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Abstract. Distributed computing must adapt its techniques to networks of mobile agents. Indeed,
we are in front of new problems like the small size of memory and the lack of computational power.
In this paper, we extend the results of Angluin et al (see [1–3]) by finding self-stabilizing algorithms
to count the number of agents in the network. We focus on two different models of communication,
with a fixed antenna or with pairwise interactions. In both models we decide if there exist algorithms
(probabilistic, deterministic, with k-fair adversary) to solve the self-stabilizing counting problem.

Key-words: distributed algorithms, fault-tolerance, self-stabilization, sensor networks,
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1 Introduction

Habitat and environmental monitoring represents a class of sensor network applications with enormous
potential benefits both for scientific communities and society as a whole. The intimate connection with
its immediate physical environment allows each sensor to provide localized measurements and detailed
information that is hard to obtain through traditional instrumentation. Many environmental projects use
sensor networks.
The SIVAM project in Amazonia is related to meteorological predictions, sensors are placed in glacial
areas for measuring the impact of the climate evolution, (see [7]), use of sensors is considered in Mars
exploration (see [8]) or for detecting the effect of the wind or of an earthquake on a building (see [9]).
A sensor network has been deployed on Great Duck Island (see [6]) for studying the behavior of Leachs
Storm Petrels. Seabird colonies are notorious for the sensibility to human disturbance and sensor networks
represent a significant advance over traditional methods of monitoring. In [2], Angluin et al. introduced
the model of population protocols in connection with distributed algorithms for mobile sensor networks.
A sensor is a package containing power supply, processor, memory and wireless communication capacity.
Some physical constraints involve limitations of computing or storage capacity and communication. In
particular two sensors have to be close enough to be able to communicate. A particular static entity, the
base station (or antenna), is provided with more computing resources.
A computation starts with the base station sending a global signal reaching all sensors. When it receives
the signal the sensor reads an input value (the value of what it is supposed to observe) and executes its
code. The code defines what happens when two close sensors communicate and how they communicate
with the base station. An important assumption made in this model is that the interactions between the
sensors themselves and between the sensors and the base station are not controlled. Also, a hypothesis
of fairness states that in an infinite computation the numbers of interactions between two given sensors
or between a particular sensor and the base station are infinite. Eventually the result of the computation
is stored at the base station and does not change any more.
This model takes into account the inherent power limitation of the real sensors and also the fact that
they can be attached to unpredictably moving supports. For being still more realistic the model should
consider the possibility for the sensors to endure failures. Temperature variations, rain, frost, storm, etc.
have as a consequence, in the real world, that some sensors are crashed and that some others are still
operating, but with corrupted data.
Most of population protocols do not consider the possibility of failures. The aim of this paper is to
perform computation in mobile sensor networks subject to some type of failures. The framework of self-
stabilization is particularly well adapted for dealing with such conditions. A self-stabilizing system, after
some memory corruptions hit part of all processors, regains its consistency by itself, meaning that first,



(convergence) it reaches a correct global configuration in a finite number of steps and second, (correction)
from then its behavior is correct until the next corruption. It is important to note that in this model, the
code is supposed to be stored in a ROM and then cannot be corrupted. Traditionally self-stabilization
assumes that failures are not too frequent (for giving enough time to the system for recovery) and thus
the effect of a single global failure is considered. That is equivalent to consider that the system may be
started in any possible global configuration. Note that the issue of combining population protocols with
self stabilization has been addressed for ring networks in [1] and in a different framework in [4].
In the present work we make the assumption that, if the input variables can be corrupted, as any other
variable, first they do not change during the time of the computation and second they are regularly read
by the sensor. Then eventually a sensor deals with its correct input values.
In this paper we consider the very basic problem of computing the number of (not crashed) sensors in
the system, all sensors being identical (same code, no identifiers), when their variables are arbitrary ini-
tialized (but the input value of each sensor is 1). This problem is fundamental, first because the ability
of counting makes easier the solution of other problems (many distributed algorithms assume that the
size of the network is known in advance) and second because if counting is feasible, sum, difference and
test to 0 are too. In practice, one might want to count specific sensors, for example those carried by sick
petrels.
We present an exhaustive study of this problem, under slightly different models. The variations concern
the determinism or the randomization of the population protocols. In a sub model, the sensors only
communicate with the base station and in another they communicate both between each other and with
the base station. According to the different cases, we obtain solutions or prove impossibility results.

Plan of the paper. After some preliminaries to introduce our model (Sec. 2), we will firstly present
algorithms in the model where sensors only communicate with the base station (Sec. 3) and secondly in
the model where they also communicate with each other (Sec. 4). We conclude in Sec. 5 by summarizing
our results in figures and in Sec. 6 by giving final remarks.

2 Motivation and Modelization

Imagine the following scenario : A group of birds (petrels) evolves on an island, carrying on their body
a small sensor. Whenever a petrel is close enough to the antenna, its sensor interacts with the antenna
which can read the value of the sensor, compute, and then write in the petrel sensor memory.
Depending on the hypothesis, the sensors may or may not interact with each other when two petrels
approach close enough.

2.1 Mobile sensor networks

A mobile sensor network is composed of an antenna, and of n undistinguishable mobile sensors (In the
sequel we will use the term of petrel, in relation with our motivation example, instead of sensor)
A configuration of the network is given by a and (p1, ..., pn) where a is the content of the memory of the
antenna, and pi is the state of the ith petrel.
There are two kinds of events :

– the meeting of petrel number i with the antenna. After that meeting, pi is changed, according to the
protocol, to p′i, and a to a′, depending on (a, pi) (Note that the transition is independent of i, because
petrels are not distinguishable).

– the meeting of petrel number i with petrel number j. After that meeting, pi and pj are changed to
p′i and p′j , depending on (pi, pj) (here again, independently of (i, j)).

In the Petrels-To-Antenna-Only model (TA for short), only the first kind of event is possible. i.e. the
sensors do not interact with each other.
In the petrels-To-Antenna-And-To-petrels model (TATP for short), both events are possible: sensors do
interact with each other.
For deterministic protocols, the last model can be divided into two sub-models, the symmetric (STATP),
resp. the asymmetric one (ATATP): When two petrels meet, if their state is the same, they have to, resp.
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they don’t have to, change to the SAME state.
Note that the asymmetric version can be viewed as probabilistic because there is a need to break the
symmetry between the two petrels.

2.2 The problem

The number of petrels is unknown from the antenna which aims at counting them.
That is, we want the PetrelNumber variable in the antenna to be eventually equal to n.
In probabilistic algorithms, we require that this property is obtained with probability 1.
More generally, our algorithms must be self-stabilizing (see [5]), i.e., whatever the initial configuration
(but we initialize the antenna), the antenna must give the exact number of petrels in the network (with
probability 1, for probabilistic algorithms) within a finite number of steps. This exigence does not allow
us to make any assumption on the initial configuration (except for the antenna), or to reset the value of
the sensors.

2.3 Executions, Daemons, Fairness, Rounds

Definition 1 (Execution). An execution is an infinite sequence (Cj)j∈N (where N denotes the set of
non-negative integers) of configurations and an infinite sequence (ej)j∈N\{0} of events such that Cj+1 is
obtained after ej occurs on Cj .

The daemon is the imaginary adversary which chooses the initial configuration and that schedules the
possible actions at every step. To solve the problem, the daemon must be fair :

Definition 2 (Fairness). An execution is fair if every petrel communicates with the antenna infinitely
often, and, in the TATP model, if every two petrels communicate with each other infinitely often.

– A daemon for a deterministic protocol is fair if every execution is fair.
– A daemon for a probabilistic protocol is strongly fair if the execution is fair.
– A daemon for a probabilistic protocol is weakly fair if, the measure of the set of the fair execution is

one.

The distinction between weak and strong fairness is of little importance in this paper.

Definition 3 (k-fairness). Let k be an integer. An execution is k-fair, if every petrel communicates
with the antenna at least once in every k consecutive events, and, in the TATP model, if every two
petrels communicate with each other in every k consecutive events.
A daemon is k-fair if the execution is k-fair.
In this paper when the daemon is k-fair, the value of k is not assumed to be known by the antenna.

Throughout the paper, the daemon is assumed to be at least fair.

Definition 4 (Rounds). A round is a sequence of consecutive events, during which every petrel meets
the antenna at least once, and in the TATP model, every two petrels meet each other.
The first round is the shortest round starting from initial configuration, the second round is the shortest
round starting from the end of the first round, and so on.

2.4 Initial Conditions

Throughout the paper, we assume that the petrels are arbitrarily initialized, but that an initially value
can be chosen for the antenna.
This assumption is justified if one thinks of mobile sensors networks as the petrel population and the
antenna.
Note that if both the petrels and the antenna can be initialized , then the problem is obvious, with only
one bit per petrel sensor.
Note also that if one can initialize neither the petrels nor the antenna, then there is no protocol to count
the petrels (unless the daemon is k-fair, see remark 8 in Sec. 3).
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Indeed, assume on the contrary that there is such a protocol. Let the daemon repeat the following: it
waits till every petrel has met the antenna and PetrelNumber = n + 1 (this will eventually happen),
then it holds back one particular petrel. When PetrelNumber is n (this will eventually happen since the
configuration is the same as if there were n petrels), the daemon frees the last petrel.
With such a daemon, PetrelNumber will never stabilize so the protocol fails. If the protocol is determin-
istic, the daemon is fair, if the protocol is probabilistic, it is weakly fair.
To get a the impossibilty result for a strongly fair daemon, proceed by repeating the following: Simulates
a strongly fair daemon long enough so that every petrel has met the antenna and the probability that
PetrelNumber = n + 1 is at least 1/2 . Then hold back one particular petrel, and simulate a strongly
fair daemon for n petrels long enough for the probability that PetrelNumber = n to be at least 1/2.
PetrelNumber will stabilize with probability 0 although the daemon is strongly-fair.

2.5 Memories

We will not make limitation on the memory size of the antenna. On the other hand, we will make more
or less strong assumptions on the memory size of the petrel sensors:

Definition 5 (Size of the petrel sensor memories). The memory is infinite if it is unlimited. In
particular, it can carry integers as large as needed.
The memory is bounded if an upper-bound P on the number of petrels is known, and if the number of
different possible states of the memory is α(P ). The protocol will use the knowledge of P .
The memory is finite if the number of different possible states of the memory is α.

3 The petrels-To-Antenna-Only model (TA)

In this section,we present the results for the first model. In this model, the sensors can only communicate
with the antenna.

3.1 With infinite memory

In this paragraph, the petrel sensors (and the antenna) are assumed to have an infinite memory, in which
case there exists a self-stabilizing deterministic algorithm to solve the problem.
The antenna has registers (Rk)k∈N, where Rk counts the number of sensors with value k already seen.

The algorithm runs as follows : each sensor has a counter initialized in an unspecified value. As soon
as a sensor communicates with the antenna, its value is incremented by 1 and the corresponding register
of the antenna is incremented. Thus, once the maximum initial value is reached by all the sensors, the
value of the registers will constantly be equal to the number of sensors.

Algorithm 1 For Unbounded Memory
Memory in the petrel sensors is

number :integer

Memory at the antenna is

registers indexed by N, initialized at 0

PetrelNumber is max{register[i]}

When a petrel with number x approaches the antenna :

number <- x+1

R[number] <- R[number]+1

Although this algorithm is non observable, it is clearly effective. Note though that the number of
rounds before convergence is not bounded by the number of penguins (If there are two penguins, with
numbers initialized at 0 and N , it takes N rounds to converge). A less straightforward algorithm, but
which converges faster (in about P rounds) is obtained by adding

if R[x] > 0 then R[x] --

and by taking PetrelNumber = sum{register[i]}.
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3.2 With finite or bounded memory

3.2.1 Under a fair daemon
In this paragraph we show that if the daemon only respects fairness, there neither exists a deterministic

algorithm nor a probabilistic algorithm making it possible for the antenna to count the number of sensors
present.

Proposition 6. The daemon is supposed to be fair. If the sensors have a finite memory then, there is
no deterministic algorithm solving the counting problem.

Proof : The idea of this proof is to exhibit two executions resulting from two different initial configurations
that will appear to be identical for the antenna.
Let us consider an execution E with n sensors (p1, . . . , pn) initialized in I = (x1, x2, . . . , xn). As the
sensors have a finite memory, we easily deduce that there exists a state, denoted by s, that the sensor pn

will visit infinitely often.
Let E′ be the following execution with n + 1 sensors (p1, . . . , pn, pn+1). The initial configuration is I =
(x1, x2, . . . , xn, s). The goal of the daemon is to make impossible for the antenna to distinguish pn from
pn+1. In order to do so, it acts as follows :

The daemon holds back the sensor pn+1 while letting the others n’s evolve as in E. As soon as pn

reaches the state s after having seen the antenna at least once, it replaces it by pn+1 that was initialized
in state s.
Then it lets pn+1 and the other n− 1’s sensors evolve, while making act pn+1 exactly like pn previously,
until the state s is reached by pn+1 and the antenna seen at least once by pn+1. once.
Then it replaces it by pn, and so on.

Therefore, for the antenna, the executions E and E′ are identicals. It concludes there are as many sensors
in both executions, which is wrong. 2

Then, it becomes natural to try to build a probabilistic algorithm in order to break the symmetry. Indeed,
the daemon has no control on the random, thus we can hope to beat him. Unfortunately, even in this
case, there is no solution :

Proposition 7. Suppose that the daemon is strongly fair. If the sensors have a finite memory, then it
does not exist any probabilistic algorithm solving the counting problem

Proof : Let us consider a daemon D with n sensors (p1, . . . , pn) initialized in I = (x1, x2, . . . , xn).
The sensors’ memory being finite, for every petrel, in particular for the last one, there is a state s and a
positive real number η such that :

P{p goes infinitely often in s} ≥ η

As we did in the deterministic case, in order to ”confuse” the antenna, let the deamon D′ proceeds as
follows with n + 1 sensors (p1, . . . , pn, pn+1): it puts them in initial configuration I = (x1, x2, . . . , xn, s).
There is an integer k1 such that with D, with probability at least (1 − ε), if pn gets in state s infinitely
often, then it gets once in state s during the k1 next events and every sensor has met the antenna at least
once.
The daemon D′ holds back the sensor pn+1 and for at most k1 events, lets evolve the other n’s as would
do daemon D until pn gets in state s. If k1 events have been done without pn getting in state s then
D′ has lost (note that the daemon may lose either because s does not appear infintely often with D or
because the first occurrence of s arrives too late with D). Otherwise D′ frees pn+1 and holds pn.
The daemon D′ resumes simulating D with pn+1 instead of pn and as in the first step, but with k1

replaced by k2 such that the probability is now at least (1− ε
2 ) instead of (1− ε). The daemon keeps on

with that technique, with kl for the lth step so that the probability is at least (1− ε
2l−1 ).

Therefore, D′ wins with probability

η
l∏

i=0

(1− ε

2i
) > 0

In this case, the execution is the same as with D so PetrelNumber is eventually equal to n which is
wrong. So, the antenna has a non null probability to lose. 2
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3.3 A k-fair daemon

Under the assumption of fairness, there exists neither deterministic algorithm nor probabilistic algorithm.
Thus, we have to reduce the capacities of the daemon.
If we assume the daemon is k-fair, we will get both deterministic and probabilistic solutions.

3.3.1 Deterministic algorithm
Let i0 be the smallest integer such that 2i0 ≥ k. For every i ≥ i0, in the ith loop, the antenna sees all

Algorithm 2 Deterministic, k-fair daemon
Memory in the petrel sensors is bit_P : boolean

Memory at the antenna is

cpt, PetrelNumber : integer

bit_A : boolean, initialized at 0

The antenna does :

For i from 1 to infinity do

cpt <- 0

do 2^i times :

see arriving one sensor P with bit_P

if bit_P = bit_A then cpt ++

bit_P <- not(bit_P)

PetrelNumber <- cpt

bit_A <- not(bit_A)

the sensors, so that Petrelnumber is correct from the end of the ith0 loop.
The convergence time is equal to

∑i0
j=1 2j = 2i0+1 − 1 ≤ 4k

Remark 8. This algorithm works even if the antenna variables are not initialized but a large initial value
of i induces a large convergence time.

The problem of this deterministic algorithm is that it requires an infinite memory of the antenna. We
introduce a probabilistic algorithm in order to reduce it. The algorithm is as follows :
Each sensor’s value is a pair np = (Idp, colp) where Id is an identifier and col a color.
Informally, if the antenna sees a new Id it memorizes the Id and the color in the register RId, if it sees an
Id already memorized with the same color it chooses randomly a new color and memorizes it. Algorithm
3 describes the algorithm.

3.3.2 Probabilistic algorithm, k-fair daemon

Proof : Let’s Ct be the number of petrels having the same sensor Id than another one after t rounds
of the algorithm. It is obvious that the number of non-empty registers in the antenna is greater than or
equal to P̄ −Ct, where P̄ is the number of petrels. Thus, after one more round the probability that two
petrels with the same sensor have also the same color is lower than β = (1− 1

P̄−Ct+1
)k ≤ (1− 1

P̄
)k .

The random process Ct is thus bounded by the random walk Xt where :
Xt+1 = Xt with probability 1− β.
Xt+1 = Xt − 1 with probability β.
This random walk converges towards 0, this leads to the convergence of Ct towards 0 and to the correctness
of the algorithm.
Note that if a bound of the convergence time of the algorithm τ0 is given by the convergence time of the
random walk Xt which is τ0 = 2C0

1−β which is exponential in k. 2

We obtain a worse time of convergence than with the deterministic algorithm but we observe that the
antenna requires a finite memory.

6



Algorithm 3 Probabilistic, k-fair daemon
Memory in the petrel sensors is

number,color: integer

Memory at the antenna is

registers indexed by N, initialized at empty

PetrelNumber is card{k | register[k] is non empty}

When a petrel with number n and color c approaches the antenna :

if R[n] = empty

then R[n] <- c

else if R[n] = c

then color <- random{1..PetrelNumber}

R[n] <- color

else number <- h, where h is the minimum such that R[h] = empty

R[number] <- c

4 The Petrels-To-Antenna-And-To-petrels model (TATP)

We recall that P is an upper bound of the number of petrels and α(P ) is the number of the different
possible states of the memory. In a first section we introduce deterministic algorithms solving the counting
problem. Then, in a second part, we get interested in the lowest value α(P ) may get.

4.1 Bounded memory, algorithms

Proposition 9. There are deterministic solutions, with α(P ) ≥ P , to the counting problem.

We are going to exhibit different algorithms. The two first ones concern the ATATP model and the
third one the STATP model. It is interesting to note that different memory capacities are required in the
two models.

4.1.1 The ATATP model We propose two algorithms :

– The first one with α(P ) = P + 1, converges in three rounds.
– The second one with α(P ) = P , converges in P + 1 rounds.

Here is an asymmetric algorithm with α(P ) = P + 1, converging in three rounds:

Algorithm 4 Deterministic asymmetric algorithm with α(P ) = P + 1
Memory in the petrel sensors is

number :integer in [0..P]

Memory at the antenna is

T array [1..P] of boolean, initialized at 0 everywhere

PetrelNumber is the number of i such that T[i]=1

When a petrel with number x approaches the antenna :

if x = 0

then let y be an integer such that T[y]=0

T[y] <- 1

number <- y

else T[x] <- 1

When two petrels meet :

If their numbers are the same

then the number of one petrel becomes 0

Sketch of proof of correction :
At every moment, if T [x] = 1, then there exists a petrel with number x.
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¿From the end of the first round, the converse is also true.
¿From the end of the second round, no two petrels have the same number (but maybe 0).
¿From the end of the third round, petrels have distinct positive numbers.

Let’s now introduce an asymmetric algorithm with α(P ) = P , converging in P + 1 rounds:

Algorithm 5 Deterministic asymmetric algorithm with α(P ) = P
Memory in the petrel sensors is

number :integer in [1..P]

Memory at the antenna is

T array [1..P] of boolean, initialized at 0 everywhere

PetrelNumber is the number of i such that T[i]=1

When a petrel with number x approaches the antenna :

T[x] <- 1

When two petrels meet :

If their numbers are the same integer x

then the number of one petrel becomes x+1 mod P

Sketch of proof of correction :
After k rounds, if there is no petrel with number x, then, there is a most one petrel with id y, for every
y in {x + 1, x + 2, x + 3, ..., x + k} (numbers are taken mod P of course).
After P rounds, petrels have distinct numbers that they will keep.
After P + 1 round, T [x] = 1, iff there exists a petrel with number x.

4.1.2 The STATP model The following symmetric algorithm with α(P ) = 4P converges in three
rounds:

Algorithm 6 Deterministic symmetric algorithm with α(P ) = 4P
Memory in the petrel sensors is

number :integer in [1..2P]

Intention : (Keep,GiveUp)

Memory at the antenna is

T array [1..2P] of (Free,Taken,GivenUp),

initialized at Free everywhere

PetrelNumber is the number of i such that T[i]=Taken

When a petrel with number x approaches the antenna :

Depending on Intention :

Keep : T[x] <- Taken /* even if T[x] was GivenUp */

GiveUp : T[x] <- GivenUp

find a y such that T[y] = Free

T[y] <- Taken

number <- y

Intention <- Keep

When two petrels meet :

If their numbers are the same integer x

and their both intentions are Keep

Then their both intentions change to GiveUp

Sketch of proof of correction :
The antenna never gives twice the same number to a petrel.

8



If at some point in the execution, T [x] = GivenUp, then there was a petrel carrying that number x at
the beginning of the algorithm (its intention could be then either Keep or GiveUp). Thus, there are at
most P different numbers which get given up during the execution.
If at some point on the execution, T [i] = 1, then either there is a petrel with number = i, or i is one of
the numbers which get given up during the execution.
When the antenna needs to find a free y, then there are at most P numbers which are to be given up
at some point in the algorithm. There are at most P − 1 numbers with T [i] = 1 and which are never
given up during the execution. Thus there is at least one free y that the antenna finds and can give to
the petrel.

• From the end of the first round :
- If T [x] = 0 at some instant,then there is no petrel with that number at that same instant. And

thus, when the antenna gives a number to a petrel, this petrel will keep it forever.
- There is at most two petrels with the same number and with Intention to Keep.

• At the end of the second round,
- Either there is no petrel carrying x, whatever the intention.
- Or there is only one petrel carrying x, and its intention is Keep.
- Or there are two petrels carrying x, and both their intention is GiveUp.

• From the end of the third round,
- Petrels have different numbers and every Intention is Keep, and T [x] = Taken, iff there is a

petrel carrying x.

4.2 Bounded memory, minimum value for α(P )

We prove in this section there does not exist asymmetric algorithms with α(P ) ≤ P − 1.
The non-existence of algorithms with α(P ) ≤ P − 2 is much easier to prove than the non-existence of
algorithms with α(P ) = P − 1. So let us start with the easier case:

Proposition 10. There is no deterministic solution, with α(P ) ≤ P − 2, to the counting problem.

Proof :
Assume that there is a solution. Consider an execution E with P −1 sensors (p1, . . . , pP−1) initialized

in the states (x1, . . . , xP−1).
There is a state y and two petrels p and p′ such that infinitely often, p and p′ will be simultaneously in
state y.
Now, as a daemon, perform the following execution E′ with P sensors:
Initialize them in (x1, . . . , xP−1, y), then repeat the following:

• Hold back petrel pP and proceed as in E until every petrel but pP has met each other petrel but pP ,
and p and p′ are in state y.

• Free pP , hold back p, proceed as in E with pP instead of p until pP has met every other petrel (but
p), and pP and p′ are again in state y.

• Free p, hold back p′, proceed as in E with pP instead of p′ until pP has met p, and pP and p are
again in state y.

The daemon is fair, and from the point of view of the antenna, E and E′ are identical, thus in E′,
PetrelNumber will stabilize to P − 1, as in E, which is a wrong result. This is a contradiction.

2

We are now going to look to the case where α(P ) = P − 1.

Proposition 11. There is no deterministic solution with, α(P ) = P − 1, to the counting problem.

Proof :
Assume on the opposite that there is such a solution.

Consider an execution E with P − 1 sensors (p1, . . . , pP−1) initialized in the states (x1, . . . , xP−1).
We split the proof in two cases :
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If there is a state y and two petrels p and p′ such that infinitely often, p and p′ are simultaneously in
state y, then one can conclude as in the previous proof, so we can assume from now on it is not the case.
This implies that eventually, say from instant T , all petrels have distinct states.
This means first that, in E from T , the antenna never changes the state of a petrel it meets.
Second, every petrel eventually meets every other petrel, and what happens in that case depends only
on their current state (since the protocol has no room to remember whatsoever). Thus the rule when two
petrels with different states meet must be that they keep their current state (or exchange them, which is
of little effect).
Thus the protocol rules for meeting petrels are such that the states can change only if the meeting petrels
are in the SAME state.

Lemma 12. There is a state y and a finite piece of execution EKL with P petrels, starting with two
petrels in state y and one petrel in each other state, finishing in the same configuration, during which
petrels do not meet the antenna, and whose first event is the meeting of the two petrels in state y.

We postpone the proof of that key lemma.
Now, as a daemon, proceed as follows with P petrels:
Put them in initial states (x1, . . . , xP−1, y).
Hold the last petrel, and proceed as in E until T , then repeat the following:

• Free the held on petrel, make every two petrels of different states meet twice in a row (so that if they
exchange their states, they get their former states back).

• Proceed as in EKL.
• Hold on one of the two petrels in state y, not the one you have held just before.
• resume the simulation of E long enough for every petrel (but the held one) to meet the antenna.

Here again, the daemon is fair, and from the point of view of the antenna, E and E′ are identical,
thus in E′, PetrelNumber will stabilize to P −1, as in E, which is a wrong result. This is a contradiction.
2

It remains now to prove the key lemma :
Let us introduce two kinds of vectors, the first one for representing the states of all the sensors at a given
time, the second one to represent the effect of the meeting of petrels.

Definition 13. The vector of configuration VC of configuration C is the vector in NP−1 whose ith

coordinate is the number of sensors in the ith state si.

For example, the vector (1, 1 . . . , 1) indicates there are P − 1 petrels, and that there is one sensor in
each different state. This is a vector of configuration for E.
The Key Lemma will deal with (1, 1 . . . , 1) + 1Iy, where 1Ix denotes the vector which is 0 everywhere but
in the coordinate of x, where it is 1.
For each state x, let us define y(x) and z(x) to be the states that two petrels sensors get when they meet
while both in state x.

Definition 14. The vector of variation Vx of state x is 1Iy(x) + 1Iz(x) − 21Ix.

The ith coordinate of Vx represents the variation of the number of sensors in state si when two petrels
in state x meet, and indeed, if, from a configuration represented by V , two petrels in state x meet, the
new configuration is represented by V + Vx.
Such a vector could be (0, . . . , 0,+1,−2, 0,+1, 0, . . . , 0) the −2 meaning that the two states ei disappear
and give rise to the states ei+2 and ei−1. Note though that the values of such vectors are in {−2,−1, 0, 1, 2}
depending on whether x, y(x) and z(x) are distinct. The vector Vx will even be the null vector if two
meeting petrels in state x do not change their state.
Note that the vectors of variation are in the (P − 2)-dimensional subspace Z of NP−1 defined to be the
set of vectors whose sum of the coefficients is null.

We claim first that there is a non-null linear combination of the vectors of variations, with non-negative
integer coefficients, which is null.

Note that it is easy to prove there is a non-null linear combination which is null, since there are P −1 such
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vectors, and they are all in the (P − 2)-dimensional subspace Z, but this is of little help because it gives
a combination with potentially negative coefficients (to get integer coefficient is not a main problem).
Using that idea is a dead-end.
To prove the claim, start with P petrels and repeat making two petrels in the same state meet each
other (you will always find two such petrels). The vectors of configuration you will get will stay in
Y = {(qj)1≤j<P |qj ∈ N,

∑
j qj = P} which is finite. So if you let long enough petrels with same state

meet, you will encounter twice the same configuration. The set of meetings between the two appearances
of that configuration gives you the desired combination.
More formally: define (Vy,i)0≤i ∈ Y N and (Vw,i)1≤i ∈ ZN by induction as follows:
Vy,0 = (2, 1, 1, 1, . . . , 1).
Once Vy,i is defined, find a coefficient x of Vy,i which is at least 2 (there is such a coefficient), then define
Vy,i+1 = Vy,i + Vx and Vw,i+1 = Vx. It is easy to check that Vy,i+1 will be in Y .
Since Y is finite, there are two integers i1 and i2, with 0 ≤ i1 < i2 ≤ card(Y ) such that Vy,i1 = Vy,i2 .
Then

∑
i1<i≤i2

Vw,i fulfills the requirement since Vy,i2 = Vy,i1 +
∑

i1<i≤i2
Vw,i.

That first claim is proved.
Let

∑
x βxVx be such a combination (So, ∀x, βx ∈ N, ∃x, βx > 0, and

∑
x βxVx = (0, 0, . . . , 0)). For the

sake of simplicity, let us assume that our combination minimizes
∑

x βx.
Let H be the multi set of vectors of variations where each Vx appears βx times.

Our second claim is that there is an index y and an ordering (h1, h2, ..., hcard(H)) of the elements in H,
such that h1 = Vy, and for every i ∈ [1, card(H)], the hi

th coordinate of Zi = (1, 1, . . . , 1)+1Iy +
∑

j<i hj

is 2 or more, and no coordinate of Zi is negative.
Proof of the second claim:
Let y be an index such that βy > 0.
We build the hi by induction on i : Let h1 = Vy

Assume the hj ’s have been built up to j = i− 1, let us build hi, for some i ∈ [2, card(H)]:
Let Zi = (1, 1, . . . , 1) + 1Iy +

∑
j<i hj . Since it is in Y , there is an index x such that (Zi)x ≥ 2. We may

assume that x 6= y or (x = y and (Zi)x ≥ 3) (indeed, otherwise, Zi = (1, 1, . . . , 1) + 1Iy, which implies
that

∑
j<i hj = 0, which contradicts the minimality of

∑
x βx in our combination).

Thus
∑

j<i(hj)x > 0, but since
∑

h∈H hx = 0, it means that there is an element in H, not taken yet,
whose xth coordinate is negative. This element is Vx for it is the only vector of variations whose xth may
be negative. Let hi = Vx.
The built sequence (h1, h2, ..., hcard(H)) satisfies the requirement, so the second claim is proved.

The EKL execution is the following:
Start with P petrels, two of them in state y, and one of them in each other state.
For i from 1 to card(H), make two petrels in state xi meet, where xi is the state such that Vxi

= hi

(there are two such petrels thanks to the propriety on Zi is the second claim) 2

Notes on the key lemma :
(1) A little adaptation of the proof shows the following stronger result: Assume there is a population
of P − 1 petrels with one petrel in each state. Introduce a new petrel in state y, and let petrels meet
fairly. Wait till the two petrels in state y meet, and then, observe the petrels and if a petrel in state y
re-appears, grab it back. The result is that you will indeed see a petrel in state y re-appear, plus eventu-
ally, the remaining P − 1 petrels will be one in each state.

(2) The upper-bound on the length of EKL given by the proof is card{{(qj)1≤j<P |qj ∈ N,
∑

j qj = P}
which is exponential in P . One can wonder if it has to be large, or if there is such an execution EKL

of size polynomial in P . The answer is that it might be indeed exponential. Consider the set of states
[0, P − 1]. Take y = 0 (that is, start, with two petrels in state 0, and one in each state i ∈ [1, P − 1]), and
let the protocol be that when two petrels in state i meet, one of them gets in state 0, the other one gets
in state (i + 1) mod P .
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5 Resume

The TA model

model \ memory Finite Bounded Bounded,k-fair
daemon

Unbounded

deterministic impossible impossible Algorithm 2 Algorithm 1
convergence time 4k events depends on initialization
probabilistic impossible impossible Algorithm 3 unneeded
convergence time exponential in k

The TATP model

model \ memory Finite Bounded,α(P ) < P Bounded,α(P ) ≥ P
symetric deterministic impossible impossible Algorithm 6
convergence time α(P ) = 4P , 3 rounds
asymetric deterministic impossible impossible Algorithm 4 or 5
convergence time α(P ) = P +1, 3 rounds

α(P ) = P , P+1 rounds

6 Final Remarks

In this article, we have studied the problem of self-stabilizing counting in different models of mobile
sensor networks. We designed different algorithms depending on the communication model and the class
of daemon. We also gave some proof of impossibility. In the cases where no deterministic (symmetric)
solutions exists, we proposed probabilistic solutions. The knowledge of the size of a population is at the
basis of the solutions of more complex problems, in particular when different types of population are
present.
An interesting perspective could be to modelize the movement of the sensors, by random processes for
example, in order to improve our algorithms and to get better bounds for the convergence time.
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