
L R I

GRAPH SEARCHING WITH ADVICE

NISSE N / SOGUET D

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

03/2007

Rapport de Recherche N° 1469

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

Graph searching with advice

Nicolas Nisse ? and David Soguet

LRI, Université Paris-Sud, Orsay, France
{nisse,soguet}@lri.fr

Abstract. Fraigniaud et al. (2006) introduced a new measure of diffi-
culty for a distributed task in a network. The smallest number of bits of

advice of a distributed problem is the smallest number of bits of infor-
mation that has to be available to nodes in order to accomplish the task
efficiently. Our paper deals with the number of bits of advice required
to perform efficiently the graph searching problem in a distributed set-
ting. In this variant of the problem, all searchers are initially placed at
a particular node of the network. The aim of the team of searchers is to
capture an invisible and arbitrarily fast fugitive in a monotone connected
way, i.e., the cleared part of the graph is permanently connected, and
never decreases while the search strategy is executed. We show that the
minimum number of bits of advice permitting the monotone connected
clearing of a network in a distributed setting is O(n log n), where n is the
number of nodes of the network, and this bound is tight. More precisely,
we first provide a labelling of the vertices of any graph G, using a total of
O(n log n) bits, and a protocol using this labelling that enables clearing
G in a monotone connected distributed way. Then, we show that this
number of bits of advice is almost optimal: no protocol using an ora-
cle providing o(n log n) bits of advice permits the monotone connected
clearing of a network using the smallest number of searchers.

Keywords: Graph searching, Monotonicity, Bits of advice.

1 Introduction

The search problem has been widely used in the design of distributed protocols
for clearing graphs in a decentralized manner [1, 6, 10, 11]. In the search problem,
the graph is regarded as a “contaminated” network that a team of searchers is
aiming at clearing. Initially, the whole graph is contaminated. The searchers
stand at some vertices of the graph and they are allowed to move along edges.
An edge is cleared when it is traversed by a searcher. A clear edge e is preserved
from recontamination if, for any path between e and a contaminated edge, a
searcher is occupying a vertex of this path. The search problem deals with a
sequence of moves of searchers, that satisfies: (1) initially all searchers stand at
a particular vertex of the graph, the homebase, and (2) a searcher is allowed to
move along an edge if it does not imply any recontamination. Such a sequence

? Additional supports from the project Fragile of the ACI Sécurité Informatique,
and from the project Grand Large of INRIA.

2 Nicolas Nisse and David Soguet

of moves, or steps, is called a search strategy. Given a connected graph G and a
vertex v0 ∈ V (G) , the search problem consists in computing, in a distributed
setting, a search strategy of G, with v0 as the homebase, and using the fewest
searchers as possible that results in all edges being simultaneously clear. The
strategy is computed online by the searchers themselves. Note that, during the
execution of a search strategy, the contaminated part of the graph never grows.
The strategy is said monotone [5, 15]. Moreover, the cleared part of the graph
remains connected at any step. The strategy is said connected [1, 2].

The main difference between the existing distributed protocols for clearing a
graph is the amount of knowledge about the topology of the graph that searchers
have a priori. In [1, 10, 11], the searchers know in advance the topology of the
network in which they are launched, and clear the network in a polynomial time.
Conversely, the protocol provided in [6] enables to clear any network without
having any a priori information about its topology. However, the clearing of the
network is connected but not monotone and it is performed in an exponential
time. Thus, not surprisingly, it appears that there is a tradeoff between the
amount of knowledge provided to the searchers and the performance of the search
strategy.

In [12], Fraigniaud et al. propose a new framework for measuring the difficulty
of a distributed task: the number of bits of advice. Given a distributed task, the
minimum number of bits of advice for this problem represents the minimum total
number of bits of information that has to be given to nodes or mobile agents
to efficiently perform the task. This approach is quantitative, i.e. it considers
the amount of knowledge without regarding what kind of knowledge is supplied.
This paper addresses the problem of the minimum number of bits of advice
permitting to solve the search problem.

1.1 Our model

The searchers are modeled by synchronous autonomous mobile computing enti-
ties with distinct IDs. Otherwise searchers are all identical, run the same program
and use at most O(log n) bits of memory, where n is the number of nodes of the
network. A network is modeled by a synchronous undirected connected graph.
A priori, the network is anonymous, that is, the nodes are not labelled. The
deg(u) edges incident to any node u are labelled from 1 to deg(u), so that the
searchers can distinguish the different edges incident to a node. These labels are
called port numbers. Every node of the network has a zone of local memory,
whiteboard, of size O(log n) bits in which searchers can read, erase, and write
symbols. It is moreover assumed that searchers can access these whiteboards in
fair mutual exclusion. An instance of the problem consists of a couple (G, v0),
where G = (V, E) is a graph and v0 ∈ V is the homebase. An oracle [12, 13]
is a function O that maps any instance (G, v0) to a function f : V → {0, 1}∗

assigning a binary string, called advice, to any node of the network. The size of
the advice, i.e. the number of bits of advice, on a given instance, is the sum of the
lengths of all the strings assigned to the nodes. Intuitively, the oracle provides
additional knowledge to the nodes of the network.

Graph searching with advice 3

The search problem consists in designing an oracle O and a protocol P using
O, with the following characteristics. For any instance (G = (V, E), v0), any
vertex v ∈ V is provided with the string f(v), f = O(G, v0). Protocol P must
enable the optimal number of searchers to clear G starting from v0. Moreover, the
search strategy performed by searchers is computed locally. That is, the decision
of the searcher at a vertex v (moving via some specific port number, switching
its state, writing on the whiteboard) only depends on (1) the current state of the
searcher, (2) the label f(v) of the current vertex (3) the content of the current
node’s whiteboard (plus possibly the incoming port number if the searcher just
entered the node). In particular, the searchers do not know in advance in which
graph they are launched. The only information about the graph is the bit strings
available locally at each node.

1.2 Our results

We show that the minimum number of bits of advice permitting the clearing
of any n-node graph, in a distributed setting, is O(n log n), and this bound is
tight. More precisely, on one hand, we define an oracle O and a distributed
protocol Cleaner that allow to solve the search problem for any connected n-
node graph G starting from any vertex v0 ∈ V (G). Moreover, the clearing of
G is performed in time O(n3). The searchers are modeled by automata with
O(log n) bits of memory. The nodes’ whiteboards have size O(log n). Actually,
our protocol ensures that the whiteboard will only be used in order to allow two
searchers present at the same node to exchange their states and IDs. Finally, the
number of bits of advice provided by O is O(n log n) for any n-node graph. On
the other hand, we show that this number of bits of advice is almost optimal:
no protocol using an oracle providing o(n log n) bits of advice permits to solve
the search problem.

1.3 Related work

In many areas of distributed computing, the quality of algorithmic solutions for
a given network problem often depends on the amount of knowledge given to the
nodes of the network (see [9] for a survey). The comparison of two algorithms
with knowledge appears however to be not obvious when they are provided with
qualitatively different informations: upper bound on the size of the network [3],
the entire topology of the network [8], etc. In [12], Fraigniaud et al. introduce
the notion of bits of advice as a way to quantitatively measure the difficulty
of a distributed task. As an example, Fraigniaud et al. [12] study the amount
of knowledge that must be distributed on the vertices of the graph in order
to perform broadcast and wake-up efficiently (i.e., using a minimum number
of messages). They prove that the minimum number of bits of advice permit-
ting to perform wake-up (resp., broadcast) with a linear number of messages
is Θ(n log n) (resp., O(n)) bits. This quantitatively differentiate the difficulty

4 Nicolas Nisse and David Soguet

of broadcast and wake-up. Fraigniaud et al. [13] also study the minimum num-
ber of bits of advice that allows to efficiently explore a tree, i.e., with a better
competitive ratio than a Depth First Search.

Introduced by Parson [17], graph searching looks for the smallest number of
searchers required to clear a graph. However, in graph searching, the strategies
are not constrained to be connected nor monotone (see [4] for a survey). The
search number of the graph G, denoted s(G), is the minimum k such that there is
a search strategy for G (not necessarily monotone nor connected) using at most k
searchers that results in all edges being simultaneously clear. The graph searching
problem has been extensively studied for its practical applications and for the
close relationship between its several variants (edge-search, node-search, mixed-
search [4]) and standard graph parameters like treewidth [18] and pathwidth [4].
The problem of finding the search number of a graph has been proved to be NP-
hard [16]. According to the important Lapaugh’s result [5, 15], “recontamination
does not help”. That is, for any graph G, there is a monotone search strategy
for G using at most s(G) searchers. Monotonicity plays a crucial role in graph
searching, since a monotone search strategy ensures a clearing of the graph in a
polynomial number of steps. It implies that the graph searching problem is in
NP. This result is not valid anymore, as soon as the search strategy is constrained
to be connected [19]. Several practical applications (decontamination of polluted
pipes [17], speleological rescue [7], network security...) require the search strategy
to be connected to ensure safe communications between searchers. Barrière et

al. [2] prove that, clearing a tree T in a connected way requires at most 2 s(T)−2
searchers and that this bound is tight. The better bound known in the case of
an arbitrary n-node graph G is s(G)(log n + 1) [14].

Several protocols for clearing a network in distributed setting have been pro-
posed in the literature. It has been proved that any distributed protocol clearing
an asynchronous network in a monotone connected way requires at most one
searcher more than in the synchronous case [11]. Moreover, this result remains
valid even if the topology of the network is known in advance. In [6], Blin et al.

proposed a distributed protocol that enables the optimal number of searchers
to clear any network G in a fully decentralized manner. The strategy is com-
puted online by the searchers themselves. The distributed computation must
not require knowing the topology of the network in advance. Roughly speak-
ing, their protocol ensures that searchers try every possible connected monotone
partial search strategy. Thus, whilst the search strategy eventually computed by
the searchers is monotone, failing search strategies investigated before lead to
withdrawals, and therefore to recontamination. Flocchini et al. proposed proto-
cols that address the graph searching problem in specific topologies (trees [1],
hypercubes [11], tori and chordal rings [10], etc.). For each of these classes of
graphs, the authors propose a protocol using the optimal number of searchers
for clearing G in a monotone connected way with O(log n) bits of memory and
whiteboards of O(log n) bits, that clears the graph in a polynomial time. Note
that, encoding the entire topology requires Ω(n2) bits.

Graph searching with advice 5

2 Distributed search strategy using little information

This section is devoted to prove the following theorem.

Theorem 1. The search problem can be solved using O(n log n) bits of advice.

To prove it, we describe an oracle O which provides an advice of size O(n log n),
and a distributed protocol Cleaner that solve the search problem in a syn-
chronous decentralized manner. Protocol Cleaner is divided in n phases, each
one being divided in two stages of O(n2) rounds. Thus, the clearing of G is
performed in a time O(n3).

2.1 The Oracle

In this section, we describe the oracle O. For any instance (G = (V, E), v0) of the
search problem, we consider a strategy S that is solution of the problem. The
function f = O(G, v0) is defined from S. Roughly speaking, the bits of advice
supplied by O enable searchers using protocol Cleaner, to clear the vertex-set
in the same order as S. Moreover, they allow the searchers to circulate in the
cleared part of the graph avoiding recontamination. Let us define some notations.

Let n = |V | and m = |E|. The strategy S can be defined by the order in
which S clears the edges. Let (e1, · · · , em) be this order. An edge ei is smaller
than an edge ej , denoted by ei � ej , if i ≤ j. S also induces an order on the
vertices of G. For any v, w ∈ V , we say that v is smaller than w, denoted v � w,
if the first cleared edge incident to v is smaller than the first cleared edge incident
to w. Let (v0, · · · , vn−1) be this order, i.e., vi � vj if and only if i ≤ j.

For any 0 ≤ i ≤ n − 1, let fi ∈ E be the first cleared edge incident to vi.
By definition, f0 = f1 ≺ f2 · · · ≺ fn−1. For any 1 ≤ i ≤ n − 1, the parent of vi,
denoted by parent(vi), is defined as the neighbour v of vi such that, {v, vi} = fi.
Note that parent(vi) ≺ vi, and for any neighbour w of vi, fi = {parent(vi), vi} �
{w, vi}. Intuitively, for any 1 ≤ i ≤ n − 1, fi = {parent(vi), vi} is the edge by
which a searcher has arrived to clear vi. Conversely, the children of v ∈ V are
the vertices w such that v = parent(w). For any 0 ≤ i ≤ n − 1, let Ti be the
subgraph of G whose vertex-set is {v0, · · · , vi}, and the edge-set is {f1, · · · , fi}.
For any 0 ≤ i ≤ n − 1, Ti is a spanning tree of G[v0, · · · , vi], which denotes the
subgraph of G induced by {v0, · · · , vi}. Intuitively, at the phase i of the execution
of Protocol Cleaner, Ti−1 is a spanning tree of the clear part of the graph. It is
used to allow the searchers to move in the clear part, performing a DFS of Ti−1.

We now define a local labelling L(S) of the vertices of G. Again, this labelling
depends on the strategy S that is considered. Let v ∈ V (G). The label of a vertex
v consists of the following local variables: a boolean TYPEv, four integers TCUv ,
TTLv, LASTPORTv, PARENTv and a list CHILDv of ordered pairs of integers. The
index will be omitted whenever this omission does not cause any confusion.
Intuitively, PARENTv and CHILDv enable the searchers to perform a DFS of a
subtree spanning the cleared part. To avoid recontamination, the searchers must
know which ports they can take or not, and the moment when such a move is
possible, i.e. the phase of the protocol when a searcher can take some port. The

6 Nicolas Nisse and David Soguet

informations about the ports are carried by PARENTv, CHILDv , and LASTPORTv .
CHILDv, TCUv and TTLv carry information about phases. Moreover, if a searcher
preserves a node from recontamination, we say that this searcher guards the
node, otherwise the searcher is said free. A searcher which guards a node v will
leave v by its largest edge. Such a move will not induce any recontamination
because any other edges incident to v will have been previously cleared by free
searchers. For this task, we need to distinguish two types of node with TYPEv .

In the following we will say that a port number p of a vertex v (resp., the
edge incident to v, corresponding to p) is labelled if either there exists ` ≤ n− 1
such that (p, `) ∈ CHILDv , or p = LASTPORTv , or p = PARENTv . Note that an
edge may have two different labels, or may be unlabelled at one of its ends, and
labelled at the other, or unlabelled at both ends. Let 0 ≤ i ≤ n−1 be the integer
such that v = vi. Let e be the largest edge incident to v that is not in E(Tn−1),
and let f be the largest edge incident to v that is not in (Tn−1) ∪ {e}.

– PARENTv is the port number of v leading to parent(v) through an edge of
E(Tn−1) (we set PARENTv0

= −1).

– CHILDv is a list of ordered pairs of integers. Let 1 ≤ p ≤ deg(v) and 0 < j ≤
n− 1. (p, j) ∈ CHILDv if and only if v = parent(vj) and p is the port number
of v leading to vj . In the following, CHILDv(j) denotes the port number p of
v such that (p, j) ∈ CHILDv.

– TYPEv is a boolean variable. It equals 0 if the largest edge incident to v
belongs to Tn−1. Otherwise, the variable TYPEv equals 1. In the following
we will say that a vertex is of type 0 (resp., type 1) if TYPEv = 0 (resp.,
TYPEv = 1). Roughly, a vertex is of type 0 if, in S, the searcher cleared the
last uncleared incident edge to v, in order to reach a new vertex which was
still uncleared.

the last incident edge to reach a new vertex that was not occupied yet.

– LASTPORTv = −1 if TYPEv = 0, else LASTPORTv is the port number corre-
sponding to e.

– TCUv (Time to Clean Unlabelled port), represents the phase when the free
searchers must clear all the unlabelled ports of v. Case TYPEv = 0: if e does
not exist, then TCUv = −1, else TCUv is the largest k such that fk−1 � e.
Case TYPEv = 1: if f does not exist, then TCUv = −1, else TCUv is the largest
k such that fk−1 � f .

– TTLv (Time To Leave), represents the phase when, a searcher that guards v
will leave v. Case TYPEv = 0: TTLv = j such that vj is the largest child of v.
Case TYPEv = 1: TTLv is the largest k such that fk−1 ≤ e.

We now define the bits of advice O(G, v0) provided by oracle O to G, using
the labelling L(S). For any 0 ≤ i ≤ n − 1,
O(G, v0)(vi) = (i, n, TYPEvi

, PARENTvi
, LASTPORTvi

, TCUvi
, TTLvi

, CHILDvi
).

The following lemma follows obviously from the definition of the oracle.

Lemma 1. For any n-node graph, O provides O(n log n) bits of advice.

Graph searching with advice 7

2.2 The Protocol Cleaner

In this section, we define a distributed protocol Cleaner using the oracle O, that
enables to clear any n-node synchronous network G starting from the homebase
v0. Protocol Cleaner is formally described in Figures 1 and 2.

Let us roughly describe our protocol. Our searchers can be in seven different
states: dfs test, dfs back, clear unlabelled, clear unlabelled back,
clear, wait, guard. Initially, all searchers stand at v0. Each of them reads n on
the label O(G, v0)(v0) of v0 to initialize their counters. Then the searcher with the
largest Id is elected to guard v0 and switches to state guard, the other searchers
become free and switch to state dfs test. After the phase 1 ≤ i ≤ n − 1, our
protocol ensures the following. (1) A subgraph G′ of G[v0, · · · , vi] containing Ti

as a subgraph is cleared. (2) For any vertex v of the border of G′, i.e. v is incident
to an edge in E(G′) and an edge of E(G) \E(G′), one searcher is guarding v (in
state guard). (3) Any other searcher is free and stand at a vertex of G′.

During the first stage of the phase i + 1, the free searchers are aiming
at clearing the unlabelled edges of those vertices v of V (G[v0, · · · , vi]) such that
the largest unlabelled edge e incident to v satisfies fi ≺ e ≺ fi+1. Note that
such an edge e belongs to E(G[v0, · · · , vi]). For this purpose, any free searcher
performs a DFS of Ti thanks to the labels PARENT and CHILD. The searcher is in
state dfs test if it goes down in the tree, in state dfs back otherwise.

During this DFS, if the searcher meets a vertex vj (j ≤ i) labelled in such a
way that TCUvj

= i + 1 (recall that TCU means Time to Clear Unlabelled edges),
then the searcher clears all unlabelled edges of vj and then it carries on the
DFS. To clear the unlabelled edges of vj , the searcher take successively, in the
order of the port numbers, all the unlabelled ports. It takes each unlabelled
port back and forth, in state clear unlabelled for the first direction, and
clear unlabelled back for the second direction.

Moreover, during this stage, any searcher that is guarding a vertex labelled in
such a way that (TYPE = 1 and TCU < TTL = i+1) is aiming at clearing, in state
clear, the edge corresponding to the port number LASTPORT of the considered
vertex (recall that TTL means Time To Leave). Protocol Cleaner ensures that
the corresponding port number corresponds to the single contaminated edge
incident to the considered vertex at this stage.

Before the first round of the second stage of phase i + 1, the two following
properties are satisfied: (1) if there exists a vertex v such that v is labelled with
(TYPEv = 0 and TTLv = i + 1), fi+1 is the only contaminated edge incident to
v = parent(vi+1), and (2) for any vertex v labelled in such a way that (TYPEv = 1
and TCUv = TTLv = i + 1), the edge corresponding to LASTPORTv is the only
contaminated edge incident to v.

During the second stage of the phase i+1, Protocol Cleaner performs
the clearing of fi+1 (incident to parent(vi+1) ∈ V (G′)) and the clearing of any
edge corresponding to port number LASTPORTvj

of a vertex vj (j ≤ i) labelled in
such a way that (TYPEvj

= 1 and TCUvj
= TTLvj

= i + 1). For this purpose, any
free searcher performs a DFS of Ti.

8 Nicolas Nisse and David Soguet

Program of searcher A.

Initialisation: /* all searchers start at v0 */
Read n on O(G, v0) to initialize the counter;
if A is the searcher with the largest ID at v0 then

Switch to the state guard;
else

At the first round on the second stage of phase 1,
Switch to the state dfs test;

endif

Program of searcher A at any round of stage s ∈ {0, 1} of phase 1 ≤ i ≤ n.

/* Searcher A arrives at node vj , coming by port number p` of vj */
(corresponding to the edge {v`, vj}).

Let pfirst be the smallest unlabelled port number of vj .
pfirst = −1 if there are no such edges.
Let pnext be the smallest unlabelled port number p of vj , such that p > p`.
pnext = −1 if there are no such edges.

Let pfirstChild be the port number p of vj such that it exists 1 ≤ k ≤ n − 1 with p
being labelled CHILD(k), and for any 1 ≤ k′ < k, no port numbers of vj are labelled
CHILD(k′). pfirstChild = −1 if there are no such edges.
If pfirstChild 6= −1, let firstChild denote the corresponding neighbour of vj .

Let pnextChild be the port number p of vj such that it exists ` < k ≤ n − 1 with p
being labelled CHILD(k), and for any ` ≤ k′ < k, no port numbers of vj are labelled
CHILD(k′). If pnextChild 6= −1 , nextChild denotes the corresponding neighbour of vj .

Case:

state = dfs test

if s = 1 and there is a port p labelled CHILD(i) then

Take port p in state clear;
else if s = 0 and TCU = i then

Take port pfirst in state clear unlabelled;
else if pfirstChild 6= −1 and firstChild � vi−1 then

Take port pfirstChild in state dfs test;
else Take port labelled PARENT in state dfs back;
endif

state = clear unlabelled back

if pnext 6= −1 then

Take port pnext in state clear unlabelled;
else if pfirstChild 6= −1 and firstChild � vi−1 then

Take port pfirstChild in state dfs test;
else Take port labelled PARENT in state dfs back;
endif

Fig. 1. Protocol Cleaner (1/2)

Graph searching with advice 9

state = clear unlabelled

Take port p` in state clear unlabelled back;

state = dfs back

if s = 1 and there is a port p labelled CHILD(i) then

Take port p in state clear;
else if pnextChild 6= −1 and nextChild � vi−1 then

Take port pnextChild in state dfs test;
else if PARENT 6= −1 then

Take port labelled PARENT in state dfs back;
else Take port CHILD(1) in state dfs test;
endif

state = clear

if vj ≺ vi or deg(vj) = 1 then

if j > 0 then

Take port labelled PARENT in state dfs back;
else Take port labelled CHILD(1) in state dfs test;
endif

else Switch to the state wait;
endif

/* Searcher that stands at node vj */

state = guard

if TYPE = 1 then

if TCU = TTL then

At the first round of the second stage of phase TTL,
Take port labelled LASTPORT in state clear;

else At the first round of the first stage of phase TTL,
take port labelled LASTPORT in state clear;

endif

else At the first round of the second stage of phase TTL

take port CHILD(TTL) in state clear;
endif

state = wait

At the last round of this phase:
if A is the searcher with the greatest ID at vj then

Switch to the state guard;
else Take port labelled PARENT in state dfs back;
endif

end

Fig. 2. Protocol Cleaner (2/2)

10 Nicolas Nisse and David Soguet

When the searcher meets the vertex parent(vi+1) whose a port number is
labelled CHILD(i+1), it takes the corresponding edge in state clear. Moreover,
any searcher that is guarding the vertex parent(vi+1) also takes the edge corre-
sponding to CHILD(i + 1) in state clear if (TTL = i + 1 and TYPE = 0). Finally,
any searcher that is guarding a vertex labelled in such a way that (TYPE = 1
and TCU = TTC = i + 1), takes the edge corresponding to port number LASTPORT
in state clear. During this stage, any searcher arriving at vi+1 waits (in state
wait) the last round of the stage if deg(vi+1) > 1, else it becomes free. During
this last round, if deg(vi+1) > 1, the searcher with largest Id that stands at vi+1

is elected to guard vi+1 while other searchers are free and take the port labelled
PARENT in state dfs back.

2.3 Proof of correctness of Protocol Cleaner

In order to prove the correctness of our protocol we need the following notations.
A searcher is called free if it is not in state guard nor wait. For any 0 ≤ i ≤ n−1,
let Mi = {v ∈ V (G) | for any edge e incident to v, e � fi}. Mi ⊆ V (Ti) is the
set of the vertices whose all incident edge, but fi, have been cleared by S before
the step corresponding to the clearing of fi. Moreover, we set Mn = V . Thus,
after the step corresponding to the clearing of fi, no vertices in Mi need to be
guarded in the strategy S. Note that, for any 0 ≤ j ≤ n− 1, the set Mj \Mj−1

is exactly the set of vertices v such that TTL = j.

Lemma 2. Let G be a connected graph and v0 ∈ V (G). Let S be a strategy that

clears the graph G, starting from v0, and using smallest number of searchers. Let

O(G, v0) be the labelling of the vertices of G, using L(S). After the last round

of the phase i ≥ 1 of the execution of Protocol Cleaner, the cleared part of the

graph G satisfies the following:

1. any edge in {f0, · · · , fi} is clear,

2. any edge incident to vertex in Mi is clear,

3. there is exactly one searcher in state guard at any vertex of V (Ti) \ Mi,

4. any other searcher is free and stands at a vertex of Ti,

5. for any vertex v with TCU ≤ i, any unlabelled edge of v is clear.

The proof is by induction on 1 ≤ i ≤ n. One can easily check that the
case i = 1 holds. Let us assume that the result holds for 1 ≤ i ≤ n − 1. We
prove that it still holds after the last round of the phase i + 1. We consider two
cases according whether there is a free searcher or not. Let mcs(G, v0) be the
smallest number of searchers required to clear G in a monotone connected way,
and starting from v0.

Case 1: Let us assume that no searchers are free. That is, any searcher is
standing alone at a vertex of V (Ti) \ Mi in state guard. Thus, by item 3 of
the induction hypothesis, |V (Ti) \ Mi| = mcs(G, v0). Let si be the step of the
strategy S when the edge fi is cleared. After the step si, at least one searcher
stands at any vertex of V (Ti) \ Mi. Since |V (Ti) \ Mi| = mcs(G, v0), for any
vertex v of V (Ti) \ Mi, exactly one searcher stands at v in the configuration

Graph searching with advice 11

reached at step si of S. Let e be the edge cleared by S at step si +1 by moving a
searcher from the vertex v along e. In the strategy S, e is the last contaminated
edge incident to v at step si. Else, e could not have been cleared since only one
searcher stands at any vertex of the border of the clear part of the graph. Again,
v ∈ V (Ti) \ Mi, thus by item 3 of the induction hypothesis, there is a searcher,
say A, in state guard at vertex v after the last round of the execution of phase
i of Protocol Cleaner. We consider two cases:

– e = fi+1: That is v = parent(v). In this case, since e is the last contaminated
edge, incident to v, that is cleared by S, vertex v is of type 0. Since fi+1 is
the last edge incident to v that is cleared by S, TCUv < i + 1 and for any
i+1 < j ≤ n−1, fj is not incident to v. Thus, by item 5, any unlabelled edge
incident to v is clear. Moreover, by item 1, for any 0 ≤ j ≤ i, fj has been
cleared. Thus, after the last round of the phase i of the execution of Protocol
Cleaner, e is the only contaminated edge that is incident to v. During the
execution of the phase i+1 of Protocol Cleaner, there is only one move which
is performed: searcher A at v clears the edge fi+1 during the first round of
the stage 2 of this phase. Since e is the only contaminated edge incident to v,
no recontamination occurs. If deg(vi+1) = 1, Mi+1 = Mi ∪ {v, vi+1}. In this
case, vi+1 has been cleared by Protocol Cleaner and the searcher becomes
free. It is easy to check that, being free, the searcher only performs a DFS
of Ti+1, and thus, it causes no recontamination. Thus, items 1, 2, 3 and 4 of
the lemma hold. If deg(vi+1) 6= 1, Mi+1 = Mi∪{v}, and at the last round of
the phase i + 1, Searcher A switches in state guard at vertex vi+1. Again,
items 1, 2, 3 and 4 of the lemma hold. Beside, since there are no edge ` with
fi ≺ ` ≺ fi+1, no vertices are such that TCU = i + 1. Thus, item 5 of the
lemma holds obviously.

– e ≺ fi+1: Let W be the set of the vertices of Ti with (TYPE = 1 and TCU <
TTL = i + 1). In this case, the vertex v is of type 1 with TTLv = i + 1 and
LASTPORTv 6= −1 is the port number corresponding to e. Since there are no
edge fi ≺ ` ≺ e and e is the last edge cleared by S, TCUv < i + 1. Thus,
v ∈ W 6= ∅. Let w ∈ W .
For any i +1 ≤ j ≤ n− 1, fj is not incident to w. By item 5, any unlabelled
edge incident to w is clear. By item 1, for any 0 ≤ j ≤ i, fj has been
cleared. Thus, after the last round of the phase i of the execution of Protocol
Cleaner, there is exactly one contaminated edge that is incident to w and the
corresponding port number is labelled LASTPORTw 6= −1. Let ew be this edge.
Note that fi ≺ ew ≺ fi+1. By item 3, after the last round of phase i, there is
a searcher Aw in state guard at w. During the first round of the stage 1 of
the phase i + 1, searcher Aw clears the edge ew. No recontamination occurs
since ew is the last contaminated edge incident to w. Searcher Aw arrives in
state clear at a vertex u of Ti. Since fi ≺ ew, u /∈ Mi. Thus, at the last
round of the phase i, vertex u was guarded by another searcher Au in state
guard. There are two cases to be considered:
• u /∈ W . Searcher Au is still in state guard at u.
• u ∈ W . Hence, eu = ew. Thus, at the first round of the first stage of

phase i + 1, searcher Au has moved along this edge. Then, u is clear.

12 Nicolas Nisse and David Soguet

In both cases, searcher Aw becomes free and leaves the current node u by
port PARENTu in state dfs back, or by port CHILDu(1) in state dfs test if
the current node is actually v0 (i.e., if u = v0). Since either u is clear or u is
guarded, no recontamination occurs.
Let us prove that, during the remaining part of the first stage of phase i + 1,
Aw performs a DFS of Ti. Moreover, we prove that searcher Aw clears all
unlabelled edge of vertices that satisfy TCU = i+1. Indeed, when searcher Aw

arrives at a vertex u ∈ V (Ti), from a vertex v ∈ V (Ti), in state dfs back, the
searcher checks whether u has a smallest child vt such that v ≺ vt ≺ vi+1. If u
has such a child vt, the searcher takes the corresponding edge (Note this edge
is actually ft labelled CHILDu(t)) in state dfs test. Else, either u 6= v0 and
the searcher takes the port PARENTu in state dfs back, or the searcher takes
the port CHILDu(1) in state dfs test. On the other hand, when searcher Aw

arrives at a vertex u ∈ V (Ti), from the vertex parent(u), in state dfs test,
it checks whether u satisfies TCU = i + 1. If it does, searcher Aw clears
any unlabelled edge, being alternatively in states clear unlabelled and
clear unlabelled back.
We show that no recontamination occurs because of the moves of Aw along

eu. Note that any unlabelled edge eu of such a vertex u belongs to
E(G[v0, · · · , vi]). Moreover, by item 3 of the lemma, there is a searcher in
state guard at u at this stage. Let t be the other end of eu. If t ∈ Mi ∪W ,
any edge incident to t has already been cleared, thus, the moves of searcher
Aw along eu don’t lead to recontamination. If t ∈ V (Ti) \ (Mi ∪W), by item
3, there was a searcher in state guard at t at the end of phase i and it
still is in this state at t. Again, no recontamination occurs. Therefore, the
clearing of the unlabelled edges incident to u is performed without leading
to recontamination. After having cleared the unlabelled edges incident to u,
Searcher Aw continues the DFS by checking whether u has at least one child
smaller than vi+1. If it is the case, searcher Aw takes the port corresponding
to the smallest child of u in state dfs test. Else, Searcher Aw takes the
port PARENTu in state dfs back. During this stage, for any u ∈ V (Ti),
either u ∈ Mi ∪ W in which case u is clear, or a searcher in state guard

stands at u. Thus, no move of Aw yield to recontamination.

The vertices that satisfy TCU = i + 1, are in V (Ti) \ Mi. Thus, there are at
most k = mcs(G, v0) of these vertices. The first stage of phase i+1 consists
of O(n2) rounds. Therefore, after the last round of this stage, all unlabelled

edges incident to the vertices that satisfy TCU = i + 1 are clear.
We have proved that during the first stage of phase i+1, at least one searcher
is become free (since W 6= ∅), and that any free searcher has cleared some
edges. Let us consider the execution of the second stage of the phase i + 1 of

Protocol Cleaner.
Let U be the set of the vertices of Ti with (TYPE = 1 and TCU = i + 1 and
TTL = i + 1). If U 6= ∅, let w ∈ U . After the last round of phase i, w was
occupied by a searcher, say Aw, in state guard. During the first stage of
phase i + 1, this searcher remains in state guard at this vertex. We have
proved above that any unlabelled edge incident to w has been cleared during

Graph searching with advice 13

the first stage of this phase. Since TTL = i + 1, for any i + 1 ≤ j ≤ n − 1,
fj is not incident to w. Finally, by item 1, for any 0 ≤ j ≤ i, fj has been
cleared. Thus, after the last round of the first stage of the phase i + 1,
LASTPORTw 6= −1 and the corresponding edge ew is the last contaminated
edge incident to w. During the first round of the second stage of the phase
i + 1, the searcher Aw at w clears the edge ew. No recontamination occurs
since ew is the last contaminated edge incident to w. Searcher Aw arrives in
state clear at a vertex u of Ti. Since fi ≺ ew, u /∈ Mi. Thus, at the last
round of the phase i, vertex u was guarded by another searcher Au in state
guard. There are three cases to be considered:
• u ∈ W . In this case, ew had been cleared during the first stage of this

phase. Any edge incident to u had already been cleared.
• u ∈ U . Therefore, at the first round of the second stage of phase i + 1,

searcher Au has moved along ew = eu. Any edge incident to u had
already been cleared.

• u /∈ U ∪ W . Hence, searcher Au is still in state guard at u.
In any case, searcher Aw becomes free and leaves the current node u by
port PARENTu in state dfs back, or by port CHILDu(1) in state dfs test if
the current node is actually v0. Since either u is clear or u is guarded, no
recontamination occurs.
During the second stage of the phase i+1, any free searcher A performs the
DFS of Ti. During this stage, the free searcher is aiming at clearing fi+1. In-
deed, performing the DFS of Ti, A eventually meets the vertex parent(vi+1).
When searcher A arrives at parent(vi+1) in state dfs test or dfs back, it
takes the port labelled CHILD(i + 1) in state clear, clearing the edge fi+1.
Arriving at vi+1, either vi+1 has degree one and thus, it is clear and the
searcher leaves it through fi+1 in state dfs back, or searcher A switches in
state wait.
Finally, let us consider the vertex w = parent(vi+1). After the last round
of the first stage of phase i + 1, there is a searcher A in state guard at w
(item 3 of the lemma). If TYPEw = 0 and TTLw = i + 1, searcher A takes
the port number CHILDw(i + 1) (corresponding to the edge fi+1) in state
clear during the first round of the second stage of phase i + 1. Arriving at
vi+1, either vi+1 has degree one and thus, it is clear and the searcher leaves
it through fi+1 in state dfs back, or searcher A switches in state wait.
Again, recontamination cannot occur. If TYPEw = 1 or TTL > i + 1, searcher
A remains at w in state guard.
Let J = {parent(vi+1)} if TYPEparent(vi+1) = 0 and TTLparent(vi+1) = i + 1,
otherwise J = ∅. Let I = {vi+1} if deg(vi+1) = 1, otherwise I = ∅. By
definition, Mi+1 = {vj | (TTLvj

≤ i + 1) or (j ≤ i + 1 and deg(vj) = 1)}. It
is easy to check that Mi+1 = Mi ∪W ∪U ∪ I ∪ J . Then, at the last round of
phase i + 1, any edges incident to the vertices in Mi+1 are clear. Moreover,
any searcher at a vertex of Ti \ Mi+1 remains in state guard. Beside, at
the last round of phase i + 1, all free searchers (recall that there is at least
one free searcher after the first round of stage 1 of this phase) are at vi+1 if
deg(vi+1) > 1. The searcher with greatest Id at vi+1 switches in state guard

14 Nicolas Nisse and David Soguet

while the other searchers leave vi+1 through fi+1 in state dfs back. Thus,
any item of the lemma holds.
Moreover, we have proved that during the phase i+1, recontamination never
occurs.

Case 2: Let us assume that there is at least one free searcher. The proof is
similar to the second case of Case 1. ut

To conclude the proof of Theorem 1, it is sufficient to notice that after the last
round of the phase n, any vertex of Mn has all its incident edges clear. Moreover
we have proved that the clearing of G is performed in monotone connected way.

3 Lower Bound

In this section, we show that the upper bound proved in the previous section is
almost optimal. More precisely, we prove that:

Theorem 2. The search problem cannot be solved using only o(n log n) bits of

advice.

To prove the theorem, we build a 4n + 4-node graph Gn. Then, we prove
that any distributed protocol requires Ω(n log n) bits of advice to clear Gn in a
monotone connected way starting from v0 ∈ V (Gn), and using the fewest number
of searchers.

Let n ≥ 4. Let t = 2n+7. Let P = {v1, · · · , vt} be a path and let Kn−2, resp.
Kn, be a (n − 2)-clique, resp. a n-clique. We obtain the graph Gn by adding all
edges between vi and the vertices of Kn−2, for any 1 ≤ i ≤ t. Then, let the node
vt coincide with a vertex of Kn. Finally, let us choose one vertex of Kn−2 and
denote it by v0.

We now enumerate some technical lemmas that describe how any search
strategy clears Gn using the fewest number of searchers.

Lemma 3. The smallest number of searchers sufficient to clear Gn is n.

Proof. Since Gn admits Kn as a minor, we get the smallest number of searcher
required to clear Gn is at least n. We now describe a strategy that clears Gn

using n searchers. Starting from v0, move one searcher to guard any vertex of
Kn−2. Use the two remaining searchers to clear any edge of E(Kn−2). Then,
move one remaining searcher to v1. The second remaining searcher clears any
edge between v1 and Kn−2. Then, the searcher at v1 move to v2 and the second
remaining searcher clears any edge between v2 and Kn−2. And so on, until any
vertex of P has been cleared. At this step, there are one searcher at any vertex of
Kn−2 and one searcher at vt. Finally, let us use all the searchers to clear Kn. ut

Lemma 4. For any optimal search strategy that clears Gn, the last vertex of Gn

to have all its incident edges clear belongs to V (Kn).

Proof. During the clearing of Kn, the n searchers must stand at vertices of Kn.
Thus, v0 is not occupied by a searcher anymore. To avoid recontamination, any
vertex of P and Kn−2 must have all its incident edges clear. ut

Graph searching with advice 15

Lemma 5. For any optimal search strategy that clears Gn, the first vertex of

Gn to have all its incident edges clear is v1 or v2. Moreover, at this step, any

vertex of Kn−2 is occupied by a searcher, and no vertices of {v4, · · · , vt} have

been occupied.

Proof. Let u be the first vertex of Gn to have all its incident edges to be cleared.
Let s be the first step such that, after this step, u has all its incident edges
clear. After step s, there must be one searcher at any neighbour of u. Moreover,
after this step s, there must be one searcher at any vertex of a path between u
and v0. Therefore, u ∈ V (P). Let 1 ≤ j ≤ t such that u = vj . For purpose of
contradiction, let us assume that j ≥ 3. After the step s, there are one searcher
at any vertex of any vertex of Kn−2, and at vj−1 and vj+1. Note that at this
step, vj−2 and vj+2 have all their incident edges that are contaminated. Then,
the only thing that the searcher at vj−1 (resp., at vj+1) may do is to move to
vj−2 (resp., to vj+2). Then, the strategy reaches a situation where any searcher
stands at a vertex with at least two contaminated incident edges. Thus, the
strategy fails and we get a contradiction. Therefore, u ∈ {v1, v2}. If u = v2, at
the step when all its edges are clear, the searchers are occupying the vertices
of Kn−2, v1 and v3. Thus, in this case, the lemma holds. If u = v1, at the step
when all its edges are clear, the searchers are occupying the vertices of Kn−2

and v2. For purpose of contradiction, let us assume that the remaining searcher
is occupying vj , with j > 3. In that case, the searcher at v2 may move at v3, and
then, the strategy fails because any searcher stands at a vertex with more than
one contaminated incident edge. Thus, if u = v1, the lemma holds as well. ut

Lemma 6. Let S be an optimal connected search strategy that clears Gn starting

from v0. For any 5 ≤ i ≤ t− 2, at the first step of S when a searcher reaches vi,

the following is satisfied:

– any vertex in V (Kn)∪{vi+1, · · · , vt} has all its incident edges contaminated;

– there is one searcher at any vertex of Kn−2;
– any vertex in {v1, · · · , vi−2} has all its incident edges clear;
– either vi−1 has all its incident edges clear, or there is a searcher at vi−1 and

vi−1 has only one incident edge that is still contaminated. In the latter case,

the next move consists in moving a searcher along the last contaminated edge

incident to vi−1.

Proof. Let s be the first step of the strategy such that, after this step, a searcher
is occupying vi. Let us consider the situation just before this step. Since i ≥ 5, by
Lemma 5, just before step s, v1 or v2 has all its incident edges clear, and there are
one searcher at any vertex from Kn−2 to preserve them from recontamination.
Moreover, there is a vertex on the path between v1 and vi in P , that is occupied
by a searcher for preserving v1 or v2 from recontamination. Let j, 1 < j < i, be
the minimum index such that a searcher is standing at vj . Note that, for any k,
1 ≤ k < j, vk has all its incident edge clear.

First, let us show that for any ` > i, v` is not occupied before step s. For
purpose of contradiction, let us assume v` is occupied. Since vi has all its in-
cident edges contaminated, for any k, j < k < `, vk has all its incident edges

16 Nicolas Nisse and David Soguet

contaminated. By Lemma 4 a vertex of Kn has at least one contaminated inci-
dent edge. Thus, for any k, ` < k ≤ t, vk has all its incident edges contaminated,
since there are no searchers on the path between vk and Kn. Thus, there exits
k 6= i such that vk has all its incident edges contaminated. Thus, the searchers at
Kn−2 cannot move, because they preserve recontamination from vi and vk. The
searcher at v` cannot move because it preserves recontamination from vi and
Kn. The searcher at vj may move at vj+1, but then could not move anymore.
Then the strategy fails, a contradiction. This proves the first item of the lemma.

Thus, before step s, there are one searcher at any vertex of Kn−2. These
searchers preserve recontamination from vi and vt. Therefore, they cannot move.
This proves the second item of the lemma.

According to the first item of the lemma, vi−1 has been reached before vi.
Since the strategy is monotone, just before the step s, a searcher is occupying
vi−1. Two cases must be considered:

– If s consists in moving a searcher occupying vi−1 along the edge {vi−1, vi},
the monotonicity of the strategy implies that either all edges incident to
vi−1 are clear, or just before step s two searchers were occupying vi−1. In
the first case, the lemma is valid. Thus, let us assume that at least one edge
incident to vi−1 is still contaminated after step s. Since i ≤ t− 2, any vertex
in V (Kn−2) ∪ {vi} is occupied by a searcher, and incident to at least two
contaminated edges: all edges incident to vi+1 and vi+2 are contaminated.
If more than one edge incident to vi−1 is contaminated, the strategy fails.
Therefore, at most one edge incident to vi−1 is contaminated, and the single
possible move consists in moving the searcher at vi−1 along this edge.

– Else, the step s consists in moving a searcher along an edge between a vertex
u of Kn−2 and vi. Since i ≤ t − 2, there must be two searchers at u just
before step s. Again, just after step s, any vertex in V (Kn−2) ∪ {vi} is
occupied by a searcher, and incident to at least two contaminated edges: all
edges incident to vi+1 and vi+2 are contaminated. Moreover, a searcher is
occupying vi−1 and {vi−1, vi} is contaminated. If another edge incident to
vi−1 is contaminated, the strategy fails. Hence, at most one edge incident to
vi−1 is contaminated, and the single possible move consists in moving the
searcher at vi−1 along this edge.

This concludes the proof of the lemma. ut

A local orientation of a graph is a mapping from the incidence of the graph
(between a vertex and an edge) into the port number of the graph. An instance
of the problem consists of a graph, a vertex of this graph (the homebase) and
a local orientation for this graph. Let C be the set of the following instances
{(G, v0, `o) | `o is a local orientation of G}. Let I = |C|. The following lemma
proves that any distributed protocol, using an arbitrary string of bits of advice,
can clear only some amount of the instances of C.

Lemma 7. Let P be a distributed protocol for solving the search problem. Let f
be a binary string of bits of advice provided by an oracle. Using f , P can clear

at most I ∗ (1
n−2)n instances of C.

Graph searching with advice 17

Proof. Let Ik,j be the number of instances such that (P , f) allows to a searcher
to clear j edges between vk and Kn−2. We prove that, for 5 ≤ k ≤ n + 5 and
any 1 ≤ j ≤ n − 3 , Ik,j ≤ Ik,j−1

n−j−1
n−j

.
Let us consider the last step such that exactly 0 ≤ j ≤ n − 3 edges between

vk and Kn−2 are clear. By the lemma above, at this step, there is a searcher
at vk and a searcher at any vertex of Kn−2. Moreover, the remaining searcher
cannot move to a vertex of {vk+1, · · · , vt}. Let v be the vertex where this searcher
stands. Using f , protocol P chooses a port number p that the remaining searcher
must take. There are two cases according whether the remaining searcher stands
at vk or at a vertex of Kn−2.

– If the remaining searcher stands at vk, it remains n−j−1 contaminated edges
incident to this vertex and the strategy fails if p leads to vk+1. Thus, the
strategy fails in at least Ik,j

1
n−j−1 instances. Therefore, Ik,j+1 ≤ Ik,j

n−j−2
n−j−1 .

– If the remaining searcher stands at a vertex of Kn−2, it remains at most n−
3+ t−k+1 contaminated edges incident to this vertex and the strategy fails
if p leads to one vertex in {vk+1, · · · , vt}. Thus, the strategy fails in at least
Ik,j−1(

t−k
n−3+t−k+1) instances. Hence, Ik,j ≤ Ik,j−1

n−2
t+n−2−k

. To conclude,
it is sufficient to remark that, since n ≥ 4, t = 2n + 7, 1 ≤ j ≤ n − 3
and 5 ≤ k ≤ n − 5, we have n−2

t+n−2−k
≤ n−2

2n
and n−j−2

n−j−1 ≥ n−3
2 . Thus,

n−2
t+n−2−k

≤ n−j−2
n−j−1 .

Hence, Ik,n−2 ≤ Ik−1,n−2

∏

j=1..n−3(
n−j−2
n−j−1) = Ik−1,n−2(

1
n−2). Using f , P can

clear at most In−5,n−2 ≤ I5,n−2(
1

n−2)n. Since, I5,n−2 ≤ I, the lemma holds. ut

Proof. of Theorem 2. Let N = |V (G)| = 4n + 4. To prove the theorem, it is
sufficient to prove that for any α < 1/4, and for any oracle that provides less
than q = αN log N bits of advice, no distributed protocol using O permit to
clear all instances of C. Let O be such an oracle. The number of functions f that
the oracle O can output for Gn is at most (q +1)2q

(

N+q
N

)

[12]. Thus, there exists

a set S ⊆ C of at least B = I

(q+1)2q(N+q

N)
instances of C for which O returns the

same string of bits of advice.
Let P be a distributed protocol that uses the oracle O for solving the search

problem. By Lemma 7, P cannot clear more than I ∗(1
n−2)n instances of C using

the same string of bits of advice.
To conclude, it remains to prove that B > I ∗ (1

n−2)n. Indeed,

B ∗ (
(n − 2)n

I
) =

(n − 2)n

(q + 1)2q
(

N+q
N

)

Using the Stirling formula we get that for n large enough,

B ∗ (
(n − 2)n

I
) ∼

(n − 2)n

2αN log N (1 + α log N)N
∗ (

α log N

1 + α log N
)αN log N

Since N = 4n + 4, we obtain:

log[B ∗ (
(n − 2)n

I
)] ∼ (1 − 4α)n log n

18 Nicolas Nisse and David Soguet

Since α < 1/4, we get that B > I ∗ (1
n−2)n. Thus, the result holds. ut

References

1. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder
by mobile agents. In 14th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 200-209, 2002.

2. L. Barrière, P. Fraigniaud, N. Santoro, and D. Thilikos. Connected and Internal
Graph Searching. In 29th Workshop on Graph Theoretic Concepts in Computer
Science (WG), Springer-Verlag, LNCS 2880, pages 34–45, 2003.

3. M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a
pebble: Exploring and mapping directed graphs. Information and Computation
176, pages 1–21, 2002.

4. D. Bienstock. Graph searching, path-width, tree-width and related problems (a
survey) DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science,
5, pages 33–49, 1991.

5. D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algo-
rithms 12, pages 239-245, 1991.

6. L. Blin, P. Fraigniaud, N. Nisse and S. Vial. Distributing Chasing of Network
Intruders. In 13th Colloquium on Structural Information and Communication
Complexity (SIROCCO), Springer-Verlag, LNCS 4056, pages 70-84, 2006.

7. R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers VI(5),
pages 72-78, 1967

8. A.E.F. Clementi, A. Monti and R. Silvestri. Selective families, superimposed codes,
and broadcasting on unknown radio networks. In 12th Ann. ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 709-718, 2001.

9. F. Fich and E. Ruppert Hundreds of impossibility results for distributed comput-
ing. Distributed Computing 16, pages 121–163, 2003.

10. P. Flocchini, F.L. Luccio, and L. Song. Decontamination of chordal rings and tori.
Proc. of 8th Workshop on Advances in Parallel and Distributed Computational
Models (APDCM), 2006.

11. P. Flocchini, M. J. Huang, F.L. Luccio. Contiguous search in the hypercube for
capturing an intruder. Proc. of 18th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS), 2005.

12. P. Fraigniaud, D. Ilcinkas and A. Pelc. Oracle Size: a New Measure of Difficulty for
Communication Tasks. In 25th Annual ACM Symp. on Principles of Distributed
Computing (PODC), pages 179-187, 2006.

13. P. Fraigniaud, D. Ilcinkas and A. Pelc. Tree Exploration with an Oracle. In
31st International Symposium on Mathematical Foundations of Computer Science
(MFCS), LNCS 4162, pages 24-37, 2006.

14. P. Fraigniaud and N. Nisse. Connected Treewidth and Connected Graph Searching.
In 7th Latin American Theoretical Informatics Symp. (LATIN 2006), LNCS 3887,
pages 470-490, 2006.

15. A. LaPaugh. Recontamination does not help to search a graph. Journal of the
ACM 40(2), pages 224-245, 1993.

16. N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM 35(1), pages 18-44, 1988.

17. T. Parson. Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, pages 426-441, 1976.

Graph searching with advice 19

18. P. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-
width. J. Combin. Theory Ser. B, 58, pages 22–33, 1993.

19. B. Yang, D. Dyer, and B. Alspach. Sweeping Graphs with Large Clique Number.
In 15th Annual International Symp. on Algorithms and Computation (ISAAC),
pages 908-920, 2004.

	RR1469entete.pdf
	RR1469rapp.pdf

