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Abstract

In wireless sensor networks (WSNs), energy source is usually battery cell, which is
impossible to recharge while WSNs are working. Therefore, one of the main issues
in wireless sensor networks is how to prolong the network lifetime of WSNs with
certain energy source as well as how to maintain coverage and connectivity. In this
paper, we consider the wireless sensor networks satisfying that each node monitors
one target or just for connection. Assume the wireless sensor network has l targets,
and each is monitored by k sensor nodes. If k = 2 and the graph G corresponding
to the wireless sensor network is (l + max{1, l − 4})-connected, or k ≥ 3 and G is
(l(k − 1) + 1)-connected, then we can find k (the maximum number) disjoint sets
each of which completely covers all the targets and remains connected to one of
the central processing nodes. The disjoint sets are activated successively, and only
the sensor nodes from the active set are responsible for monitoring the targets and
connectivity, all other nodes are into a sleep mode. And we also give the related
algorithms to find the k disjoint sets.
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1 Introduction

A wireless sensor network (WSN) is a wireless network comprised of a large
number of sensor nodes which are deployed randomly. Wireless sensor net-
works have attracted a good deal of research attention as they used in many
application areas, including battlefield surveillance, environment and habitat
monitoring, home automation, inventory tracking, and healthcare application
(11).

The energy source of a node is most often a battery cell, and they can stay
active for a limited time before the battery resources are depleted. As recharg-
ing the battery is not feasible in many applications, energy efficient coverage
is an important issue in wireless sensor networks design. In energy efficient
coverage problem, the goal is to monitor the set of targets (or the area) with
low energy consumption. Especially, in area coverage problem, the objective of
wireless sensor network is to cover an area. While in point coverage problem,
the goal is to cover a set of targets. Another important issue of wireless sensor
networks is connectivity.

In this paper we address a special point coverage, which need to monitor a
set of discrete targets with known locations. The sensor nodes are dispersed
to send the monitored information to one or more central proceeding nodes.
The most remarkable characteristics is a large number of sensor nodes are
dispersed randomly in close proximity around each target for surveillance and
other nodes only for connection, which implies each target is monitored by
lots of sensor nodes.

In order to extent the network lifetime, organize the sensor nodes into disjoint
sets each of which completely covers all the targets and remains connected
to one of the central processing nodes, with only one set performing environ-
mental monitoring and connectivity at any moment. These disjoint sets are
activated successively. Scheduling and grouping of sensor nodes into disjoint
sets is done by the central processing nodes and the synchronizer, which in-
form every sensor node to be activated or not. All sensor nodes of the active
set are in the active state, whereas all other nodes are into a sleep state, where
the CPU is in a low power mode and radio reception is disable. The ratio of
energy consumed between the sleep state and the active state (i.e., when the
CPU operates at full energy) is typically on the order of 100 or more (6).
The goal is to maximize the number of disjoint sets each of which completely
covers all the targets and remains connected to one of the central processing
nodes.

Refer to (1) for graph theory notation and terminology not described here.
Model the wireless sensor network with n sensor nodes as an undirected graph
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G with n vertices. An edge exists between vertices u and v if and only if nodes
u and v are within each other’s sensing range. Usually, call G as a network
graph. Call the vertices corresponding to the central processing nodes as cen-
tral vertices. Assume the sensor network has l targets, and each is monitored
by k sensors. For 1 ≤ i ≤ l, let Ai be the vertex subset of G corresponding to
the set of sensors monitoring each target, S the set of the central processing
nodes, Ai ∩ S = ∅. Moreover, for 1 ≤ i < j ≤ l, Ai ∩ Aj = ∅. A connected
subgraph of G, which contains at least one vertex of S and one vertex of Ai for
each i with 1 ≤ i ≤ l, is corresponding to a set of sensor nodes which monitors
all the targets and transmits the information to at least one of the central
processing nodes. Hence, the maximum number of disjoint sets of the wire-
less sensor network is corresponding to the maximum number of such disjoint
connected subgraphs.

The problem in wireless sensor networks containing more than one central
processing nodes can be changed into the case in which there is only one
central processing node. In fact, let G be the graph corresponding to the
wireless sensor network which has more than one central processing nodes,
and G′ obtained by contracting the set of central vertices of G into a single
vertex s. The connected subgraph of G containing at least one central vertex
is corresponding to the connected subgraph of G′ containing s. Hence, we only
need to consider the wireless sensor networks with unique central processing
node. In this paper, we find a parameter – connectivity of the network graphs
to achieve energy conservation and connectivity.

Theorem 1 Let G be a graph, A1, . . . , Al be any l pairwise disjoint vertex
subsets with |Ai| = k for 1 ≤ i ≤ l, s ∈ V (G)\ ∪l

i=1 Ai. If k = 2 and G is
(l +max{1, l−4})-connected, or k ≥ 3 and G is (l(k−1)+1)-connected, then
there exist k connected subgraphs G1, . . . , Gk such that

(a) |V (Gi) ∩ Aj| = 1 for 1 ≤ i ≤ k and 1 ≤ j ≤ l;
(b) V (Gi) ∩ V (Gj) = {s} for 1 ≤ i < j ≤ k.

Denote the working time of a sensor node by a unit time. In the ith unit
time, the set of sensor nodes corresponding to the connected subgraph Gi are
activated. These k disjoint node sets are activated successively. Therefore if
k = 2 and the network graph G is (l + max{1, l − 4})-connected, or k ≥ 3
and G is (l(k − 1) + 1)-connected, the lifetime of the WSN will be improved
by k times. In fact, the preceding theorem implies more strong conclusion in
wireless sensor networks, one is the targets can be arbitrary, the other is the
network lifetime is maximized. For the case of k = 2, we conjecture that the
connectivity l + 1 is enough.

Conjecture 2 Let G be a graph, A1, . . . , Al be any l pairwise disjoint vertex
subsets with |Ai| = 2 for 1 ≤ i ≤ l, s ∈ V (G)\∪l

i=1Ai. If G is (l+1)-connected,
then there exist 2 connected subgraphs G1 and G2 such that
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(a) |V (Gi) ∩ Aj| = 1 for i = 1, 2 and 1 ≤ j ≤ l;
(b) V (G1) ∩ V (G2) = {s}.

For each l with 1 ≤ l ≤ 5, Conjecture 2 is true since it is contained in Theorem
1. To conclude this section, we will show the sharpness of the condition “(l(k−
1)+1)-connected” in Theorem 1. For each integer l and k, construct the graph
G(l, k) from l(k − 1)-ary tree.

A f -ary tree is a rooted tree in which each vertex has no more than f children.
A full f -ary tree is a f -ary tree where each vertex has either 0 or f children.

Let T be a full l(k − 1)-ary tree of depth l(k − 1)− 1, and only the vertices in
the (l(k − 1) − 1)th-layer have no children. Let T ∗ be a graph obtained from
T which satisfies the following properties:

(i) the vertices in the dth-layer of T is joined to form a path Pd = vd
1 · · · v

d
ld(k−1)d

for 1 ≤ d ≤ l(k − 1) − 1;
(ii) let vd

c1
(resp. vd

c2
) is a child of vd−1

f1
(resp. vd−1

f2
) with 2 ≤ d ≤ l(k − 1)− 1;

if f1 < f2, then c1 < c2.

For 1 ≤ d ≤ l(k − 1) − 1, call Pd as the dth-layer path of T ∗, vd
1 the origin of

Pd, and vd
ld(k−1)d the terminus of Pd.

Let T ∗
1 , . . . , T ∗

l be l copies of T ∗. For the dth-layer path of T ∗
i with 1 ≤ d ≤

l(k − 1) − 1 and 2 ≤ i ≤ l − 1, join the origin and the terminus of it to
the terminus of dth-layer path of T ∗

i−1 and the origin of dth-layer path of T ∗
i+1,

respectively. Add l(k−1)−1 new vertices s, u0, u1, . . . , ul(k−1)−3 (if l(k−1) ≤ 3,
we only add two vertices s, u0), join s to the origin of the dth-layer path of
T1 for each d with 1 ≤ d ≤ l(k − 1) − 1; join u0 to s and all the vertices
in the (l(k − 1) − 1)th-layer path of T ∗

i for each i with 1 ≤ i ≤ l; and for
1 ≤ j ≤ l(k − 1) − 3, join uj to the neighbors of u0 except s. Denote the
obtained graph by G(l, k). The graph G(1, 4) is given in Fig. 1.

s

0
u

Fig. 1. The graph of G(1, 4).

For 1 ≤ i ≤ l, denote the rooted vertex of T ∗
i by vi. In G(l, k), denote the

terminus of the dth-depth path of T ∗
l by vl+d for 1 ≤ d ≤ l(k − 1) − 1, and

let u0 = vlk. For 1 ≤ i ≤ l, let Ai = {v(i−1)k+1, v(i−1)k+2, . . . , vik}. G(l, k) is
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l(k−1)-connected, but we cannot find k connected subgraphs of G(l, k) which
satisfy (a) and (b) of Theorem 1. In fact, by the characteristics of G(l, k),
it needs at least l(k − 1) + 1 edges of NG(l,k)(s) to construct k connected
subgraphs, but |NG(l,k)(s)| = l(k − 1).

The rest of the paper is structured as follows. In section 2, we discuss previous
work done in the coverage and connectivity in WSNs. In the following section,
we give the proof of Theorem 1. The algorithms according to Theorem 1 are
presented in section 4.

2 Related Work

Recently, a lot of research has been done to address the coverage problem in
WSN. Related work has been done to implement energy efficient area cover-
age, connectivity or both (3; 5; 12; 14; 18). In some applications, when the
network is sufficiently dense, area coverage can be approximated by guaran-
teeing point coverage. In this case, all the points of wireless devices could be
used to represent the whole area, and the working sensors are supposed to
cover all the sensors (13; 17).

Point coverage has also been considered. Cardei and Du (2) addressed the point
coverage problem in which a set of targets with known locations needed to be
monitored. They achieved energy efficiency by organizing the sensor nodes
into a maximal number of disjoint set covers that are activated successively.

Design the set of active sensors as a connected dominating set (CDS) can as-
sure coverage and connectivity. A distributed and localized protocol for con-
structing the CDS was proposed by Wu and Li (16). Dai and Wu (9) gave the
dominating set algorithm to achieve connected point coverage. Wu et al. (15)
also discuss the energy efficient dominating set coverage approach.

k-connected k-point coverage was also discussed. Zhou et al. (19) presented
various algorithms to guarantee connected k-point coverage. Dai and Wu (10)
have proposed several local algorithms to construct k-connected k-dominating
set. Yang et al. (17) have proposed algorithms and solutions for k-(Connected)
Coverage Set (k-CS/k-CCS) problems.

In many applications, the sensor nodes are dispersed very closely to each target
and some other sensor nodes dispersed for transmitting information, which
implies each target is in the sensing ranges of a lot of nodes. In this paper, we
mainly consider these point coverage models, that is, each target with known
location is monitored by lots of nodes in wireless sensor networks, we assume
k nodes, and there are some nodes only for connection. We still organize the
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sensor nodes into disjoint sets to achieve point coverage and connectivity.

3 Proof of Theorem 1

Let T be a tree, v0v1 · · · vn a path in T . Denote the sub-path vivi+1 · · · vj by
T [vi, vj ], vi+1 · · · vj by T (vi, vj ], and vi · · · vj−1 by T [vi, vj). When a path P
is internally vertex disjoint to a graph G, it is simplified as P is IVD to G;
when a sequence of paths P1, . . . , Pn is pairwise internally vertex disjoint, it
is simplified as P1, . . . , Pn is PIVD. If a vertex v is in a subgraph G′, we still
call that v can be connected to G′.

Let Ai = {vi
1, v

i
2, . . . , v

i
k} for 1 ≤ i ≤ l.

Case 1. k = 2 and G is (l + max{1, l − 4})-connected.

If l = 1, it is clear.

If l = 2, then G is 3-connected. By the connectivity, there exist 3 PIVD paths
P 1

1 , P 2
1 and P 2

2 connecting s to v1
1, v

2
1 and v2

2 , respectively. And we also may
assume v1

2 isn’t in P 1
1 , and it can be connected to P 2

1 or P 2
2 by some path Q,

say P 2
1 , which is IVD to P 1

1 , P 2
1 and P 2

2 . And then G1 = P 1
1 ∪P 2

2 , G2 = Q∪P 2
1

are the two connected subgraphs satisfying (a) and (b).

If l = 3, then G is 4-connected. By the connectivity, there exist 4 PIVD paths
P 1

1 , P 2
1 , P 3

1 and P 3
2 connecting s to v1

1, v
2
1, v

3
1 and v3

2, respectively. And we may
assume that vi

2 isn’t in P i
1 for i = 1, 2. Suppose there exist two paths Q1 and

Q2, which are IVD to P 1
1 , P 2

1 , P 3
1 and P 3

2 , connecting v1
2 and v2

2 to the same
path P 3

1 or P 3
2 , respectively, say P 3

1 . Then G1 = Q1∪Q2∪P 3
1 , G2 = P 1

1 ∪P 2
1 ∪P 3

2

are the two connected subgraphs satisfying (a) and (b).

Now suppose v1
2 and v2

2 are connected to the different paths by the paths IVD
to P 1

1 , P 2
1 , P 3

1 and P 3
2 . Assume v1

2 is connected to P 3
1 by Q1, and v2

2 is connected
to P 1

1 by Q2. Then G1 = P 1
1 ∪Q2∪P 3

2 , G2 = Q1∪P 2
1 ∪P 3

1 are the two connected
subgraphs satisfying (a) and (b). Similarly, for other cases, we can find two
connected subgraphs satisfying (a) and (b).

If l = 4, then G is 5-connected. And then there exist 5 PIVD paths P 1
1 , P 2

1 , P 3
1 ,

P 4
1 , P 4

2 connecting s to v1
1 , v

2
1, v

3
1, v

4
1, v

4
2, respectively. And for i = 1, 2, 3, we may

assume that vi
2 isn’t in P i

1.

If one vertex of {v1
2, v

2
2, v

3
2} can be connected to P 4

1 or P 4
2 by a path which is

IVD to P 1
1 , P 2

1 , P 3
1 , P 4

1 and P 4
2 , assume v1

2 is connected to P 4
1 by Q1, then let

P ∗
1 = Q1 ∪ P 4

1 and P ∗
2 = P 1

1 ∪ P 4
2 . And then, similar to the case of l = 3, we

can find the two connected subgraphs satisfying (a) and (b).
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Now suppose no vertex of {v1
2, v

2
2, v

3
2} can be connected to P 4

1 or P 4
2 by the

path which is IVD to P 1
1 , P 2

1 , P 3
1 , P 4

1 and P 4
2 .

Assume both of two vertices of {v1
2, v

2
2, v

3
2} can be connected to one same path

of {P 1
1 , P 2

1 , P 3
1 } by the paths which are IVD to P 1

1 , P 2
1 , P 3

1 , P 4
1 and P 4

2 , say v1
2

and v2
2 are connected to P 3

1 by Q1 and Q2, respectively. And if v3
2 is connected

to P 1
1 by Q3 IVD to P 1

1 , P 2
1 , P 3

1 , P 4
1 , P 4

2 , Q1 and Q2. Then G1 = Q1∪Q2∪P 3
1 ∪P 4

1

and G2 = P 1
1 ∪ P 2

1 ∪ Q3 ∪ P 4
2 are the two connected subgraphs satisfying (a)

and (b). And for other cases, similarly, we can find two connected subgraphs
satisfying (a) and (b).

Otherwise, we may assume vi
2 can only be connected to P i+1

1 by the paths IVD
to P 1

1 , P 2
1 , P 3

1 , P 4
1 , P 4

2 , where i = 1, 2, 3 and i + 1 is taken module 3. Choose a
path Qi such that vi

2 is connected to P i+1
1 by it, and Qi is IVD to P 1

1 , P 2
1 , P 3

1 , P 4
1

and P 4
2 . Q1, Q2 and Q3 are PIVD.

For 1 ≤ i ≤ 3, let si
1 be the vertex of P i

1 such that for any vertex v ∈
V (P i

1) if v can be connected to {v1
1, v

1
2, v

2
1, v

2
2, v

3
1, v

3
2} by a path which is IVD

to P 1
1 , P 2

1 , P 3
1 , P 4

1 , P 4
2 , Q1, Q2, Q3, then dP i

1
(si

1, s) ≤ dP i
1
(v, s).

Then, for i = 1, 2, 3, si
1 6= s. Suppose a vertex of P 1

1 (s1
1, v

1
1] can be connected to

P 4
1 by the path Q. Assume v3

2 can be connected to s1
1 by the path Q′ which is

IVD to P 1
1 , P 2

1 , P 3
1 , P 4

1 , P 4
2 , Q1, Q2, Q3, Q. Then let G1 = (P 1

1 −P 1
1 [s, s1

1])∪Q∪
Q2 ∪P 3

1 ∪P 4
1 and G2 = Q1 ∪P 2

1 ∪Q′∪P 1
1 [s, s1

1]∪P 4
2 . Similarly, for other cases

we can easily find G1 and G2 which are the connected subgraphs satisfying
(a) and (b).

If l ≥ 5, then G is (2l−4)-connected. There exist 2l−4 PIVD paths P 1
1 , . . . , P 4

1 ,
P 5

1 , P 5
2 , . . . , P l

1, P
l
2 connecting s to v1

1, . . . , v
4
1, v

5
1, v

5
2, . . . , v

l
1, v

l
2, respectively. And

for i = 1, . . . , 4, we may assume that vi
2 isn’t in P i

1.

If one vertex of {v1
2, v

2
2, v

3
2, v

4
2} can be connected to one path of {P 5

1 , P 5
2 , . . . , P l

1,
P l

2}, say v1
2 is connected to P 5

1 by Q1, which is IVD to P 1
1 , . . . , P 4

1 , P 5
1 , P 5

2 , . . . , P l
1,

P l
2, then let P ∗

1 = P 5
1 ∪· · ·∪P l

1 ∪Q1 and P ∗
2 = P 5

2 ∪· · ·∪P l
2 ∪P 1

1 . Then similar
to the case of l = 4, we can find two connected subgraphs satisfying (a) and
(b).

For other cases (shown in Fig. 2), similar to the previous cases, there exist
two connected subgraphs satisfying (a) and (b).

Case 2. k ≥ 3 and G is (l(k − 1) + 1)-connected.

By the connectivity of G, there exist l(k − 1) + 1 PIVD paths connecting s
to each vertex of {v1

1, v
1
2, . . . , v

1
k−1, . . . , v

l−1
1 , vl−1

2 , . . . , vl−1
k−1, v

l
1, v

l
2, . . . , v

l
k}. For

1 ≤ i ≤ l − 1 and 1 ≤ j ≤ k − 1, or i = l and 1 ≤ j ≤ k, let P i
j be the (s, vi

j)-
path. For i 6= l, we may assume vi

k isn’t in P i
j , and vi

k should be connected to
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Fig. 2. A few cases of l ≥ 5.

one such path since G is connected.

Claim 1. For 1 ≤ i ≤ l−1, we can find connected subgraphs Gi
1, G

i
2, . . . , G

i
i∗ ,

. . . , Gi
k such that Gi

j contains s and only one vertex vi
j of Ai for 1 ≤ j ≤ k; in

particular, Gi
i∗ also contains some vertices of ∪i6=jAj .

Proof. We show it by giving an algorithm.

(1) Set a0 = 1, I = ∅.
(2) For 1 ≤ i ≤ l, 1 ≤ j ≤ k, set Gi

j = P i
j ; especially, if P i

k doesn’t exist, set
Gi

k and P i
k be the single vertex vi

k. Set G = {P 1
1 , . . . , P 1

k , . . . , P l
1, . . . , P

l
k}.

(3) If P a0
k contains the vertex s or one vertex of Al, replace I by I ∪{a0} and

set a∗
0 = k. Go to step (9).

(4) Set m = 1, pm = 0, hm
pm

= 1, and Ga0 = {P a0

(0,hm
pm

,m)} = {P a0

(0,1,1)} = {P a0
k }.

(5) Replace m by m+1. Assume P a0
k contains the vertex va0

k and some vertices
of Ai for i = a1, . . . , apm

, pm ≤ l.
If P a0

k can be connected to some subgraph P r
t by the path Q with

r 6= a0, a1, . . . , apm
, where Q is IVD to any graph of G, then replace P a0

k

by P a0
k ∪Q∪P r

t , P r
t by P a0

k , I by I ∪{a0} and set a∗
0 = k. Go to step (9).

(6) Otherwise, choose all the subgraphs P a0

(0,1,m+1), . . . , P
a0

(0,hm+1
0 ,m+1)

, P a1

(1,1,m+1),

. . . , P a1

(1,hm+1
1 ,m+1)

, . . . , P
apm+1

(pm+1,1,m+1), . . . , P
apm+1

(pm+1,hm+1
pm+1

,m+1)
such that at least

one graph of Ga0 can be connected to them by some paths, which are IVD
to any graph of G.

For 0 ≤ i ≤ pm+1 and 1 ≤ j ≤ hm+1
i , let s(i,j,m+1) be the vertex in

P ai

(i,j,m+1) such that if v ∈ V (P ai

(i,j,m+1)) can be connected to one graph of
Ga0 , then dP

ai
(i,j,m+1)

(s(i,j,m+1), s) ≤ dP
ai
(i,j,m+1)

(v, s).

For 1 ≤ i′ ≤ pm, 1 ≤ j′ ≤ hm
i′ , 1 ≤ i ≤ pm+1, 1 ≤ j ≤ hm+1

i ,
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choose the path Q
(i′,j′,m)
(i,j,m+1) (if exists), which is IVD to any graph of G,

such that P
ai′

(i′,j′,m) can be connected to s(i,j,m+1) by it; and replace G by

G∪{Q(i′,j′,m)
(i,j,m+1)}; set P

(i′,j′,m)
(i,j,m+1) = P

ai′

(i′,j′,m)∪Q
(i′,j′,m)
(i,j,m+1)∪P ai

(i,j,m+1)[s, s(i,j,m+1)],
replace P ai

(i,j,m+1) by P ai

(i,j,m+1)−P ai

(i,j,m+1)[s, s(i,j,m+1)]. Replace Ga0 by

{P a0

(0,1,m+1), . . . , P
a0

(0,hm+1
0 ,m+1)

, P a1

(1,1,m+1), . . . , P
a1

(1,hm+1
1 ,m+1)

, . . . , P
apm+1

(pm+1,1,m+1),

. . . , P
apm+1

(pm+1,hm+1
pm+1

,m+1)
}, and m by m + 1.

(7) If there exists P ai∗

(i∗,j∗,m) with 1 ≤ i∗ ≤ pm and 1 ≤ j∗ ≤ hm
i such that it

can be connected to P r
t by the path Q which is IVD to any graph of G,

where P r
t satisfies that there doesn’t exist Ax with 1 ≤ x ≤ l such that

both |Ax ∩V (P ai∗

(i∗,j∗,m))| ≥ 1 and |Ax ∩V (P r
t )| ≥ 1, then replace P ai∗

(i∗,j∗,m)

by P ai∗

(i∗,j∗,m) ∪ Q ∪ P r
t , P r

t by P ai∗

(i∗,j∗,m).
Choose a sequence i1 = 0, . . . , im = i∗, j1 = 1, . . . , jm = j∗ (some of

them may be equal) such that for 1 ≤ x ≤ m− 1 the path Q
(ix,jx,x)
(ix+1,jx+1,x+1)

exists.
Then for 1 ≤ x ≤ m, replace P i

j by Gi
j for i 6= aix and j 6= (ix, jx, x); for

1 ≤ x ≤ m−1, replace P
aix

(ix,jx,x) by P
(ix,jx,x)
(ix+1,jx+1,x+1); if P

aix

(ix,jx,x) contains the

vertex vi
j ∈ Ai with i 6= aix , replace P i

j by P
aix

(ix,jx,x). Set a∗
im

= (im, jm, m),
replace I by I ∪ {aim}, and go to step (9).

(8) Otherwise, go to step (6).
(9) If I = {1, 2, . . . , l − 1}, stop.

(10) Otherwise, choose an integer from {1, 2, . . . , l − 1} \ I, replace a0 by it,
go to step (2).

By the preceding algorithm, for each i with 1 ≤ i ≤ l, j with 1 ≤ j ≤ k, we
can find subgraph Gi

j containing s and only one vertex vi
j of Ai; in particular,

for 1 ≤ i ≤ l − 1 there exist r 6= i and t 6= r∗ such that Gi
i∗ = Gr

t .�

Let A = {v1
1∗ , v

2
2∗ , . . . , v

l−1
(l−1)∗}. For 1 ≤ j ≤ k, let G

(0)
j = Gl

j .

Suppose we have found the connected subgraphs G
(r)
1 , . . . , G

(r)
k satisfying

(i) V (G
(r)
j1

) ∩ V (G
(r)
j2

) = {s} for 1 ≤ j1 < j2 ≤ k;

(ii) for any Ai with 1 ≤ i ≤ l, and each j with 1 ≤ j ≤ k, G
(r)
j contains

at most one vertex of Ai, and either all the vertices of Ai \ {vi
i∗} are in

∪k
j=1V (G

(r)
j ) or no vertex of Ai \ {v

i
i∗} is in ∪k

j=1V (G
(r)
j );

(iii) at most one vertex vi
i∗ of A but not in ∪k

j=1V (G
(r)
j ) has the same super-

script i to some vertices of G
(r)
1 , . . . , G

(r)
k−1 or G

(r)
k .

Suppose no vertex of A \ ∪k
j=1V (G

(r)
j ) has the same superscript to any vertex

of G
(r)
1 , . . . , G

(r)
k−1 or G

(r)
k . If ∪l

j=1Aj ⊆ ∪k
j=1V (G

(r)
j ), then G

(r)
1 , . . . , G

(r)
k are

the subgraphs satisfying (a) and (b). Otherwise, choose a vertex vi
i′ not in

∪k
j=1V (G

(r)
j ) with i′ 6= i∗. For 1 ≤ j ≤ k − 1, assume G

(r)
j doesn’t contain the

9



vertex vi
i∗ . For 1 ≤ j < i∗, let G

(r+1)
j = G

(r)
j ∪ Gi

j ; for i∗ ≤ j ≤ k − 1, let

G
(r+1)
j = G

(r)
j ∪ Gi

j+1. Then all the vertices of Ai \ {v
i
i∗} are in ∪k

j=1V (G
(r)
j ).

Suppose vi
i∗ ∈ A \ ∪k

j=1V (G
(r)
j ) is of the same superscript i to some vertices

of G
(r)
1 , . . . , G

(r)
k−1 or G

(r)
k . Assume Gi

i∗ = Gt
t′ , where Gt

t′ is a subgraph of G −

(∪k
j=1G

(r)
j − s) and t′ 6= t∗. By the property (ii), assume G

(r)
j contains the

vertex vi
ij

with ij 6= i∗ for 1 ≤ j ≤ k − 1.

If vt
t∗ isn’t in any graph G

(r)
j with 1 ≤ j ≤ k, let G

(r+1)
k = G

(r)
k ∪Gt

t′ . Without

loss of generality, assume t∗ > t′. For 1 ≤ j < t′, let G
(r+1)
j = G

(r)
j ∪ Gt

j; for

t′ ≤ j < t∗, let G
(r+1)
j = G

(r)
j ∪Gt

j+1; for t∗ ≤ j ≤ k−2, let G
(r+1)
j = G

(r)
j ∪Gt

j+2.

Then all the vertices of Ai and At \ {v
t
t∗} are in ∪k

j=1V (G
(r)
j ).

Otherwise, assume there exists m1 with 1 ≤ m1 ≤ k such that Gt
t∗ = Gs

s′, and

Gs
s′ is a subgraph of G(r)

m1
. If m1 6= k, then G

(r)
k doesn’t contain the vertices

vt
t∗ and vi

j for 1 ≤ j ≤ k and j 6= i∗. Then let G
(r+1)
k = G

(r)
k ∪ Gt

t′ . And let

{G(r)
r1

, . . . , G(r)
rk−2

} = {G
(r)
1 , G

(r)
2 , . . . , G

(r)
k } \ {G(r)

m1
, G

(r)
k }. For 1 ≤ j < t′, let

G(r+1)
rj

= G(r)
rj

∪Gt
j ; for t′ ≤ j < t∗, let G(r+1)

rj
= G(r)

rj
∪Gt

j+1; for t∗ ≤ j ≤ k−2,

let G(r+1)
rj

= G(r)
rj

∪Gt
j+2. Then all the vertices of Ai and At are in ∪k

j=1V (G
(r)
j ).

Otherwise, G(r)
m1

= G
(r)
k , which contains the vertex vt

t∗ but no vertex with super-

script i, and for 1 ≤ j ≤ k − 1, G
(r)
j contains the vertex vi

ij
with ij 6= i∗. Since

k ≥ 3, we can find a subgraph G(r)
m2

such that Gs
s′′ is a subgraph of G(r)

m2
, and Gs

s′′

doesn’t contain any vertex of superscript i or t. Let G(r+1)1
m2

= (G(r)
m2

−Gs
s′′)∪Gs

s′,
G(r+1)1

m1
= (G(r)

m1
−Gs

s′)∪Gs
s′′. If G(r+1)1

m1
contains the vertices va1

a′

1
, va1

a∗

1
, . . . , van

a′

n
, van

a∗

n

with 1 ≤ n ≤ l, then let G(r+1)2
m1

= G(r+1)1
m1

− (∪n
j=1G

aj

a′

j
− s), and G(r+1)2

m2
=

G(r+1)1
m2

∪(∪n
j=1G

aj

a′

j
). And then consider it similarly for G(r+1)2

m2
, we have G(r+1)3

m1

and G(r+1)3
m2

. Do it repeatedly. By the characteristics of G(r)
m1

and G(r)
m2

, it will
terminate with some integer b ≥ 1. Let G(r+1)

m1
= G(r+1)b

m1
∪Gt

t′ , G(r+1)
m2

= G(r+1)b
m2

.

And let {G(r)
r1

, . . . , G
(r)
ik−2

} = {G
(r)
1 , G

(r)
2 , . . . , G

(r)
k }\{G(r)

m1
, G(r)

m2
}. For 1 ≤ j < t′,

let G(r+1)
rj

= G(r)
rj

∪ Gt
j; for t′ ≤ j < t∗, let G(r+1)

rj
= G(r)

rj
∪ Gt

j+1; for

t∗ ≤ j ≤ k − 2, let G(r+1)
rj

= G(r)
rj

∪ Gt
j+2.

Since G is a limited graph, we can find an integer p such that G
(p)
1 , . . . , G

(p)
k

which are the connected subgraphs satisfying (a) and (b).
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4 The Related Algorithms

According to the proof of Theorem 1, first we give the algorithm of the case
of k = 2 and G is (l + max{1, l − 4})-connected.

Algorithm 1.

(1) Set a = max{1, l − 4}.
(2) Choose l+a PIVD paths P 1

1 , . . . , P l
1, P

l−a+1
2 , . . . , P l

2 connecting s to v1
1, . . . ,

vl
1, v

l−a+1
2 , . . . , vl

2 such that for 1 ≤ i ≤ l − a, vi
2 isn’t in P i

1 and it can be
connected to one of such path.

(3) For 1 ≤ i ≤ l−a, choose a path Qi which is IVD to P 1
1 , . . . , P l

1, P
l−a+1
2 , . . . ,

P l
2, such that vi

2 is connected to P j
h by Qi with i 6= j and h = 1, 2. Replace

P j
h by P j

h ∪ Qi, and set P i
2 = P j

h .
(4) Set G1 = ∪l

i=l−a+1P
i
1, G2 = ∪l

i=l−a+1P
i
2.

(5) For 1 ≤ i ≤ l−a, j = 1, 2, if vi
2 ∈ V (Gj), and there doesn’t exist Ax with

1 ≤ x ≤ l − a such that both |V (P i
1) ∩ Ax| = 1 and |V (Gj+1) ∩ Ax| = 1,

then replace Gj+1 by Gj+1 ∪ P i
1, where j + 1 is taken module 2.

(6) If |Ai ∩ V (Gj)| = 1 for 1 ≤ i ≤ l − a and j = 1, 2, stop.
(7) If there exist vi

2 ∈ {v1
2, . . . , v

l−a
2 } \ V (G1 ∪ G2) and j ∈ {1, 2} such that

vh
1 /∈ V (Gj), P h

1 = P i
2, and there doesn’t exist Ax with 1 ≤ x ≤ l − a

such that both |V (P i
2) ∩ Ax| = 1 and |V (Gj) ∩ Ax| = 1, then replace Gj

by Gj ∪ P i
2. Go to step (5).

(8) Choose an integer x0 ∈ {1, 2, 3, 4} such that no vertex of {v1
2, v

2
2, v

3
2, v

4
2}

is connected to P x0
1 by Q1, Q2, Q3 or Q4.

(9) Set {x1, x2, x3} = {1, 2, 3, 4}\{x0}. For i = x1, x2, x3, set si
1 be the vertex

of P i
1 such that for any vertex v ∈ V (P i

1) if v can be connected to
{vx1

1 , vx1
2 , vx2

1 , vx2
2 , vx3

1 , vx3
2 } by a path which is IVD to P 1

1 , P 1
2 , . . . , P l

1, P
l
2,

then dP i
1
(si

1, s) ≤ dP i
1
(v, s).

(10) If sx1
1 = sx2

1 = sx3
1 = s, choose a vertex vi

i′ ∈ {vx1
1 , vx1

2 , vx2
1 , vx2

2 , vx3
1 , vx3

2 }
and the path Q which is IVD to P 1

1 , P 1
2 , . . . , P l

1, P
l
2 such that vi

i′ is con-
nected to s by Q. For the subgraph P j

j′ with P i
i′ = P j

j′, replace P j
j′ by

P j
j′ − vi

i′, and replace P i
i′ by Q. Go to step (4).

(11) Otherwise, choose P r
r′ with 1 ≤ r ≤ l and r 6= x1, x2, x3, r′ ∈ {1, 2}, a

vertex v of P x
1 − P x

1 [s, sx
1] with x ∈ {x1, x2, x3}, and the path Q which is

IVD to P 1
1 , P 1

2 , . . . , P l
1, P

l
2 such that v is connected to P r

r′ by Q. Choose a
vertex vi

i′ ∈ {vx1
1 , vx1

2 , vx2
1 , vx2

2 , vx3
1 , vx3

2 } and the path Q′ which is IVD to
P 1

1 , P 1
2 , . . . , P l

1, P
l
2, Q such that vi

i′ is connected to sx
1 by Q′.

(12) If vi
i′ ∈ V (P x

1 ) and vi
i′ = v, then for the subgraph P t

t′ with P t
t′ = P i

i′ and
i 6= t, replace P i

i′ by Q ∪ P r
r′ , P t

t′ by P t
t′ − vi

i′; for any subgraph P j
j′ with

P j
j′ = P r

r′, replace P r
r′ and P j

j′ by P i
i′. Go to step (4).

(13) If vi
i′ ∈ V (P x

1 ) and vi
i′ 6= v, then for the subgraph P t

t′ with P t
t′ = P i

i′ and
i 6= t, replace P i

i′ by Q′ ∪ P i
i′ [s, s

x
1], P t

t′ by (P t
t′ − P i

i′) ∪ Q ∪ P r
r′; for any

subgraph P j
j′ with P j

j′ = P r
r′, replace P r

r′ and P j
j′ by P t

t′ . Go to step (4).
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(14) If vi
i′ /∈ V (P x

1 ), then for the subgraph P t
t′ with P t

t′ = P i
i′ and i 6= t,

replace P i
i′ by Q′ ∪ P x

1 [s, sx
1], P t

t′ by P t
t′ − vi

i′ . And for the subgraph P j
j′

with P j
j′ = P x

1 and j 6= x or P j
j′ = P r

r′, replace P x
1 by (P x

1 −P i
i′)∪Q∪P r

r′ ,

replace P r
r′ and P j

j′ by P x
1 . Go to step (4). �

For simplicity, call the algorithm used in the proof of Claim 1 as Algorithm
A. According to the proof of Theorem 1, the rest part of the algorithm of the
case of k ≥ 3 and G is (l(k − 1) + 1)-connected to find the disjoint connected
subgraphs will be given below.

Algorithm 2.

(1) Find l(k−1)+1 PIVD paths P 1
1 , . . . , P 1

k−1, . . . , P
l−1
1 , . . . , P l−1

k−1, P
l
1, P

l
2, . . . ,

P l
k such that P i

j is a (s, vi
j)-path for 1 ≤ i ≤ l − 1 and 1 ≤ j ≤ k − 1, or

i = l and 1 ≤ j ≤ k, and vi
k isn’t in P i

j for i 6= l.
(2) Using Algorithm A, find the subgraph Gi

j containing vi
j and s for 1 ≤ i ≤ l

and 1 ≤ j ≤ k; and for 1 ≤ i ≤ l − 1 there exist r 6= i and t 6= r∗ such
that Gi

i∗ is equal to Gr
t .

(3) For 1 ≤ i ≤ k, set Gi = Gl
i. Set A = {v1

1∗ , v
2
2∗ , . . . , v

l−1
(l−1)∗}.

(4) If ∪l
i=1Ai ⊆ ∪k

i=1V (Gi), stop.
(5) If there is no vertex of A \ ∪k

i=1V (Gi) which has the same superscript
to any vertex of G1, . . . , Gk−1 or Gk, choose a vertex vr

r′ such that vr
r′ ∈

∪l
i=1Ai\∪

k
i=1V (Gi) and r′ 6= r∗; and choose k−1 subgraphs Gi1 , . . . , Gik−1

such that for 1 ≤ j ≤ k − 1, Gij doesn’t contain the vertex vr
r∗ . For

1 ≤ j < r∗, replace Gij by Gij ∪ Gr
j ; for r∗ ≤ j ≤ k − 1, replace Gij by

Gij ∪ Gr
j+1. Go to step (4).

(6) Otherwise, choose vr
r∗ ∈ A \ ∪k

i=1V (Ti) which is of the same superscript
r to some vertices of G1, . . . , Gk−1 or Gk. Choose the subgraph Gt

t′ with
t′ 6= t∗ from G − (∪k

i=1Gi − s) such that Gr
r∗ = Gt

t′ .
(7) If vt

t∗ is in G1, . . . , Gk−1 or Gk, go to step (9). Otherwise, choose a sub-
graph Gi′ from {G1, G2, . . . , Gk} such that Gi′ doesn’t contain the vertex
vr

r′ for each r′ with 1 ≤ r′ ≤ k and r′ 6= r∗. Replace Gi′ by Gi′∪Gt
t′ . Choose

k − 2 subgraphs Gi1, . . . , Gik−2
such that for each j with 1 ≤ j ≤ k − 2,

Gij doesn’t contain any vertex with superscript t.
(8) Set a = min{t′, t∗} and b = max{t′, t∗}. For 1 ≤ j < a, replace Gij by

Gij ∪ Gt
j ; for a ≤ j < b, replace Gij by Gij ∪ Gt

j+1; for b ≤ j ≤ k − 2,
replace Gij by Gij ∪ Gt

j+2. Go to step (4).
(9) Choose Gs

s′ and Gm1 such that Gt
t∗ = Gs

s′ and Gs
s′ is a subgraph of Gm1 .

(10) If there exist a subgraph Gh with h 6= m1 such that Gh doesn’t contain
the vertices vt

t∗ and any vertex with superscript r, then replace Gh by
Gh ∪ Gt

t′ . Set {Gi1, . . . , Gik−2
} = {G1, G2, . . . , Gk} \ {Gm1 , Gh}. Go to

step (8).
(11) Otherwise, choose Gs

s′′ and Gm2 such that Gs
s′′ is a subgraph of Gm2 , and

Gs
s′′ doesn’t contain any vertex with the superscript r or t. Replace Gm2

by (Gm2 − Gs
s′′) ∪ Gs

s′, and replace Gm1 by (Gm1 − Gs
s′) ∪ Gs

s′′.
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(12) For i = 1, 2, if there doesn’t exist Aj with 1 ≤ j ≤ l such that |V (Gmi
)∩

Aj | = 2, go to step (14).
(13) Otherwise, V (Gmi

) contains va1

a′

1
, va1

a∗

1
, . . . , van

a′

n
, van

a∗

n
with 1 ≤ n ≤ l, then re-

place Gmi
by Gmi

−(∪n
j=1G

ai

a′

i
−s), and replace Gmi+1

by Gmi+1
∪(∪n

j=1G
ai

a′

i
),

where i + 1 is taken module 2. Go to step (12).
(14) Replace Gm1 by Gm1 ∪Gt

t′ , and set {Gi1 , . . . , Gik−2
} = {G1, G2, . . . , Gk} \

{Gm1 , Gm2}. Go to step (8).�
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