node graph G starting from any vertex $v_{0} \in V(G)$. Moreover, the clearing of G is performed in time $O\left(n^{3}\right)$. The searchers are modeled by automata with $O(\log n)$ bits of memory. The nodes' whiteboards have size $O(\log n)$. Actually, our protocol ensures that the whiteboard will only be used in order to allow two searchers present at the same node to exchange their states and IDs. Finally, the number of bits of advice provided by \mathcal{O} is $O(n \log n)$ for any n-node graph. On the other hand, we show that this number of bits of advice is almost optimal: no protocol using an oracle providing $o(n \log n)$ bits of advice permits to solve the search problem.

1.3 Related work

In many areas of distributed computing, the quality of algorithmic solutions for a given network problem often depends on the amount of knowledge given to the nodes of the network (see [9] for a survey). The comparison of two algorithms with knowledge appears however to be not obvious when they are provided with qualitatively different informations: upper bound on the size of the network [3], the entire topology of the network [8], etc. In [12], Fraigniaud et al. introduce the notion of bits of advice as a way to quantitatively measure the difficulty of a distributed task. As an example, Fraigniaud et al. [12] study the amount of knowledge that must be distributed on the vertices of the graph in order to perform broadcast and wake-up efficiently (i.e., using a minimum number of messages). They prove that the minimum number of bits of advice permitting to perform wake-up (resp., broadcast) with a linear number of messages is $\Theta(n \log n)$ (resp., $O(n)$) bits. This quantitatively differentiate the difficulty
of broadcast and wake-up. Fraigniaud et al. [13] also study the minimum number of bits of advice that allows to efficiently explore a tree, i.e., with a better competitive ratio than a Depth First Search.

Introduced by Parson [17], graph searching looks for the smallest number of searchers required to clear a graph. However, in graph searching, the strategies are not constrained to be connected nor monotone (see [4] for a survey). The search number of the graph G, denoted $\mathbf{s}(G)$, is the minimum k such that there is a search strategy for G (not necessarily monotone nor connected) using at most k searchers that results in all edges being simultaneously clear. The graph searching problem has been extensively studied for its practical applications and for the close relationship between its several variants (edge-search, node-search, mixedsearch [4]) and standard graph parameters like treewidth [18] and pathwidth [4]. The problem of finding the search number of a graph has been proved to be NPhard [16]. According to the important Lapaugh's result [5, 15], "recontamination does not help". That is, for any graph G, there is a monotone search strategy for G using at most $\mathbf{s}(G)$ searchers. Monotonicity plays a crucial role in graph searching, since a monotone search strategy ensures a clearing of the graph in a polynomial number of steps. It implies that the graph searching problem is in NP. This result is not valid anymore, as soon as the search strategy is constrained to be connected [19]. Several practical applications (decontamination of polluted pipes [17], speleological rescue [7], network security...) require the search strategy to be connected to ensure safe communications between searchers. Barrière et al. [2] prove that, clearing a tree T in a connected way requires at most $2 \mathbf{s}(T)-2$ searchers and that this bound is tight. The better bound known in the case of an arbitrary n-node graph G is $\mathbf{s}(G)(\log n+1)$ [14].

Several protocols for clearing a network in distributed setting have been proposed in the literature. It has been proved that any distributed protocol clearing an asynchronous network in a monotone connected way requires at most one searcher more than in the synchronous case [11]. Moreover, this result remains valid even if the topology of the network is known in advance. In [6], Blin et al. proposed a distributed protocol that enables the optimal number of searchers to clear any network G in a fully decentralized manner. The strategy is computed online by the searchers themselves. The distributed computation must not require knowing the topology of the network in advance. Roughly speaking, their protocol ensures that searchers try every possible connected monotone partial search strategy. Thus, whilst the search strategy eventually computed by the searchers is monotone, failing search strategies investigated before lead to withdrawals, and therefore to recontamination. Flocchini et al. proposed protocols that address the graph searching problem in specific topologies (trees [1], hypercubes [11], tori and chordal rings [10], etc.). For each of these classes of graphs, the authors propose a protocol using the optimal number of searchers for clearing G in a monotone connected way with $O(\log n)$ bits of memory and whiteboards of $O(\log n)$ bits, that clears the graph in a polynomial time. Note that, encoding the entire topology requires $\Omega\left(n^{2}\right)$ bits.

2 Distributed search strategy using little information

This section is devoted to prove the following theorem.
Theorem 1. The search problem can be solved using $O(n \log n)$ bits of advice.
To prove it, we describe an oracle \mathcal{O} which provides an advice of size $O(n \log n)$, and a distributed protocol Cleaner that solve the search problem in a synchronous decentralized manner. Protocol Cleaner is divided in n phases, each one being divided in two stages of $O\left(n^{2}\right)$ rounds. Thus, the clearing of G is performed in a time $O\left(n^{3}\right)$.

2.1 The Oracle

In this section, we describe the oracle \mathcal{O}. For any instance $\left(G=(V, E), v_{0}\right)$ of the search problem, we consider a strategy S that is solution of the problem. The function $f=\mathcal{O}\left(G, v_{0}\right)$ is defined from S. Roughly speaking, the bits of advice supplied by \mathcal{O} enable searchers using protocol Cleaner, to clear the vertex-set in the same order as S. Moreover, they allow the searchers to circulate in the cleared part of the graph avoiding recontamination. Let us define some notations.

Let $n=|V|$ and $m=|E|$. The strategy S can be defined by the order in which S clears the edges. Let $\left(e_{1}, \cdots, e_{m}\right)$ be this order. An edge e_{i} is smaller than an edge e_{j}, denoted by $e_{i} \preceq e_{j}$, if $i \leq j$. S also induces an order on the vertices of G. For any $v, w \in V$, we say that v is smaller than w, denoted $v \preceq w$, if the first cleared edge incident to v is smaller than the first cleared edge incident to w. Let $\left(v_{0}, \cdots, v_{n-1}\right)$ be this order, i.e., $v_{i} \preceq v_{j}$ if and only if $i \leq j$.

For any $0 \leq i \leq n-1$, let $f_{i} \in E$ be the first cleared edge incident to v_{i}. By definition, $f_{0}=f_{1} \prec f_{2} \cdots \prec f_{n-1}$. For any $1 \leq i \leq n-1$, the parent of v_{i}, denoted by parent $\left(v_{i}\right)$, is defined as the neighbour v of v_{i} such that, $\left\{v, v_{i}\right\}=f_{i}$. Note that parent $\left(v_{i}\right) \prec v_{i}$, and for any neighbour w of $v_{i}, f_{i}=\left\{\operatorname{parent}\left(v_{i}\right), v_{i}\right\} \preceq$ $\left\{w, v_{i}\right\}$. Intuitively, for any $1 \leq i \leq n-1, f_{i}=\left\{\operatorname{parent}\left(v_{i}\right), v_{i}\right\}$ is the edge by which a searcher has arrived to clear v_{i}. Conversely, the children of $v \in V$ are the vertices w such that $v=\operatorname{parent}(w)$. For any $0 \leq i \leq n-1$, let T_{i} be the subgraph of G whose vertex-set is $\left\{v_{0}, \cdots, v_{i}\right\}$, and the edge-set is $\left\{f_{1}, \cdots, f_{i}\right\}$. For any $0 \leq i \leq n-1, T_{i}$ is a spanning tree of $G\left[v_{0}, \cdots, v_{i}\right]$, which denotes the subgraph of G induced by $\left\{v_{0}, \cdots, v_{i}\right\}$. Intuitively, at the phase i of the execution of Protocol Cleaner, T_{i-1} is a spanning tree of the clear part of the graph. It is used to allow the searchers to move in the clear part, performing a DFS of T_{i-1}.

We now define a local labelling $\mathcal{L}(S)$ of the vertices of G. Again, this labelling depends on the strategy S that is considered. Let $v \in V(G)$. The label of a vertex v consists of the following local variables: a boolean TYPE_{v}, four integers TCU_{v}, TTL_{v}, LASTPORT $_{v}$, PARENT $_{v}$ and a list CHILD ${ }_{v}$ of ordered pairs of integers. The index will be omitted whenever this omission does not cause any confusion. Intuitively, $\operatorname{PARENT}_{v}$ and CHILD_{v} enable the searchers to perform a DFS of a subtree spanning the cleared part. To avoid recontamination, the searchers must know which ports they can take or not, and the moment when such a move is possible, i.e. the phase of the protocol when a searcher can take some port. The
informations about the ports are carried by $\operatorname{PARENT}_{v}$, CHILD $_{v}$, and $\operatorname{LASTPORT}_{v}$. $\mathrm{CHILD}_{v}, \mathrm{TCU}_{v}$ and TTL_{v} carry information about phases. Moreover, if a searcher preserves a node from recontamination, we say that this searcher guards the node, otherwise the searcher is said free. A searcher which guards a node v will leave v by its largest edge. Such a move will not induce any recontamination because any other edges incident to v will have been previously cleared by free searchers. For this task, we need to distinguish two types of node with TYPE ${ }_{v}$.

In the following we will say that a port number p of a vertex v (resp., the edge incident to v, corresponding to p) is labelled if either there exists $\ell \leq n-1$ such that $(p, \ell) \in \operatorname{CHILD}_{v}$, or $p=\operatorname{LASTPORT}_{v}$, or $p=\operatorname{PARENT}_{v}$. Note that an edge may have two different labels, or may be unlabelled at one of its ends, and labelled at the other, or unlabelled at both ends. Let $0 \leq i \leq n-1$ be the integer such that $v=v_{i}$. Let e be the largest edge incident to v that is not in $E\left(T_{n-1}\right)$, and let f be the largest edge incident to v that is not in $\left(T_{n-1}\right) \cup\{e\}$.
$-\operatorname{PARENT}_{v}$ is the port number of v leading to parent (v) through an edge of $E\left(T_{n-1}\right)$ (we set PARENT $v_{v_{0}}=-1$).

- CHILD $_{v}$ is a list of ordered pairs of integers. Let $1 \leq p \leq \operatorname{deg}(v)$ and $0<j \leq$ $n-1$. $(p, j) \in \operatorname{CHILD}_{v}$ if and only if $v=\operatorname{parent}\left(v_{j}\right)$ and p is the port number of v leading to v_{j}. In the following, $\operatorname{CHILD}_{v}(j)$ denotes the port number p of v such that $(p, j) \in \operatorname{CHILD}_{v}$.
$-\operatorname{TYPE}_{v}$ is a boolean variable. It equals 0 if the largest edge incident to v belongs to T_{n-1}. Otherwise, the variable TYPE_{v} equals 1 . In the following we will say that a vertex is of type 0 (resp., type 1) if TYPE $_{v}=0$ (resp., $\operatorname{TYPE}_{v}=1$). Roughly, a vertex is of type 0 if, in S, the searcher cleared the last uncleared incident edge to v, in order to reach a new vertex which was still uncleared.
the last incident edge to reach a new vertex that was not occupied yet.
$-\operatorname{LASTPORT}_{v}=-1$ if $\operatorname{TYPE}_{v}=0$, else LASTPORT v_{v} is the port number corresponding to e.
- TCU_{v} (Time to Clean Unlabelled port), represents the phase when the free searchers must clear all the unlabelled ports of v. Case $\operatorname{TYPE}_{v}=0$: if e does not exist, then $\mathrm{TCU}_{v}=-1$, else TCU_{v} is the largest k such that $f_{k-1} \preceq e$. Case $\operatorname{TYPE}_{v}=1$: if f does not exist, then $\operatorname{TCU}_{v}=-1$, else TCU_{v} is the largest k such that $f_{k-1} \preceq f$.
- TTL_{v} (Time To Leave), represents the phase when, a searcher that guards v will leave v. Case $\operatorname{TYPE}_{v}=0: \mathrm{TTL}_{v}=j$ such that v_{j} is the largest child of v. Case TYPE $v=1: \mathrm{TTL}_{v}$ is the largest k such that $f_{k-1} \leq e$.

We now define the bits of advice $\mathcal{O}\left(G, v_{0}\right)$ provided by oracle \mathcal{O} to G, using the labelling $\mathcal{L}(S)$. For any $0 \leq i \leq n-1$,
$\mathcal{O}\left(G, v_{0}\right)\left(v_{i}\right)=\left(i, n, \operatorname{TYPE}_{v_{i}}, \operatorname{PARENT}_{v_{i}}, \operatorname{LASTPORT}_{v_{i}}, \operatorname{TCU}_{v_{i}}, \operatorname{TTL}_{v_{i}}, \operatorname{CHILD}_{v_{i}}\right)$.
The following lemma follows obviously from the definition of the oracle.
Lemma 1. For any n-node graph, \mathcal{O} provides $O(n \log n)$ bits of advice.

2.2 The Protocol Cleaner

In this section, we define a distributed protocol Cleaner using the oracle \mathcal{O}, that enables to clear any n-node synchronous network G starting from the homebase v_{0}. Protocol Cleaner is formally described in Figures 1 and 2.

Let us roughly describe our protocol. Our searchers can be in seven different states: DFS_TEST, DFS_BACK, CLEAR_UNLABELLED, CLEAR_UNLABELLED_BACK, CLEAR, WAIT, GUARD. Initially, all searchers stand at v_{0}. Each of them reads n on the label $\mathcal{O}\left(G, v_{0}\right)\left(v_{0}\right)$ of v_{0} to initialize their counters. Then the searcher with the largest Id is elected to guard v_{0} and switches to state GUARD, the other searchers become free and switch to state DFS_TEST. After the phase $1 \leq i \leq n-1$, our protocol ensures the following. (1) A subgraph G^{\prime} of $G\left[v_{0}, \cdots, v_{i}\right]$ containing T_{i} as a subgraph is cleared. (2) For any vertex v of the border of G^{\prime}, i.e. v is incident to an edge in $E\left(G^{\prime}\right)$ and an edge of $E(G) \backslash E\left(G^{\prime}\right)$, one searcher is guarding v (in state GUARD). (3) Any other searcher is free and stand at a vertex of G^{\prime}.

During the first stage of the phase $i+1$, the free searchers are aiming at clearing the unlabelled edges of those vertices v of $V\left(G\left[v_{0}, \cdots, v_{i}\right]\right)$ such that the largest unlabelled edge e incident to v satisfies $f_{i} \prec e \prec f_{i+1}$. Note that such an edge e belongs to $E\left(G\left[v_{0}, \cdots, v_{i}\right]\right)$. For this purpose, any free searcher performs a DFS of T_{i} thanks to the labels PARENT and CHILD. The searcher is in state DFS_TEST if it goes down in the tree, in state DFS_BACK otherwise.

During this DFS, if the searcher meets a vertex $v_{j}(j \leq i)$ labelled in such a way that $\mathrm{TCU}_{v_{j}}=i+1$ (recall that TCU means Time to Clear Unlabelled edges), then the searcher clears all unlabelled edges of v_{j} and then it carries on the DFS. To clear the unlabelled edges of v_{j}, the searcher take successively, in the order of the port numbers, all the unlabelled ports. It takes each unlabelled port back and forth, in state CLEAR_UNLABELLED for the first direction, and CLEAR_UNLABELLED_BACK for the second direction.

Moreover, during this stage, any searcher that is guarding a vertex labelled in such a way that (TYPE $=1$ and $\operatorname{TCU}<\mathrm{TTL}=i+1$) is aiming at clearing, in state CLEAR, the edge corresponding to the port number LASTPORT of the considered vertex (recall that TTL means Time To Leave). Protocol Cleaner ensures that the corresponding port number corresponds to the single contaminated edge incident to the considered vertex at this stage.

Before the first round of the second stage of phase $i+1$, the two following properties are satisfied: (1) if there exists a vertex v such that v is labelled with (TYPE $v=0$ and $\mathrm{TTL}_{v}=i+1$), f_{i+1} is the only contaminated edge incident to $v=\operatorname{parent}\left(v_{i+1}\right)$, and (2) for any vertex v labelled in such a way that ($\operatorname{TYPE}_{v}=1$ and $\mathrm{TCU}_{v}=\mathrm{TTL}_{v}=i+1$), the edge corresponding to $\operatorname{LASTPORT}_{v}$ is the only contaminated edge incident to v.

During the second stage of the phase $i+1$, Protocol Cleaner performs the clearing of f_{i+1} (incident to parent $\left(v_{i+1}\right) \in V\left(G^{\prime}\right)$) and the clearing of any edge corresponding to port number $\operatorname{LASTPORT}_{v_{j}}$ of a vertex $v_{j}(j \leq i)$ labelled in such a way that $\left(\operatorname{TYPE}_{v_{j}}=1\right.$ and $\left.\operatorname{TCU}_{v_{j}}=\operatorname{TTL}_{v_{j}}=i+1\right)$. For this purpose, any free searcher performs a DFS of T_{i}.

Program of searcher A.
Initialisation: /* all searchers start at $v_{0} * /$
Read n on $\mathcal{O}\left(G, v_{0}\right)$ to initialize the counter;
if A is the searcher with the largest ID at v_{0} then
Switch to the state GUARD;
else
At the first round on the second stage of phase 1,
Switch to the state DFS_TEST;
endif
Program of searcher A at any round of stage $s \in\{0,1\}$ of phase $1 \leq i \leq n$.
/* Searcher A arrives at node v_{j}, coming by port number p_{ℓ} of $v_{j}{ }^{*} /$
(corresponding to the edge $\left\{v_{\ell}, v_{j}\right\}$).
Let $p_{\text {first }}$ be the smallest unlabelled port number of v_{j}.
$p_{\text {first }}=-1$ if there are no such edges.
Let $p_{\text {next }}$ be the smallest unlabelled port number p of v_{j}, such that $p>p_{\ell}$.
$p_{\text {next }}=-1$ if there are no such edges.
Let $p_{\text {firstChild }}$ be the port number p of v_{j} such that it exists $1 \leq k \leq n-1$ with p being labelled $\operatorname{CHILD}(k)$, and for any $1 \leq k^{\prime}<k$, no port numbers of v_{j} are labelled $\operatorname{CHILD}\left(k^{\prime}\right) \cdot p_{\text {firstChild }}=-1$ if there are no such edges.
If $p_{\text {firstChild }} \neq-1$, let firstChild denote the corresponding neighbour of v_{j}.
Let $p_{\text {nextChild }}$ be the port number p of v_{j} such that it exists $\ell<k \leq n-1$ with p being labelled $\operatorname{CHILD}(k)$, and for any $\ell \leq k^{\prime}<k$, no port numbers of v_{j} are labelled $\operatorname{CHILD}\left(k^{\prime}\right)$. If $p_{\text {nextChild }} \neq-1$, nextChild denotes the corresponding neighbour of v_{j}.

Case:
state $=$ DFS_TEST
if $s=1$ and there is a port p labelled $\operatorname{CHILD}(i)$ then
Take port p in state Clear;
else if $s=0$ and TCU $=i$ then
Take port $p_{\text {first }}$ in state CLEAR_UNLABELLED;
else if $p_{\text {firstChild }} \neq-1$ and firstChild $\preceq v_{i-1}$ then
Take port $p_{\text {firstChild }}$ in state DFS_TEST;
else Take port labelled PARENT in state DFS_BACK; endif
state = CLEAR_UNLABELLED_BACK
if $p_{\text {next }} \neq-1$ then
Take port $p_{\text {next }}$ in state CLEAR_UNLABELLED;
else if $p_{\text {firstChild }} \neq-1$ and firstChild $\preceq v_{i-1}$ then
Take port $p_{\text {firstChild }}$ in state DFS_TEST;
else Take port labelled PARENT in state DFS_BACK; endif

Fig. 1. Protocol Cleaner (1/2)

```
    state = CLEAR_UNLABELLED
    Take port }\mp@subsup{p}{\ell}{}\mathrm{ in state CLEAR_UNLABELLED_BACK;
    state = DFS_BACK
    if }s=1\mathrm{ and there is a port plabelled CHILD (i) then
            Take port p in state CLEAR;
        else if }\mp@subsup{p}{\mathrm{ nextChild }}{}\not=-1\mathrm{ and nextChild }\preceq\mp@subsup{v}{i-1}{}\mathrm{ then
            Take port p}\mp@subsup{p}{\mathrm{ nextChild in state DFS_TEST;}}{
        else if PARENT }\not=-1\mathrm{ then
            Take port labelled PARENT in state DFS_BACK;
        else Take port CHILD(1) in state DFS_TEST;
        endif
    state = CLEAR
    if }\mp@subsup{v}{j}{}\prec\mp@subsup{v}{i}{}\mathrm{ or }\operatorname{deg}(\mp@subsup{v}{j}{})=1\mathrm{ then
        if j>0 then
            Take port labelled PARENT in state DFS_BACK;
            else Take port labelled CHILD(1) in state DFS_TEST;
            endif
    else Switch to the state WAIT;
    endif
/* Searcher that stands at node v}\mp@subsup{v}{j}{*/
    state = GUARD
    if TYPE = 1 then
        if TCU = TTL then
            At the first round of the second stage of phase TTL,
            Take port labelled LASTPORT in state ClEAR;
        else At the first round of the first stage of phase TTL,
            take port labelled LASTPORT in state ClEAR;
        endif
    else At the first round of the second stage of phase TTL
        take port CHILD(TTL) in state CLEAR;
    endif
    state = WAIT
    At the last round of this phase:
    if A is the searcher with the greatest ID at }\mp@subsup{v}{j}{}\mathrm{ then
        Switch to the state GUARD;
    else Take port labelled PARENT in state DFS_BACK;
    endif
end
```

Fig. 2. Protocol Cleaner (2/2)

When the searcher meets the vertex $\operatorname{parent}\left(v_{i+1}\right)$ whose a port number is labelled CHILD $(i+1)$, it takes the corresponding edge in state CLEAR. Moreover, any searcher that is guarding the vertex $\operatorname{parent}\left(v_{i+1}\right)$ also takes the edge corresponding to $\operatorname{CHILD}(i+1)$ in state CLEAR if (TTL $=i+1$ and TYPE $=0$). Finally, any searcher that is guarding a vertex labelled in such a way that (TYPE $=1$ and $\operatorname{TCU}=\mathrm{TTC}=i+1$), takes the edge corresponding to port number LASTPORT in state CLEAR. During this stage, any searcher arriving at v_{i+1} waits (in state WAIT) the last round of the stage if $\operatorname{deg}\left(v_{i+1}\right)>1$, else it becomes free. During this last round, if $\operatorname{deg}\left(v_{i+1}\right)>1$, the searcher with largest Id that stands at v_{i+1} is elected to guard v_{i+1} while other searchers are free and take the port labelled PARENT in state DFS_BACK.

2.3 Proof of correctness of Protocol Cleaner

In order to prove the correctness of our protocol we need the following notations. A searcher is called free if it is not in state GUARD nor wait. For any $0 \leq i \leq n-1$, let $M_{i}=\left\{v \in V(G) \mid\right.$ for any edge e incident to $\left.v, e \preceq f_{i}\right\} . M_{i} \subseteq V\left(T_{i}\right)$ is the set of the vertices whose all incident edge, but f_{i}, have been cleared by S before the step corresponding to the clearing of f_{i}. Moreover, we set $M_{n}=V$. Thus, after the step corresponding to the clearing of f_{i}, no vertices in M_{i} need to be guarded in the strategy S. Note that, for any $0 \leq j \leq n-1$, the set $M_{j} \backslash M_{j-1}$ is exactly the set of vertices v such that TTL $=j$.

Lemma 2. Let G be a connected graph and $v_{0} \in V(G)$. Let S be a strategy that clears the graph G, starting from v_{0}, and using smallest number of searchers. Let $\mathcal{O}\left(G, v_{0}\right)$ be the labelling of the vertices of G, using $\mathcal{L}(S)$. After the last round of the phase $i \geq 1$ of the execution of Protocol Cleaner, the cleared part of the graph G satisfies the following:

1. any edge in $\left\{f_{0}, \cdots, f_{i}\right\}$ is clear,
2. any edge incident to vertex in M_{i} is clear,
3. there is exactly one searcher in state GUARD at any vertex of $V\left(T_{i}\right) \backslash M_{i}$,
4. any other searcher is free and stands at a vertex of T_{i},
5. for any vertex v with $\mathrm{TCU} \leq i$, any unlabelled edge of v is clear.

The proof is by induction on $1 \leq i \leq n$. One can easily check that the case $i=1$ holds. Let us assume that the result holds for $1 \leq i \leq n-1$. We prove that it still holds after the last round of the phase $i+1$. We consider two cases according whether there is a free searcher or not. Let $\operatorname{mcs}\left(G, v_{0}\right)$ be the smallest number of searchers required to clear G in a monotone connected way, and starting from v_{0}.

Case 1: Let us assume that no searchers are free. That is, any searcher is standing alone at a vertex of $V\left(T_{i}\right) \backslash M_{i}$ in state guard. Thus, by item 3 of the induction hypothesis, $\left|V\left(T_{i}\right) \backslash M_{i}\right|=\operatorname{mcs}\left(G, v_{0}\right)$. Let s_{i} be the step of the strategy S when the edge f_{i} is cleared. After the step s_{i}, at least one searcher stands at any vertex of $V\left(T_{i}\right) \backslash M_{i}$. Since $\left|V\left(T_{i}\right) \backslash M_{i}\right|=\operatorname{mcs}\left(G, v_{0}\right)$, for any vertex v of $V\left(T_{i}\right) \backslash M_{i}$, exactly one searcher stands at v in the configuration
reached at step s_{i} of S. Let e be the edge cleared by S at step $s_{i}+1$ by moving a searcher from the vertex v along e. In the strategy S, e is the last contaminated edge incident to v at step s_{i}. Else, e could not have been cleared since only one searcher stands at any vertex of the border of the clear part of the graph. Again, $v \in V\left(T_{i}\right) \backslash M_{i}$, thus by item 3 of the induction hypothesis, there is a searcher, say A, in state GUARD at vertex v after the last round of the execution of phase i of Protocol Cleaner. We consider two cases:
$-e=f_{i+1}$: That is $v=\operatorname{parent}(v)$. In this case, since e is the last contaminated edge, incident to v, that is cleared by S, vertex v is of type 0 . Since f_{i+1} is the last edge incident to v that is cleared by $S, \mathrm{TCU}_{v}<i+1$ and for any $i+1<j \leq n-1, f_{j}$ is not incident to v. Thus, by item 5 , any unlabelled edge incident to v is clear. Moreover, by item 1 , for any $0 \leq j \leq i, f_{j}$ has been cleared. Thus, after the last round of the phase i of the execution of Protocol Cleaner, e is the only contaminated edge that is incident to v. During the execution of the phase $i+1$ of Protocol Cleaner, there is only one move which is performed: searcher A at v clears the edge f_{i+1} during the first round of the stage 2 of this phase. Since e is the only contaminated edge incident to v, no recontamination occurs. If $\operatorname{deg}\left(v_{i+1}\right)=1, M_{i+1}=M_{i} \cup\left\{v, v_{i+1}\right\}$. In this case, v_{i+1} has been cleared by Protocol Cleaner and the searcher becomes free. It is easy to check that, being free, the searcher only performs a DFS of T_{i+1}, and thus, it causes no recontamination. Thus, items $1,2,3$ and 4 of the lemma hold. If $\operatorname{deg}\left(v_{i+1}\right) \neq 1, M_{i+1}=M_{i} \cup\{v\}$, and at the last round of the phase $i+1$, Searcher A switches in state GUARD at vertex v_{i+1}. Again, items $1,2,3$ and 4 of the lemma hold. Beside, since there are no edge ℓ with $f_{i} \prec \ell \prec f_{i+1}$, no vertices are such that TCU $=i+1$. Thus, item 5 of the lemma holds obviously.
$-e \prec f_{i+1}$: Let W be the set of the vertices of T_{i} with (TYPE $=1$ and TCU $<$ $\mathrm{TTL}=i+1$). In this case, the vertex v is of type 1 with $\mathrm{TTL}_{v}=i+1$ and $\operatorname{LASTPORT}_{v} \neq-1$ is the port number corresponding to e. Since there are no edge $f_{i} \prec \ell \prec e$ and e is the last edge cleared by $S, \operatorname{TCU}_{v}<i+1$. Thus, $v \in W \neq \emptyset$. Let $w \in W$.
For any $i+1 \leq j \leq n-1, f_{j}$ is not incident to w. By item 5 , any unlabelled edge incident to w is clear. By item 1 , for any $0 \leq j \leq i, f_{j}$ has been cleared. Thus, after the last round of the phase i of the execution of Protocol Cleaner, there is exactly one contaminated edge that is incident to w and the corresponding port number is labelled LASTPORT ${ }_{w} \neq-1$. Let e_{w} be this edge. Note that $f_{i} \prec e_{w} \prec f_{i+1}$. By item 3, after the last round of phase i, there is a searcher A_{w} in state gUARD at w. During the first round of the stage 1 of the phase $i+1$, searcher A_{w} clears the edge e_{w}. No recontamination occurs since e_{w} is the last contaminated edge incident to w. Searcher A_{w} arrives in state CLEAR at a vertex u of T_{i}. Since $f_{i} \prec e_{w}, u \notin M_{i}$. Thus, at the last round of the phase i, vertex u was guarded by another searcher A_{u} in state Guard. There are two cases to be considered:

- $u \notin W$. Searcher A_{u} is still in state guard at u.
- $u \in W$. Hence, $e_{u}=e_{w}$. Thus, at the first round of the first stage of phase $i+1$, searcher A_{u} has moved along this edge. Then, u is clear.

In both cases, searcher A_{w} becomes free and leaves the current node u by port $\operatorname{PARENT}_{u}$ in state DFS_BACK, or by port $\operatorname{CHILD}_{u}(1)$ in state DFS_TEST if the current node is actually v_{0} (i.e., if $u=v_{0}$). Since either u is clear or u is guarded, no recontamination occurs.
Let us prove that, during the remaining part of the first stage of phase $i+1$, A_{w} performs a DFS of T_{i}. Moreover, we prove that searcher A_{w} clears all unlabelled edge of vertices that satisfy TCU $=i+1$. Indeed, when searcher A_{w} arrives at a vertex $u \in V\left(T_{i}\right)$, from a vertex $v \in V\left(T_{i}\right)$, in state DFS_BACK, the searcher checks whether u has a smallest child v_{t} such that $v \prec v_{t} \prec v_{i+1}$. If u has such a child v_{t}, the searcher takes the corresponding edge (Note this edge is actually f_{t} labelled $\left.\operatorname{CHILD}_{u}(t)\right)$ in state DFS_TEST. Else, either $u \neq v_{0}$ and the searcher takes the port $\operatorname{PARENT}_{u}$ in state DFS_BACK, or the searcher takes the port $\operatorname{CHILD}_{u}(1)$ in state DFS_TEST. On the other hand, when searcher A_{w} arrives at a vertex $u \in V\left(T_{i}\right)$, from the vertex $\operatorname{parent}(u)$, in state DFS_TEST, it checks whether u satisfies $\operatorname{TCU}=i+1$. If it does, searcher A_{w} clears any unlabelled edge, being alternatively in states CLEAR_UNLABELLED and CLEAR_UNLABELLED_BACK.
We show that no recontamination occurs because of the moves of A_{w} along e_{u}. Note that any unlabelled edge e_{u} of such a vertex u belongs to $E\left(G\left[v_{0}, \cdots, v_{i}\right]\right)$. Moreover, by item 3 of the lemma, there is a searcher in state GUARD at u at this stage. Let t be the other end of e_{u}. If $t \in M_{i} \cup W$, any edge incident to t has already been cleared, thus, the moves of searcher A_{w} along e_{u} don't lead to recontamination. If $t \in V\left(T_{i}\right) \backslash\left(M_{i} \cup W\right)$, by item 3 , there was a searcher in state GUARD at t at the end of phase i and it still is in this state at t. Again, no recontamination occurs. Therefore, the clearing of the unlabelled edges incident to u is performed without leading to recontamination. After having cleared the unlabelled edges incident to u, Searcher A_{w} continues the DFS by checking whether u has at least one child smaller than v_{i+1}. If it is the case, searcher A_{w} takes the port corresponding to the smallest child of u in state DFS_TEST. Else, Searcher A_{w} takes the port $\operatorname{PARENT}_{u}$ in state DFS_BACK. During this stage, for any $u \in V\left(T_{i}\right)$, either $u \in M_{i} \cup W$ in which case u is clear, or a searcher in state GUARD stands at u. Thus, no move of A_{w} yield to recontamination.
The vertices that satisfy $\mathrm{TCU}=i+1$, are in $V\left(T_{i}\right) \backslash M_{i}$. Thus, there are at $\operatorname{most} k=\operatorname{mcs}\left(G, v_{0}\right)$ of these vertices. The first stage of phase $i+1$ consists of $O\left(n^{2}\right)$ rounds. Therefore, after the last round of this stage, all unlabelled edges incident to the vertices that satisfy $\mathrm{TCU}=i+1$ are clear.
We have proved that during the first stage of phase $i+1$, at least one searcher is become free (since $W \neq \emptyset$), and that any free searcher has cleared some edges. Let us consider the execution of the second stage of the phase $i+1$ of Protocol Cleaner.
Let U be the set of the vertices of T_{i} with (TYPE $=1$ and TCU $=i+1$ and TTL $=i+1$). If $U \neq \emptyset$, let $w \in U$. After the last round of phase i, w was occupied by a searcher, say A_{w}, in state GUARD. During the first stage of phase $i+1$, this searcher remains in state GUARD at this vertex. We have proved above that any unlabelled edge incident to w has been cleared during
the first stage of this phase. Since TTL $=i+1$, for any $i+1 \leq j \leq n-1$, f_{j} is not incident to w. Finally, by item 1 , for any $0 \leq j \leq i, f_{j}$ has been cleared. Thus, after the last round of the first stage of the phase $i+1$, $\operatorname{LASTPORT}_{w} \neq-1$ and the corresponding edge e_{w} is the last contaminated edge incident to w. During the first round of the second stage of the phase $i+1$, the searcher A_{w} at w clears the edge e_{w}. No recontamination occurs since e_{w} is the last contaminated edge incident to w. Searcher A_{w} arrives in state CLEAR at a vertex u of T_{i}. Since $f_{i} \prec e_{w}, u \notin M_{i}$. Thus, at the last round of the phase i, vertex u was guarded by another searcher A_{u} in state GUARD. There are three cases to be considered:

- $u \in W$. In this case, e_{w} had been cleared during the first stage of this phase. Any edge incident to u had already been cleared.
- $u \in U$. Therefore, at the first round of the second stage of phase $i+1$, searcher A_{u} has moved along $e_{w}=e_{u}$. Any edge incident to u had already been cleared.
- $u \notin U \cup W$. Hence, searcher A_{u} is still in state GUARD at u.

In any case, searcher A_{w} becomes free and leaves the current node u by port $\operatorname{PARENT}_{u}$ in state DFS_BACK, or by port $\operatorname{CHILD}_{u}(1)$ in state DFS_TEST if the current node is actually v_{0}. Since either u is clear or u is guarded, no recontamination occurs.
During the second stage of the phase $i+1$, any free searcher A performs the DFS of T_{i}. During this stage, the free searcher is aiming at clearing f_{i+1}. Indeed, performing the DFS of T_{i}, A eventually meets the vertex parent $\left(v_{i+1}\right)$. When searcher A arrives at $\operatorname{parent}\left(v_{i+1}\right)$ in state DFS_TEST or DFS_BACK, it takes the port labelled $\operatorname{CHILD}(i+1)$ in state CLEAR, clearing the edge f_{i+1}. Arriving at v_{i+1}, either v_{i+1} has degree one and thus, it is clear and the searcher leaves it through f_{i+1} in state DFS_BACK, or searcher A switches in state WAIT.
Finally, let us consider the vertex $w=\operatorname{parent}\left(v_{i+1}\right)$. After the last round of the first stage of phase $i+1$, there is a searcher A in state GUARD at w (item 3 of the lemma). If $\operatorname{TYPE}_{w}=0$ and $\mathrm{TTL}_{w}=i+1$, searcher A takes the port number $\operatorname{CHILD}_{w}(i+1)$ (corresponding to the edge f_{i+1}) in state CLEAR during the first round of the second stage of phase $i+1$. Arriving at v_{i+1}, either v_{i+1} has degree one and thus, it is clear and the searcher leaves it through f_{i+1} in state DFS_BACK, or searcher A switches in state wait. Again, recontamination cannot occur. If $\operatorname{TYPE}_{w}=1$ or TTL $>i+1$, searcher A remains at w in state gUARD.
Let $J=\left\{\operatorname{parent}\left(v_{i+1}\right)\right\}$ if $\operatorname{TYPE}_{\text {parent }\left(v_{i+1}\right)}=0$ and $\operatorname{TTL}_{\text {parent }\left(v_{i+1}\right)}=i+1$, otherwise $J=\emptyset$. Let $I=\left\{v_{i+1}\right\}$ if $\operatorname{deg}\left(v_{i+1}\right)=1$, otherwise $I=\emptyset$. By definition, $M_{i+1}=\left\{v_{j} \mid\left(\operatorname{TTL}_{v_{j}} \leq i+1\right)\right.$ or $\left(j \leq i+1\right.$ and $\left.\left.\operatorname{deg}\left(v_{j}\right)=1\right)\right\}$. It is easy to check that $M_{i+1}=M_{i} \cup W \cup U \cup I \cup J$. Then, at the last round of phase $i+1$, any edges incident to the vertices in M_{i+1} are clear. Moreover, any searcher at a vertex of $T_{i} \backslash M_{i+1}$ remains in state GUARD. Beside, at the last round of phase $i+1$, all free searchers (recall that there is at least one free searcher after the first round of stage 1 of this phase) are at v_{i+1} if $\operatorname{deg}\left(v_{i+1}\right)>1$. The searcher with greatest Id at v_{i+1} switches in state GUARD
while the other searchers leave v_{i+1} through f_{i+1} in state DFS_BACK. Thus, any item of the lemma holds.
Moreover, we have proved that during the phase $i+1$, recontamination never occurs.

Case 2: Let us assume that there is at least one free searcher. The proof is similar to the second case of Case 1.

To conclude the proof of Theorem 1, it is sufficient to notice that after the last round of the phase n, any vertex of M_{n} has all its incident edges clear. Moreover we have proved that the clearing of G is performed in monotone connected way.

3 Lower Bound

In this section, we show that the upper bound proved in the previous section is almost optimal. More precisely, we prove that:

Theorem 2. The search problem cannot be solved using only o($n \log n)$ bits of advice.

To prove the theorem, we build a $4 n+4$-node graph \mathcal{G}_{n}. Then, we prove that any distributed protocol requires $\Omega(n \log n)$ bits of advice to clear \mathcal{G}_{n} in a monotone connected way starting from $v_{0} \in V\left(\mathcal{G}_{n}\right)$, and using the fewest number of searchers.

Let $n \geq 4$. Let $t=2 n+7$. Let $P=\left\{v_{1}, \cdots, v_{t}\right\}$ be a path and let K_{n-2}, resp. K_{n}, be a $(n-2)$-clique, resp. a n-clique. We obtain the graph \mathcal{G}_{n} by adding all edges between v_{i} and the vertices of K_{n-2}, for any $1 \leq i \leq t$. Then, let the node v_{t} coincide with a vertex of K_{n}. Finally, let us choose one vertex of K_{n-2} and denote it by v_{0}.

We now enumerate some technical lemmas that describe how any search strategy clears \mathcal{G}_{n} using the fewest number of searchers.

Lemma 3. The smallest number of searchers sufficient to clear \mathcal{G}_{n} is n.
Proof. Since \mathcal{G}_{n} admits K_{n} as a minor, we get the smallest number of searcher required to clear \mathcal{G}_{n} is at least n. We now describe a strategy that clears \mathcal{G}_{n} using n searchers. Starting from v_{0}, move one searcher to guard any vertex of K_{n-2}. Use the two remaining searchers to clear any edge of $E\left(K_{n-2}\right)$. Then, move one remaining searcher to v_{1}. The second remaining searcher clears any edge between v_{1} and K_{n-2}. Then, the searcher at v_{1} move to v_{2} and the second remaining searcher clears any edge between v_{2} and K_{n-2}. And so on, until any vertex of P has been cleared. At this step, there are one searcher at any vertex of K_{n-2} and one searcher at v_{t}. Finally, let us use all the searchers to clear K_{n}.

Lemma 4. For any optimal search strategy that clears \mathcal{G}_{n}, the last vertex of \mathcal{G}_{n} to have all its incident edges clear belongs to $V\left(K_{n}\right)$.

Proof. During the clearing of K_{n}, the n searchers must stand at vertices of K_{n}. Thus, v_{0} is not occupied by a searcher anymore. To avoid recontamination, any vertex of P and K_{n-2} must have all its incident edges clear.

Lemma 5. For any optimal search strategy that clears \mathcal{G}_{n}, the first vertex of \mathcal{G}_{n} to have all its incident edges clear is v_{1} or v_{2}. Moreover, at this step, any vertex of K_{n-2} is occupied by a searcher, and no vertices of $\left\{v_{4}, \cdots, v_{t}\right\}$ have been occupied.

Proof. Let u be the first vertex of \mathcal{G}_{n} to have all its incident edges to be cleared. Let s be the first step such that, after this step, u has all its incident edges clear. After step s, there must be one searcher at any neighbour of u. Moreover, after this step s, there must be one searcher at any vertex of a path between u and v_{0}. Therefore, $u \in V(P)$. Let $1 \leq j \leq t$ such that $u=v_{j}$. For purpose of contradiction, let us assume that $j \geq 3$. After the step s, there are one searcher at any vertex of any vertex of K_{n-2}, and at v_{j-1} and v_{j+1}. Note that at this step, v_{j-2} and v_{j+2} have all their incident edges that are contaminated. Then, the only thing that the searcher at v_{j-1} (resp., at v_{j+1}) may do is to move to v_{j-2} (resp., to v_{j+2}). Then, the strategy reaches a situation where any searcher stands at a vertex with at least two contaminated incident edges. Thus, the strategy fails and we get a contradiction. Therefore, $u \in\left\{v_{1}, v_{2}\right\}$. If $u=v_{2}$, at the step when all its edges are clear, the searchers are occupying the vertices of K_{n-2}, v_{1} and v_{3}. Thus, in this case, the lemma holds. If $u=v_{1}$, at the step when all its edges are clear, the searchers are occupying the vertices of K_{n-2} and v_{2}. For purpose of contradiction, let us assume that the remaining searcher is occupying v_{j}, with $j>3$. In that case, the searcher at v_{2} may move at v_{3}, and then, the strategy fails because any searcher stands at a vertex with more than one contaminated incident edge. Thus, if $u=v_{1}$, the lemma holds as well.

Lemma 6. Let S be an optimal connected search strategy that clears \mathcal{G}_{n} starting from v_{0}. For any $5 \leq i \leq t-2$, at the first step of S when a searcher reaches v_{i}, the following is satisfied:

- any vertex in $V\left(K_{n}\right) \cup\left\{v_{i+1}, \cdots, v_{t}\right\}$ has all its incident edges contaminated;
- there is one searcher at any vertex of K_{n-2};
- any vertex in $\left\{v_{1}, \cdots, v_{i-2}\right\}$ has all its incident edges clear;
- either v_{i-1} has all its incident edges clear, or there is a searcher at v_{i-1} and v_{i-1} has only one incident edge that is still contaminated. In the latter case, the next move consists in moving a searcher along the last contaminated edge incident to v_{i-1}.

Proof. Let s be the first step of the strategy such that, after this step, a searcher is occupying v_{i}. Let us consider the situation just before this step. Since $i \geq 5$, by Lemma 5 , just before step s, v_{1} or v_{2} has all its incident edges clear, and there are one searcher at any vertex from K_{n-2} to preserve them from recontamination. Moreover, there is a vertex on the path between v_{1} and v_{i} in P, that is occupied by a searcher for preserving v_{1} or v_{2} from recontamination. Let $j, 1<j<i$, be the minimum index such that a searcher is standing at v_{j}. Note that, for any k, $1 \leq k<j, v_{k}$ has all its incident edge clear.

First, let us show that for any $\ell>i, v_{\ell}$ is not occupied before step s. For purpose of contradiction, let us assume v_{ℓ} is occupied. Since v_{i} has all its incident edges contaminated, for any $k, j<k<\ell, v_{k}$ has all its incident edges
contaminated. By Lemma 4 a vertex of K_{n} has at least one contaminated incident edge. Thus, for any $k, \ell<k \leq t, v_{k}$ has all its incident edges contaminated, since there are no searchers on the path between v_{k} and K_{n}. Thus, there exits $k \neq i$ such that v_{k} has all its incident edges contaminated. Thus, the searchers at K_{n-2} cannot move, because they preserve recontamination from v_{i} and v_{k}. The searcher at v_{ℓ} cannot move because it preserves recontamination from v_{i} and K_{n}. The searcher at v_{j} may move at v_{j+1}, but then could not move anymore. Then the strategy fails, a contradiction. This proves the first item of the lemma.

Thus, before step s, there are one searcher at any vertex of K_{n-2}. These searchers preserve recontamination from v_{i} and v_{t}. Therefore, they cannot move. This proves the second item of the lemma.

According to the first item of the lemma, v_{i-1} has been reached before v_{i}. Since the strategy is monotone, just before the step s, a searcher is occupying v_{i-1}. Two cases must be considered:

- If s consists in moving a searcher occupying v_{i-1} along the edge $\left\{v_{i-1}, v_{i}\right\}$, the monotonicity of the strategy implies that either all edges incident to v_{i-1} are clear, or just before step s two searchers were occupying v_{i-1}. In the first case, the lemma is valid. Thus, let us assume that at least one edge incident to v_{i-1} is still contaminated after step s. Since $i \leq t-2$, any vertex in $V\left(K_{n-2}\right) \cup\left\{v_{i}\right\}$ is occupied by a searcher, and incident to at least two contaminated edges: all edges incident to v_{i+1} and v_{i+2} are contaminated. If more than one edge incident to v_{i-1} is contaminated, the strategy fails. Therefore, at most one edge incident to v_{i-1} is contaminated, and the single possible move consists in moving the searcher at v_{i-1} along this edge.
- Else, the step s consists in moving a searcher along an edge between a vertex u of K_{n-2} and v_{i}. Since $i \leq t-2$, there must be two searchers at u just before step s. Again, just after step s, any vertex in $V\left(K_{n-2}\right) \cup\left\{v_{i}\right\}$ is occupied by a searcher, and incident to at least two contaminated edges: all edges incident to v_{i+1} and v_{i+2} are contaminated. Moreover, a searcher is occupying v_{i-1} and $\left\{v_{i-1}, v_{i}\right\}$ is contaminated. If another edge incident to v_{i-1} is contaminated, the strategy fails. Hence, at most one edge incident to v_{i-1} is contaminated, and the single possible move consists in moving the searcher at v_{i-1} along this edge.

This concludes the proof of the lemma.
A local orientation of a graph is a mapping from the incidence of the graph (between a vertex and an edge) into the port number of the graph. An instance of the problem consists of a graph, a vertex of this graph (the homebase) and a local orientation for this graph. Let \mathcal{C} be the set of the following instances $\left\{\left(\mathcal{G}, v_{0}, \ell o\right) \mid\right.$ 勿 is a local orientation of $\left.\mathcal{G}\right\}$. Let $\mathcal{I}=|\mathcal{C}|$. The following lemma proves that any distributed protocol, using an arbitrary string of bits of advice, can clear only some amount of the instances of \mathcal{C}.

Lemma 7. Let \mathcal{P} be a distributed protocol for solving the search problem. Let f be a binary string of bits of advice provided by an oracle. Using f, \mathcal{P} can clear at most $\mathcal{I} *\left(\frac{1}{n-2}\right)^{n}$ instances of \mathcal{C}.

Proof. Let $\mathcal{I}_{k, j}$ be the number of instances such that (\mathcal{P}, f) allows to a searcher to clear j edges between v_{k} and K_{n-2}. We prove that, for $5 \leq k \leq n+5$ and any $1 \leq j \leq n-3, \mathcal{I}_{k, j} \leq \mathcal{I}_{k, j-1} \frac{n-j-1}{n-j}$.

Let us consider the last step such that exactly $0 \leq j \leq n-3$ edges between v_{k} and K_{n-2} are clear. By the lemma above, at this step, there is a searcher at v_{k} and a searcher at any vertex of K_{n-2}. Moreover, the remaining searcher cannot move to a vertex of $\left\{v_{k+1}, \cdots, v_{t}\right\}$. Let v be the vertex where this searcher stands. Using f, protocol \mathcal{P} chooses a port number p that the remaining searcher must take. There are two cases according whether the remaining searcher stands at v_{k} or at a vertex of K_{n-2}.

- If the remaining searcher stands at v_{k}, it remains $n-j-1$ contaminated edges incident to this vertex and the strategy fails if p leads to v_{k+1}. Thus, the strategy fails in at least $\mathcal{I}_{k, j} \frac{1}{n-j-1}$ instances. Therefore, $\mathcal{I}_{k, j+1} \leq \mathcal{I}_{k, j} \frac{n-j-2}{n-j-1}$.
- If the remaining searcher stands at a vertex of K_{n-2}, it remains at most $n-$ $3+t-k+1$ contaminated edges incident to this vertex and the strategy fails if p leads to one vertex in $\left\{v_{k+1}, \cdots, v_{t}\right\}$. Thus, the strategy fails in at least $\mathcal{I}_{k, j-1}\left(\frac{t-k}{n-3+t-k+1}\right)$ instances. Hence, $\mathcal{I}_{k, j} \leq \mathcal{I}_{k, j-1} \frac{n-2}{t+n-2-k}$. To conclude, it is sufficient to remark that, since $n \geq 4, t=2 n+7,1 \leq j \leq n-3$ and $5 \leq k \leq n-5$, we have $\frac{n-2}{t+n-2-k} \leq \frac{n-2}{2 n}$ and $\frac{n-j-2}{n-j-1} \geq \frac{n-3}{2}$. Thus, $\frac{n-2}{t+n-2-k} \leq \frac{n-j-2}{n-j-1}$.
Hence, $\mathcal{I}_{k, n-2} \leq \mathcal{I}_{k-1, n-2} \prod_{j=1 . . n-3}\left(\frac{n-j-2}{n-j-1}\right)=\mathcal{I}_{k-1, n-2}\left(\frac{1}{n-2}\right)$. Using f, \mathcal{P} can clear at most $\mathcal{I}_{n-5, n-2} \leq \mathcal{I}_{5, n-2}\left(\frac{1}{n-2}\right)^{n}$. Since, $\mathcal{I}_{5, n-2} \leq \mathcal{I}$, the lemma holds.
Proof. of Theorem 2. Let $N=|V(\mathcal{G})|=4 n+4$. To prove the theorem, it is sufficient to prove that for any $\alpha<1 / 4$, and for any oracle that provides less than $q=\alpha N \log N$ bits of advice, no distributed protocol using \mathcal{O} permit to clear all instances of \mathcal{C}. Let \mathcal{O} be such an oracle. The number of functions f that the oracle \mathcal{O} can output for \mathcal{G}_{n} is at most $(q+1) 2^{q}\binom{N+q}{N}$ [12]. Thus, there exists a set $\mathcal{S} \subseteq \mathcal{C}$ of at least $B=\frac{\mathcal{I}}{(q+1) 2^{q}\binom{N+q}{N}}$ instances of \mathcal{C} for which \mathcal{O} returns the same string of bits of advice.

Let \mathcal{P} be a distributed protocol that uses the oracle \mathcal{O} for solving the search problem. By Lemma $7, \mathcal{P}$ cannot clear more than $\mathcal{I} *\left(\frac{1}{n-2}\right)^{n}$ instances of \mathcal{C} using the same string of bits of advice.

To conclude, it remains to prove that $B>\mathcal{I} *\left(\frac{1}{n-2}\right)^{n}$. Indeed,

$$
B *\left(\frac{(n-2)^{n}}{\mathcal{I}}\right)=\frac{(n-2)^{n}}{(q+1) 2^{q}\binom{N+q}{N}}
$$

Using the Stirling formula we get that for n large enough,

$$
B *\left(\frac{(n-2)^{n}}{\mathcal{I}}\right) \sim \frac{(n-2)^{n}}{2^{\alpha N \log N}(1+\alpha \log N)^{N}} *\left(\frac{\alpha \log N}{1+\alpha \log N}\right)^{\alpha N \log N}
$$

Since $N=4 n+4$, we obtain:

$$
\log \left[B *\left(\frac{(n-2)^{n}}{\mathcal{I}}\right)\right] \sim(1-4 \alpha) n \log n
$$

Since $\alpha<1 / 4$, we get that $B>\mathcal{I} *\left(\frac{1}{n-2}\right)^{n}$. Thus, the result holds.

References

1. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents. In 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 200-209, 2002.
2. L. Barrière, P. Fraigniaud, N. Santoro, and D. Thilikos. Connected and Internal Graph Searching. In 29th Workshop on Graph Theoretic Concepts in Computer Science (WG), Springer-Verlag, LNCS 2880, pages 34-45, 2003.
3. M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176, pages 1-21, 2002.
4. D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey) DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5, pages 33-49, 1991.
5. D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algorithms 12, pages 239-245, 1991.
6. L. Blin, P. Fraigniaud, N. Nisse and S. Vial. Distributing Chasing of Network Intruders. In 13th Colloquium on Structural Information and Communication Complexity (SIROCCO), Springer-Verlag, LNCS 4056, pages 70-84, 2006.
7. R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5), pages 72-78, 1967
8. A.E.F. Clementi, A. Monti and R. Silvestri. Selective families, superimposed codes, and broadcasting on unknown radio networks. In 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 709-718, 2001.
9. F. Fich and E. Ruppert Hundreds of impossibility results for distributed computing. Distributed Computing 16, pages 121-163, 2003.
10. P. Flocchini, F.L. Luccio, and L. Song. Decontamination of chordal rings and tori. Proc. of 8th Workshop on Advances in Parallel and Distributed Computational Models (APDCM), 2006.
11. P. Flocchini, M. J. Huang, F.L. Luccio. Contiguous search in the hypercube for capturing an intruder. Proc. of 18th IEEE Int. Parallel and Distributed Processing Symp. (IPDPS), 2005.
12. P. Fraigniaud, D. Ilcinkas and A. Pelc. Oracle Size: a New Measure of Difficulty for Communication Tasks. In 25th Annual ACM Symp. on Principles of Distributed Computing (PODC), pages 179-187, 2006.
13. P. Fraigniaud, D. Ilcinkas and A. Pelc. Tree Exploration with an Oracle. In 31st International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS 4162, pages 24-37, 2006.
14. P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching. In 7th Latin American Theoretical Informatics Symp. (LATIN 2006), LNCS 3887, pages 470-490, 2006.
15. A. LaPaugh. Recontamination does not help to search a graph. Journal of the ACM 40(2), pages 224-245, 1993.
16. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The complexity of searching a graph. Journal of the ACM 35(1), pages 18-44, 1988.
17. T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture Notes in Mathematics, Springer-Verlag, pages 426-441, 1976.
18. P. Seymour and R. Thomas. Graph searching and a min-max theorem for treewidth. J. Combin. Theory Ser. B, 58, pages 22-33, 1993.
19. B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number. In 15th Annual International Symp. on Algorithms and Computation (ISAAC), pages 908-920, 2004.

[^0]: * Additional supports from the project Fragile of the ACI Sécurité Informatique, and from the project Grand Large of INRIA.

