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Abstract

For a graph G, let σ̄k+3(G) = min {d(x1) + d(x2) + · · · + d(xk+3) − |N(x1) ∩

N(x2) ∩ · · · ∩ N(xk+3)| | x1, x2, · · · , xk+3 are k + 3 independent vertices in G}. In

[5], H. Li proved that if G is a 3-connected graph of order n and σ̄4(G) ≥ n+3, then

G has a maximum cycle such that each component of G−C has at most one vertex.

In this paper, we extend this result as follows. Let G be a (k + 2)-connected graph

of order n. If σ̄k+3(G) ≥ n + k(k + 2), G has a cycle C such that each component

of G − C has at most k vertices. Moreover, the lower bound is sharp.

Keywords: cycle, neighborhood, degree sum, k-dominating

1 Introduction and Notations

All the graphs considered in this paper are undirected and simple. We use [1] for ter-

minology and notations not defined here. Let C = c1c2...cpc1 be a cycle in graph G.

We use C[ci, cj] to denote the sub-path cici+1...cj , and C̄[cj , ci] to denote the sub-path

cjcj−1...ci, where the indices are taken modulo p. We will consider C[ci, cj] and C̄[cj , ci]

both as paths and as vertex sets. Define C(ci, cj ] = C[ci+1, cj], C[ci, cj) = C[ci, cj−1] and

C(ci, cj) = C[ci+1, cj−1]. We use similar definitions for a path. We give C a fixed orienta-

tion. For any i, we put c+
i = ci+1, c−i = ci−1, c+2

i = ci+2 and c−2
i = ci−2. For a vertex set

A ⊆ C, A+ = {v+ | v ∈ A}, A− = {v− | v ∈ A}, A+2 = (A+)+ and A−2 = (A−)−. For a

vertex x of G, a neighbor of x means a vertex adjacent to x, denoted by NG(x), and the de-

gree of x is the number of neighbors of x, denoted by d(x). Let N−
C (x) = {ci | c+

i ∈ NC(x)}

and N−2
C (x) = {ci | c+2

i ∈ NC(x)}. A maximal connected subgraph of G is called a com-

ponent of G. Let R = G−C be the induced subgraph in G by V (G)− V (C). Denote by

∗The work was partially supported by NNSF of China (60373012)
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R(C[ci, cj]) the induced subgraph in G by the union of the components in G that is ad-

jacent to some vertex in C[ci, cj] and R∗(C[ci, cj ]) = R(C[ci, cj]) ∪ C[ci, cj]. Define σ̄k(G)

= min {d(x1) + d(x2) + · · ·+ d(xk)− |N(x1) ∩N(x2) ∩ · · · ∩N(xk)| | x1, x2, · · · , xk are k

independent vertices in G} and σk(G) = min {d(x1) + d(x2) + · · ·+ d(xk) | x1, x2, · · · , xk

are k independent vertices in G}. A graph G is called to be hamiltonian if there is a

cycle that contains all vertices of G. A cycle C is called k-dominating if no component

of G − C has more than k vertices. Clearly, a hamiltonian cycle is a 0-dominating cycle

and a 1-dominating cycle is called dominating cycle.

Various long cycle problems are interesting and important in graph theory and have

been deeply studied. Two classical results are due to Dirac and Ore respectively.

Theorem 1.1 (Dirac [3]) Let G be a graph on n ≥ 3 vertices. If the minimum degree

δ(G) ≥ n
2
, G is hamiltonian.

Theorem 1.2 (Ore [8]) Let G be a graph on n ≥ 3 vertices. If σ2(G) ≥ n, G is

hamiltonian.

It is natural to consider sufficient conditions concerning the degree sum of more inde-

pendent vertices. Flandrin, Jung and Li [4] investigated the degree sum of three indepen-

dent vertices and obtained the following result.

Theorem 1.3 (Flandrin, Jung and Li [4]) Let G be a 2-connected graph of order n.

If σ̄3(G) ≥ n, G is hamiltonian.

Based on the reason that it is too difficult to obtain the sufficient conditions for a

graph to be hamiltonian by considering the degree sum of four or more independent

vertices, many authors turn into investigating the sufficient conditions for a graph to

have a dominating cycle and the relation between dominating cycle and the longest cycle

concerning the degree sum of independent vertices. In [7], Nash-Williams gave a sufficient

condition for each longest cycle of a 2-connected graph to be a dominating cycle.

Theorem 1.4 (Nash-Williams [7]) Let G be a 2-connceted graph on n vertices with

δ(G) ≥ n+2
3

. Then every longest cycle in G is a dominating cycle.

Bondy [2] generalized this result to the degree sum of three indpendent vertices.

Theorem 1.5 (Bondy [2]) Let G be a 2-connected graph of order n ≥ 3 with σ3(G) ≥

n + 2. Then each longest cycle of G is a dominating cycle.

Futher, Lu et al. [6] proved the following result.
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Theorem 1.6 (Lu et al. [6]) Let G be a 3-connected graph of order n ≥ 13. If σ4(G) ≥
4
3
n + 5

3
, then each longest cycle of G is a dominating cycle.

H. Li [5] studied the degree sum of four independent vertices in 3-connected graphs

and proved:

Theorem 1.7 (Li [5]) Let G be a 3-connected graph of order n. If σ̄4(G) ≥ n + 3, G

has a dominating maximum cycle.

In this paper, we extend this result to the degree sum of k + 3 independent vertices

and present the following result:

Theorem 1.8 Let G be a (k+2)-connected graph of order n. If σ̄k+3(G) ≥ n + k(k + 2),

G has a cycle C such that each component of G − C has at most k vertices.

It can be seen that Theorem 1.3 and Theorem 1.7 are consistently with Theorem 1.8

when k = 0 and k = 1, respectively.

Theorem 1.8 is best possible as shown by the following example (see Fig. 1). The

graph G is obtained by k + 3 complete graphs Kk+1 and k + 2 vertices v1, v2, ..., vk+2 by

adding edges between vi and each vertex in k+3 complete graphs Kk+1, i = 1, 2, ..., k+2,

all of which are disjoint. We take a vertex ui (i = 1, 2, ..., k + 3) from each of the k + 3

copies of Kk+1. Then the k + 3 vertices u1, u2, ..., uk+3 are independent and

σ̄k+3(G) =

k+3
∑

i=1

d(ui) − | ∩k+3
i=1 N(ui)|

= (k + 3)(2k + 2) − (k + 2) = 2k2 + 7k + 4

= (k2 + 5k + 5) − 1 + k2 + 2k = n − 1 + k(k + 2).

However, for each cycle C in G, there exists a component with k + 1 vertices in G − C.

Kk+1 Kk+1 K
k+1

K
k+1

1 2 3 k+3

v1 v v2

u1u u u
2 3 k+3

k+2

Figure 1.

The proof of Theorem 1.8 will be given in the next section.
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2 Proof of Theorem 1.8

Suppose, to the contrary, that for each cycle C of G, there exists at least one component

H of G − C with |H| ≥ k + 1. We choose a cycle C such that:

(a) the number of component H∗ in G − C with |H∗| ≥ k + 1 is as small as possible.

(b) subject to (a), the component H in G−C with |H| ≥ k +1 is as small as possible.

We give C a fixed orientation. Since G is (k + 2)-connected, H contains a vertex x0

that has t(≥ k + 2) paths P1[x0, v1], P2[x0, v2], ..., Pt[x0, vt] from x0 to C having only x0 in

common. For any i, let V (Pi) ∩ V (C) = {vi}, and v1, v2, ..., vt occur in this order along

C with the chosen orientation. Denote Ci = C(vi, vi+1], i = 1, 2, ..., t. A vertex u of a

segment Ci is said to be insertible, if there is an edge xy ⊆ E(C(vi+1, vi)) such that ux

and uy belong to E(G). By the choice of C, for each i ∈ {1, 2, ..., k + 2}, let xi be the

first non-insertible vertex in Ci and denote Fi = C(xi, vi+1], i = 1, 2, ..., k + 2, where the

indices are taken modulo t.

Remark 1. [5] x0, x1, ..., xk+2 are independent vertices.

Remark 2. [5] R∗(N−(xi)) ∩ N(xj) = ∅, 1 ≤ i < j ≤ k + 2.

Remark 3. [5] N(xi) ∩ (∪t
j=1Pj(x0, vj)) = ∅, i = 1, 2, ..., k + 2.

Remark 4. [5] N(xi) ∩ (∪j 6=iC(vj , xj)) = ∅, i, j = 1, 2, ..., k + 2.

Thus
∑k+2

i=1 dC(vj ,xj)(xi) ≤ |C(vj, xj)|, j = 1, 2, ..., k + 2. For each segment Fj, we

use PFj
[xi, y

k
i ] to denote the kth path, that is, internally disjoint from C, from xi to Fj,

i, j ∈ {1, 2, ..., k + 2}. Let R∗(Fj(y
m
p , yn

q )) (q < p) be a segment such that (yn
q )−h = ym

p ,

h ≥ 2 and R∗(Fj(y
m
p , yn

q )) ∩ (∪k+2
i=1 N(xi)) = ∅. We have the following claim.

Claim 1. |R∗(Fj(y
m
p , yn

q ))| ≥ k + 1, ∀p, q ∈ {1, 2, ..., k + 2}.

Proof. We take a cycle C
′

= x0Pp(x0, vp)vpC̄(vp, y
n
q )yn

q P̄Fj
(yn

q , xq)xqC(xq, y
m
p )ym

p P̄Fj
(ym

p , xp)

xpC(xp, vq)vqPq(vq, x0)x0. By inserting the vertices of C(vp, xp) and C(vq, xq) into the

corresponding inserting segments, we get a cycle with H
′

= H − {x0}. By the choice of

C, |R∗(Fj(y
m
p , yn

q ))| ≥ k + 1. 2

Suppose that R∗(Fi(y
k
p , y

l
q)) (q < p, i ≤ j) is another different segment such that (yl

q)
−r =

yk
p , r ≥ 2 and R∗(Fi(y

k
p , y

l
q)) ∩ (∪k+2

i=1 N(xi)) = ∅. If R∗(Fi(y
k
p , y

l
q)) ∩ R∗(Fj(y

m
p , yn

q )) 6= ∅,

there are paths from Fi(y
k
p , y

l
q) to Fj(y

m
p , yn

q ) internally disjoint from Fi(y
k
p , y

l
q)∪Fj(y

m
p , yn

q ).

We choose the last path zPz
′

, in the sense that R∗(Fi(z, y
l
q))∩R∗(Fj(y

m
p , z

′

)) = ∅, where

z ∈ Fi(y
k
p , y

l
q) and z

′

∈ Fj(y
m
p , yn

q ). Take cycle C
′

= x0Pq(x0, vq)vqC̄(vq, xp)xpPFj
(xp, y

m
p )ym

p

C̄(ym
p , yl

q)y
l
qP̄Fi

(yl
q, xq)xqC(xq, z)zPz

′

C(z
′

, vp)vpP̄p(vp, x0)x0(see the bold lines in Fig. 2).

By inserting the vertices of C(vq, xq) and C(vp, xp) into the corresponding inserting seg-

ments, we get a new cycle with H
′

= H − {x0}. By the choice of C, |R∗(Fi(z, y
l
q))| ≥

k + 1 or |R∗(Fj(y
m
p , z

′

))| ≥ k + 1. Assume that |R∗(Fj(y
m
p , z

′

))| ≥ k + 1. Redefine

R∗(Fj(y
m
p , yn

q )) = R∗(Fj(y
m
p , z

′

)). Then R∗(Fi(y
k
p , y

l
q)) ∩ R∗(Fj(y

m
p , yn

q )) = ∅ and each has
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at least k + 1 vertices.

z

x
p

qx

z

v
v

p

q

y

p

py
m

k

y
q

y
q

n

l

’

x0

Figure 2.

Now, we consider the relation between R∗(Fj(yp, yq)) and other segment that is made

by a pair different from xp and xq. Without cause of confusion, we breviate R∗(Fj(yp, yq)) =

L0
jpq

∀p, q ∈ {1, 2, ..., k + 2}.

Let L0
jmn

and L0
jpq

be two different intersecting segments. Without loss of general-

ity, assume that xp 6= xn, xm. Since they are the segments in Fj , either C(yn, yp) ∩

{xn, xm, xq, xp} = ∅ or C(yq, ym) ∩ {xn, xm, xq, xp} = ∅. By symmetry, assume that

C(yn, yp) ∩ {xn, xm, xq, xp} = ∅. As L0
jmn

∩ L0
jpq

6= ∅, similarly as above, we choose the

last path zPz
′

from Fj(ym, yn) to Fj(yp, yq), where z ∈ Fj(ym, yn) and z
′

∈ Fj(yp, yq). Take

C
′

= x0Pn(x0, vn)vnC̄(vn, xp)xpPFj
(xp, yp)ypC̄(yp, yn)ynP̄Fj

(yn, xn)xnC(xn, z)zPz
′

C̄(z
′

, vp)

vpP̄p(vp, x0)x0(see the bold lines in Fig. 3). By inserting the vertices of C(vn, xn) and

C(vp, xp) into the corresponding inserting segments, we get a new cycle with H
′

= H −

{x0}. By the choice of C, |R∗(Fj(z, yn))| ≥ k + 1 or |R∗(Fj(yp, z
′

))| ≥ k + 1. Assume

that |R∗(Fj(yp, z
′

))| ≥ k + 1. Define L1
jpq

= R∗(Fj(yp, z
′

)) and L1
jmn

= L0
jmn

, ∀m, n ∈

{1, 2, ..., k + 2} and {m, n} 6= {p, q}. By repeating this process, we obtain a sequence of

segments L0
jpq

⊆ L1
jpq

⊆ ... ⊆ Lt
jpq

such that Lt
jpq

∩ Lt
jmn

= ∅, ∀p, q, m, n ∈ {1, 2, ..., k + 2}

and |Lt
jpq
| ≥ k + 1.

mx

nx
z

vn

x0

m y
n

y
py

y
q

z

’

pv
xp

qx

Figure 3.

Let Lt
imn

and Lt
jpq

(i < j) be two intersecting segments. By symmetry, we only

consider the case that |C(yn, yp)∩{xn, xm, xq, xp}| ≤ 2. If C(yn, yp)∩{xn, xm, xq, xp} = ∅,

we can get two non-intersecting segments similarly as above and each has at least k + 1

vertices. So assume that C(yn, yp) ∩ {xn, xm, xq, xp} 6= ∅. Without loss of generality,
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assume that xm ∈ C(yn, yp). Similarly, we choose the last path zPz
′

from Fi(ym, yn)

to Fj(yp, yq), where z ∈ Fi(ym, yn) and z
′

∈ Fj(yp, yq). If xn /∈ C(yn, yp), take C
′

=

x0Pn(x0, vn)vnC̄(vn, xp)xpPFj
(xp, yp)ypC̄(yp, yn)ynP̄Fi

(yn, xn)xnC(xn, z)zPz
′

C(z
′

, vp)vpP̄p

(vp, x0)x0 (see the bold lines in Fig. 4 (a)). If xn ∈ C(yn, yp), take C
′

= x0Pn(x0, vn)vnC̄(vn,

yn)ynP̄Fi
(yn, xn)xnC(xn, yp)ypP̄Fj

(yp, xp)xpC(xp, z)zPz
′

C(z
′

, vp)vpP̄p(vp, x0)x0 (see the bold

lines in Fig. 4 (b)). By inserting the vertices of C(vn, xn) and C(vp, xp) into the corre-

sponding inserting segments, we get a new cycle with H
′

= H − {x0}. By the choice

of C, |R∗(Fi(z, yn))| ≥ k + 1 or |R∗(Fj(yp, z
′

))| ≥ k + 1 holds. Without loss of general-

ity, suppose that |R∗(Fj(yp, z
′

))| ≥ k + 1. Define Lt+1
jpq

= R∗(Fj(yp, z
′

)), Lt+1
imn

= Lt
imn

,

∀m, n ∈ {1, 2, ..., k + 2} and {m, n} 6= {p, q}. By continuing this process, for each

j ∈ {1, 2, ..., k + 2}, we obtain a sequence of segments Lt
jpq

⊆ Lt+1
jpq

⊆ ... ⊆ Ls
jpq

and

Ls
imn

∩ Ls
jpq

= ∅, ∀p, q, m, n ∈ {1, 2, ..., k + 2}.

x0

x

p

q

x

mx

nx

z

’z

y
m

y
n

y

y
q

p

v

x0

xpxq

y
p

yq

nx
x

v
m

z ’

y
n

y
m

z

(a)

n

vp

n

vp

(b)

Figure 4.

For any t ≥ r > k+2, let wr be the first vertex in C(vr, vr+1] such that |R∗(C(vr, wr))| ≥

k + 1.

Suppose that there exists a segment Ls
jpq

∩R∗(C(vr, wr)) 6= ∅. Let zPz
′

be the last path

from C(vr, wr) to Fj(yp, yq), in the sense that R∗(Fj(z
′

, yq))∩R∗(C(vr, wr)) = ∅. Take C
′

=

x0Pq(x0, vq)vqC̄(vq, z)zPz′C̄(z′, xq)xqPFj
(xq, yq)yqC(yq, vr)vrPr(vr, x0)x0(see the bold lines

of Fig. 5 (a)). Let zP
′

z
′

be the first path from C(vr, wr) to Fj(yp, yq), in the sense that

R∗(C(vr, wr)) ∩ R∗(Fj(yp, z
′

)) = ∅, where z
′

∈ Fj(yp, yq) and z ∈ C(vr, wr). Take C
′

=

x0Pp(x0, vp)vpC̄(vp, z
′

)z
′

P̄
′

zC(z, yp)ypP̄Fj
(yp, xp)xpC(xp, vr)vrP̄r(vr, x0)x0(see the bold lines

of Fig. 5 (b)). By inserting the vertices of C(vq, xq) or C(vp, xp) into the corresponding

inserting segments, we get a new cycle with H
′

= H − {x0}. By the choice of wr,

|R∗(C(vr, z))| ≤ k and then |R∗(Fj(z
′

, yq))| ≥ k + 1, or |R∗(Fj(yp, z
′

))| ≥ k + 1. Without

loss of generality, assume that |R∗(Fj(yp, z
′

))| ≥ k + 1. Define Ls+1
jpq

= R∗(Fj(yp, z
′

)). For

each i ∈ {1, 2, ..., k + 2} and {m, n} 6= {p, q}, Ls+1
imn

= Ls
imn

.

Finally, we obtain a sequence of segments L0
jpq

⊆ ... ⊆ Lt
jpq

⊆ ... ⊆ Ls
jpq

⊆ ... ⊆ Lh
jpq

.

By the above arguments, for each i 6= j ∈ {1, 2, ..., k + 2} and p, q, m, n ∈ {1, 2, ..., k + 2},

the following claim holds.
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vq

x0

xq

y
qp

y

px

rvwr

z

’z

vq

x0

xq

y
qp

y

px

rvwr

z

’z

vpvp

(a) (b)

Figure 5.

Claim 2. (1) |Lh
jpq
| ≥ k + 1,

(2) Lh
jmn

∩ Lh
jpq

= ∅,

(3) Lh
imn

∩ Lh
jpq

= ∅,

(4) Lh
jpq

∩ R∗(C(vr, wr)) = ∅, r > k + 2.

Lemma 2.1 [5] (1) There is no path between x0 and a vertex in Lh
jpq

with all internal

vertices in G − C − Pj [x0, vj), for any p, q ∈ {1, 2, ..., k + 2} and j = 1, 2, ..., t,

(2) R∗(C(vr, wr)) ∩ N(xi) = ∅, for 1 ≤ i ≤ k + 2, r > k + 2 and

(3) R∗(C(vr, wr)) ∩ R∗(C(vr
′ , wr

′ )) = ∅ with r 6= r
′

, r, r
′

> k + 2.

For each j ∈ {1, 2, ..., k + 2}, define L∗
j = ∪p,q∈{1,2,...,k+2}L

h
jpq

and Lj = L∗
j\Fj. Then

either L∗
j = ∅ or |L∗

j | ≥ k + 1. Now, for each j ∈ {1, 2, ..., k + 2}, we regard the segment

Fj as a path P = v1v2...vp and compute the degree sum of x1, x2, ..., xk+2 in P ∪ Lj.

Lemma 2.2 Let G be a simple graph, P = v1v2...vp a path in G and x1, x2, ..., xk+2 are

k + 2 vertices in V (G) − V (P ) such that N−
P (xi) ∩ NP (xj) = ∅, 1 ≤ i < j ≤ k + 2, and

N−
P (xi) ∩ NP (xi) = ∅, 1 ≤ i ≤ k + 2. Then

k+2
∑

i=1

dP∪Lj
(xi) ≤

{

|P ∪ Lj | + k + 1, vp ∈ ∩k+2
i=1 NP (xi),

|P ∪ Lj | + k, vp /∈ ∩k+2
i=1 NP (xi).

Proof. If L∗
j = ∅, then for each pair xi and xj with i < j, N−s

P (xi) ∩ NP (xj) = ∅, s ≥ 1.

The result holds. So assume that |L∗
j | ≥ k + 1. We prove the Lemma by induction on

|P |. If |P | = 1, 2, the result is trivial. If |P | = 3, L∗
j = R∗(v2). Since |L∗

j | ≥ k + 1,

|P ∪ Lj | ≥ k + 3. Then
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k+2
∑

i=1

dP∪Lj
(xi) ≤ k + 2 +

{

k + 2, vp ∈ ∩k+2
i=1 NP (xi),

k + 1, vp /∈ ∩k+2
i=1 NP (xi),

= k + 3 +

{

k + 1, vp ∈ ∩k+2
i=1 NP (xi),

k, vp /∈ ∩k+2
i=1 NP (xi),

≤

{

|P ∪ Lj | + k + 1, vp ∈ ∩k+2
i=1 NP (xi),

|P ∪ Lj | + k, vp /∈ ∩k+2
i=1 NP (xi).

Now assume the result holds for path |P
′

| < |P |. Suppose that xq and xp (q < p)

is the first pair such that N−s
P (xq) = NP (xp), s ≥ 2, and N−j

P (xq) ∩ (∪k+2
i=1 NP (xi)) = ∅,

1 ≤ j ≤ s − 1. Denote NP (xp) = yp, NP (xq) = yq. Take P1 = P [v1, yp], P2 = P [y+
p , y−

q ]

and P3 = P [yq, vp]. Then P1 ∪ L1
j = P1, P2 ∪ L2

j = Lh
jpq

and P3 ∪ L3
j = P3 ∪ L∗

j − Lh
jpq

. By

claim 2, |Lh
jpq
| ≥ k + 1. By induction hypothesis, it holds that

k+2
∑

i=1

dP1∪L1
j
(xi) ≤ |P1 ∪ L1

j | + k + 1

and
k+2
∑

i=1

dP3∪L3
j
(xi) ≤

{

|P3 ∪ L3
j | + k + 1, vp ∈ ∩k+2

i=1 NP (xi),

|P3 ∪ L3
j | + k, vp /∈ ∩k+2

i=1 NP (xi).

Then

k+2
∑

i=1

dP∪Lj
(xi) ≤ |P1 ∪ L1

j | + k + 1 +

{

|P3 ∪ L3
j | + k + 1, vp ∈ ∩k+2

i=1 NP (xi),

|P3 ∪ L3
j | + k, vp /∈ ∩k+2

i=1 NP (xi),

≤ |P1 ∪ L1
j | + |P2 ∪ L2

j | + |P3 ∪ L3
j | +

{

k + 1, vp ∈ ∩k+2
i=1 NP (xi),

k, vp /∈ ∩k+2
i=1 NP (xi),

=

{

|P ∪ Lj | + k + 1, vp ∈ ∩k+2
i=1 NP (xi),

|P ∪ Lj | + k, vp /∈ ∩k+2
i=1 NP (xi).

The result holds. 2

For any distinguish vertices y0, y1, ..., yp, we define ϕ(y0|y1, ..., yp) = 1 if y0 ∈ ∩p
i=1N(yi)

and ϕ(y0|y1, ..., yp) = 0 if y0 /∈ ∩p
i=1N(yi). For 1 ≤ i ≤ k + 2, by Lemma 2.2, we have

k+2
∑

j=1

dC(vi,vi+1]∪Li
(xj) ≤ |C(vi, xi)| + |C(xi, vi+1] ∪ Li| + k + ϕ(vi+1|x1, ..., xk+2)

= |C(vi, vi+1] ∪ Li| + k − 1 + ϕ(vi+1|x1, ..., xk+2).
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For i > k + 2, by Lemma 2.2 again, we have

k+2
∑

j=1

dC(vi,vi+1]∪Li
(xj) ≤ |C(wi, vi+1) ∪ Li| + k + ϕ(vi+1|x1, ..., xk+2).

By the definition of xi(i = 1, 2, ..., k + 2), Li and Lemma 2.1, x1, x2, ..., xk+2 have

no neighbor in H ∪ (
⋃t

j=k+3 R(vj , wj)) and any pair of x1, x2, ..., xk+2 have no common

neighbor in G − C ∪ (
⋃t

i=1 Li). Hence

k+2
∑

i=1

dG−C∪(
⋃t

i=1 Li)
(xi) ≤ |G| − |C| − |

t
⋃

i=1

Li| − |H| − |
t

⋃

i=k+3

R(vi, wi)|.

Thus
k+2
∑

i=0

d(xi)

≤ |H| − 1 + t +

k+2
∑

i=1

(|C(vi, vi+1] ∪ Li| + k − 1 + ϕ(vi+1|x1, ..., xk+2))

+
t

∑

i=k+3

(|C(wi, vi+1) ∪ Li| + k + ϕ(vi|x1, ..., xk+2)) + |G| − |H| − |C|

−
t

∑

i=1

|Li| −
t

∑

i=k+3

|R(C(vi, wi))|

= n − 1 + t +

k+2
∑

i=1

(|C(vi, vi+1]| + k − 1) +

t
∑

i=k+3

(|C(wi, vi+1)| + k)

−
t

∑

i=k+3

|R(C(vi, wi))| − |C| +
t

∑

i=1

ϕ(vi|x0, x1, ..., xk+2)

= n − 1 + t + (k + 2)(k − 1) + k(t − k − 2) −
t

∑

i=k+3

|R∗(C(vi, wi))| + | ∩k+2
i=0 N(xi)|

≤ n − 1 + t + (k + 2)(k − 1) + k(t − k − 2) − (k + 1)(t − k − 2) + | ∩k+2
i=0 N(xi)|

= n − 1 + k(k + 2) + | ∩k+2
i=0 N(xi)|.

That is, σ̄k+3(G) ≤ n − 1 + k(k + 2). This contradiction concludes the proof of Theorem

1.8. 2
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