THE k-DOMINATING CYCLES IN GRAPHS

LI H / ZHOU S / WANG G

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI
12/2007
Rapport de Recherche $\mathbf{N}^{\circ} 1483$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

The k-dominating cycles in graphs*

Hao Li ${ }^{a, b}$ Shan Zhou ${ }^{a, b}$ Guanghui Wang ${ }^{a, c}$
${ }^{a}$ LRI, Univ Paris-sud and CNRS, Orsay F-91405, France
${ }^{b}$ School of Mathematics and Statistics, Lanzhou University, 730000 Lanzhou, China
${ }^{c}$ School of Mathematics and System Science, Shandong University, 250100 Jinan, China

Abstract

For a graph G, let $\bar{\sigma}_{k+3}(G)=\min \left\{d\left(x_{1}\right)+d\left(x_{2}\right)+\cdots+d\left(x_{k+3}\right)-\mid N\left(x_{1}\right) \cap\right.$ $N\left(x_{2}\right) \cap \cdots \cap N\left(x_{k+3}\right)\left|\mid x_{1}, x_{2}, \cdots, x_{k+3}\right.$ are $k+3$ independent vertices in $\left.G\right\}$. In [5], H. Li proved that if G is a 3 -connected graph of order n and $\bar{\sigma}_{4}(G) \geq n+3$, then G has a maximum cycle such that each component of $G-C$ has at most one vertex. In this paper, we extend this result as follows. Let G be a $(k+2)$-connected graph of order n. If $\bar{\sigma}_{k+3}(G) \geq n+k(k+2), G$ has a cycle C such that each component of $G-C$ has at most k vertices. Moreover, the lower bound is sharp.

Keywords: cycle, neighborhood, degree sum, k-dominating

1 Introduction and Notations

All the graphs considered in this paper are undirected and simple. We use [1] for terminology and notations not defined here. Let $C=c_{1} c_{2} \ldots c_{p} c_{1}$ be a cycle in graph G. We use $C\left[c_{i}, c_{j}\right]$ to denote the sub-path $c_{i} c_{i+1} \ldots c_{j}$, and $\bar{C}\left[c_{j}, c_{i}\right]$ to denote the sub-path $c_{j} c_{j-1} \ldots c_{i}$, where the indices are taken modulo p. We will consider $C\left[c_{i}, c_{j}\right]$ and $\bar{C}\left[c_{j}, c_{i}\right]$ both as paths and as vertex sets. Define $C\left(c_{i}, c_{j}\right]=C\left[c_{i+1}, c_{j}\right], C\left[c_{i}, c_{j}\right)=C\left[c_{i}, c_{j-1}\right]$ and $C\left(c_{i}, c_{j}\right)=C\left[c_{i+1}, c_{j-1}\right]$. We use similar definitions for a path. We give C a fixed orientation. For any i, we put $c_{i}^{+}=c_{i+1}, c_{i}^{-}=c_{i-1}, c_{i}^{+2}=c_{i+2}$ and $c_{i}^{-2}=c_{i-2}$. For a vertex set $A \subseteq C, A^{+}=\left\{v^{+} \mid v \in A\right\}, A^{-}=\left\{v^{-} \mid v \in A\right\}, A^{+2}=\left(A^{+}\right)^{+}$and $A^{-2}=\left(A^{-}\right)^{-}$. For a vertex x of G, a neighbor of x means a vertex adjacent to x, denoted by $N_{G}(x)$, and the degree of x is the number of neighbors of x, denoted by $d(x)$. Let $N_{C}^{-}(x)=\left\{c_{i} \mid c_{i}^{+} \in N_{C}(x)\right\}$ and $N_{C}^{-2}(x)=\left\{c_{i} \mid c_{i}^{+2} \in N_{C}(x)\right\}$. A maximal connected subgraph of G is called a component of G. Let $R=G-C$ be the induced subgraph in G by $V(G)-V(C)$. Denote by

[^0]$R\left(C\left[c_{i}, c_{j}\right]\right)$ the induced subgraph in G by the union of the components in G that is adjacent to some vertex in $C\left[c_{i}, c_{j}\right]$ and $R^{*}\left(C\left[c_{i}, c_{j}\right]\right)=R\left(C\left[c_{i}, c_{j}\right]\right) \cup C\left[c_{i}, c_{j}\right]$. Define $\bar{\sigma}_{k}(G)$ $=\min \left\{d\left(x_{1}\right)+d\left(x_{2}\right)+\cdots+d\left(x_{k}\right)-\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap \cdots \cap N\left(x_{k}\right)\right| \mid x_{1}, x_{2}, \cdots, x_{k}\right.$ are k independent vertices in $G\}$ and $\sigma_{k}(G)=\min \left\{d\left(x_{1}\right)+d\left(x_{2}\right)+\cdots+d\left(x_{k}\right) \mid x_{1}, x_{2}, \cdots, x_{k}\right.$ are k independent vertices in $G\}$. A graph G is called to be hamiltonian if there is a cycle that contains all vertices of G. A cycle C is called k-dominating if no component of $G-C$ has more than k vertices. Clearly, a hamiltonian cycle is a 0 -dominating cycle and a 1-dominating cycle is called dominating cycle.

Various long cycle problems are interesting and important in graph theory and have been deeply studied. Two classical results are due to Dirac and Ore respectively.

Theorem 1.1 (Dirac [3]) Let G be a graph on $n \geq 3$ vertices. If the minimum degree $\delta(G) \geq \frac{n}{2}, G$ is hamiltonian.

Theorem 1.2 (Ore [8]) Let G be a graph on $n \geq 3$ vertices. If $\sigma_{2}(G) \geq n, G$ is hamiltonian.

It is natural to consider sufficient conditions concerning the degree sum of more independent vertices. Flandrin, Jung and Li [4] investigated the degree sum of three independent vertices and obtained the following result.

Theorem 1.3 (Flandrin, Jung and Li [4]) Let G be a 2-connected graph of order n. If $\bar{\sigma}_{3}(G) \geq n, G$ is hamiltonian.

Based on the reason that it is too difficult to obtain the sufficient conditions for a graph to be hamiltonian by considering the degree sum of four or more independent vertices, many authors turn into investigating the sufficient conditions for a graph to have a dominating cycle and the relation between dominating cycle and the longest cycle concerning the degree sum of independent vertices. In [7], Nash-Williams gave a sufficient condition for each longest cycle of a 2-connected graph to be a dominating cycle.

Theorem 1.4 (Nash-Williams [7]) Let G be a 2-connceted graph on n vertices with $\delta(G) \geq \frac{n+2}{3}$. Then every longest cycle in G is a dominating cycle.

Bondy [2] generalized this result to the degree sum of three indpendent vertices.
Theorem 1.5 (Bondy [2]) Let G be a 2-connected graph of order $n \geq 3$ with $\sigma_{3}(G) \geq$ $n+2$. Then each longest cycle of G is a dominating cycle.

Futher, Lu et al. [6] proved the following result.

Theorem 1.6 (Lu et al. [6]) Let G be a 3-connected graph of order $n \geq 13$. If $\sigma_{4}(G) \geq$ $\frac{4}{3} n+\frac{5}{3}$, then each longest cycle of G is a dominating cycle.
H. Li [5] studied the degree sum of four independent vertices in 3-connected graphs and proved:

Theorem 1.7 ($\mathbf{L i}$ [5]) Let G be a 3-connected graph of order n. If $\bar{\sigma}_{4}(G) \geq n+3$, G has a dominating maximum cycle.

In this paper, we extend this result to the degree sum of $k+3$ independent vertices and present the following result:

Theorem 1.8 Let G be a ($k+2)$-connected graph of order n. If $\bar{\sigma}_{k+3}(G) \geq n+k(k+2)$, G has a cycle C such that each component of $G-C$ has at most k vertices.

It can be seen that Theorem 1.3 and Theorem 1.7 are consistently with Theorem 1.8 when $k=0$ and $k=1$, respectively.

Theorem 1.8 is best possible as shown by the following example (see Fig. 1). The graph G is obtained by $k+3$ complete graphs K_{k+1} and $k+2$ vertices $v_{1}, v_{2}, \ldots, v_{k+2}$ by adding edges between v_{i} and each vertex in $k+3$ complete graphs $K_{k+1}, i=1,2, \ldots, k+2$, all of which are disjoint. We take a vertex $u_{i}(i=1,2, \ldots, k+3)$ from each of the $k+3$ copies of K_{k+1}. Then the $k+3$ vertices $u_{1}, u_{2}, \ldots, u_{k+3}$ are independent and

$$
\begin{aligned}
\bar{\sigma}_{k+3}(G) & =\sum_{i=1}^{k+3} d\left(u_{i}\right)-\left|\cap_{i=1}^{k+3} N\left(u_{i}\right)\right| \\
& =(k+3)(2 k+2)-(k+2)=2 k^{2}+7 k+4 \\
& =\left(k^{2}+5 k+5\right)-1+k^{2}+2 k=n-1+k(k+2) .
\end{aligned}
$$

However, for each cycle C in G, there exists a component with $k+1$ vertices in $G-C$.

Figure 1.

The proof of Theorem 1.8 will be given in the next section.

2 Proof of Theorem 1.8

Suppose, to the contrary, that for each cycle C of G, there exists at least one component H of $G-C$ with $|H| \geq k+1$. We choose a cycle C such that:
(a) the number of component H^{*} in $G-C$ with $\left|H^{*}\right| \geq k+1$ is as small as possible.
(b) subject to (a), the component H in $G-C$ with $|H| \geq k+1$ is as small as possible.

We give C a fixed orientation. Since G is $(k+2)$-connected, H contains a vertex x_{0} that has $t(\geq k+2)$ paths $P_{1}\left[x_{0}, v_{1}\right], P_{2}\left[x_{0}, v_{2}\right], \ldots, P_{t}\left[x_{0}, v_{t}\right]$ from x_{0} to C having only x_{0} in common. For any i, let $V\left(P_{i}\right) \cap V(C)=\left\{v_{i}\right\}$, and $v_{1}, v_{2}, \ldots, v_{t}$ occur in this order along C with the chosen orientation. Denote $C_{i}=C\left(v_{i}, v_{i+1}\right], i=1,2, \ldots, t$. A vertex u of a segment C_{i} is said to be insertible, if there is an edge $x y \subseteq E\left(C\left(v_{i+1}, v_{i}\right)\right)$ such that $u x$ and $u y$ belong to $E(G)$. By the choice of C, for each $i \in\{1,2, \ldots, k+2\}$, let x_{i} be the first non-insertible vertex in C_{i} and denote $F_{i}=C\left(x_{i}, v_{i+1}\right], i=1,2, \ldots, k+2$, where the indices are taken modulo t.
Remark 1. [5] $x_{0}, x_{1}, \ldots, x_{k+2}$ are independent vertices.
Remark 2. [5] $R^{*}\left(N^{-}\left(x_{i}\right)\right) \cap N\left(x_{j}\right)=\emptyset, 1 \leq i<j \leq k+2$.
Remark 3. [5] $N\left(x_{i}\right) \cap\left(\cup_{j=1}^{t} P_{j}\left(x_{0}, v_{j}\right)\right)=\emptyset, i=1,2, \ldots, k+2$.
Remark 4. [5] $N\left(x_{i}\right) \cap\left(\cup_{j \neq i} C\left(v_{j}, x_{j}\right)\right)=\emptyset, i, j=1,2, \ldots, k+2$.
Thus $\sum_{i=1}^{k+2} d_{C\left(v_{j}, x_{j}\right)}\left(x_{i}\right) \leq\left|C\left(v_{j}, x_{j}\right)\right|, j=1,2, \ldots, k+2$. For each segment F_{j}, we use $P_{F_{j}}\left[x_{i}, y_{i}^{k}\right]$ to denote the k th path, that is, internally disjoint from C, from x_{i} to F_{j}, $i, j \in\{1,2, \ldots, k+2\}$. Let $R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right)(q<p)$ be a segment such that $\left(y_{q}^{n}\right)^{-h}=y_{p}^{m}$, $h \geq 2$ and $R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right) \cap\left(\cup_{i=1}^{k+2} N\left(x_{i}\right)\right)=\emptyset$. We have the following claim.

Claim 1. $\left|R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right)\right| \geq k+1, \forall p, q \in\{1,2, \ldots, k+2\}$.
Proof. We take a cycle $C^{\prime}=x_{0} P_{p}\left(x_{0}, v_{p}\right) v_{p} \bar{C}\left(v_{p}, y_{q}^{n}\right) y_{q}^{n} \bar{P}_{F_{j}}\left(y_{q}^{n}, x_{q}\right) x_{q} C\left(x_{q}, y_{p}^{m}\right) y_{p}^{m} \bar{P}_{F_{j}}\left(y_{p}^{m}, x_{p}\right)$ $x_{p} C\left(x_{p}, v_{q}\right) v_{q} P_{q}\left(v_{q}, x_{0}\right) x_{0}$. By inserting the vertices of $C\left(v_{p}, x_{p}\right)$ and $C\left(v_{q}, x_{q}\right)$ into the corresponding inserting segments, we get a cycle with $H^{\prime}=H-\left\{x_{0}\right\}$. By the choice of $C,\left|R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right)\right| \geq k+1$.
Suppose that $R^{*}\left(F_{i}\left(y_{p}^{k}, y_{q}^{l}\right)\right)(q<p, i \leq j)$ is another different segment such that $\left(y_{q}^{l}\right)^{-r}=$ $y_{p}^{k}, r \geq 2$ and $R^{*}\left(F_{i}\left(y_{p}^{k}, y_{q}^{l}\right)\right) \cap\left(\cup_{i=1}^{k+2} N\left(x_{i}\right)\right)=\emptyset$. If $R^{*}\left(F_{i}\left(y_{p}^{k}, y_{q}^{l}\right)\right) \cap R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right) \neq \emptyset$, there are paths from $F_{i}\left(y_{p}^{k}, y_{q}^{l}\right)$ to $F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)$ internally disjoint from $F_{i}\left(y_{p}^{k}, y_{q}^{l}\right) \cup F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)$. We choose the last path $z P z^{\prime}$, in the sense that $R^{*}\left(F_{i}\left(z, y_{q}^{l}\right)\right) \cap R^{*}\left(F_{j}\left(y_{p}^{m}, z^{\prime}\right)\right)=\emptyset$, where $z \in F_{i}\left(y_{p}^{k}, y_{q}^{l}\right)$ and $z^{\prime} \in F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)$. Take cycle $C^{\prime}=x_{0} P_{q}\left(x_{0}, v_{q}\right) v_{q} \bar{C}\left(v_{q}, x_{p}\right) x_{p} P_{F_{j}}\left(x_{p}, y_{p}^{m}\right) y_{p}^{m}$ $\bar{C}\left(y_{p}^{m}, y_{q}^{l}\right) y_{q}^{l} \bar{P}_{F_{i}}\left(y_{q}^{l}, x_{q}\right) x_{q} C\left(x_{q}, z\right) z P z^{\prime} C\left(z^{\prime}, v_{p}\right) v_{p} \bar{P}_{p}\left(v_{p}, x_{0}\right) x_{0}$ (see the bold lines in Fig. 2). By inserting the vertices of $C\left(v_{q}, x_{q}\right)$ and $C\left(v_{p}, x_{p}\right)$ into the corresponding inserting segments, we get a new cycle with $H^{\prime}=H-\left\{x_{0}\right\}$. By the choice of $C,\left|R^{*}\left(F_{i}\left(z, y_{q}^{l}\right)\right)\right| \geq$ $k+1$ or $\left|R^{*}\left(F_{j}\left(y_{p}^{m}, z^{\prime}\right)\right)\right| \geq k+1$. Assume that $\left|R^{*}\left(F_{j}\left(y_{p}^{m}, z^{\prime}\right)\right)\right| \geq k+1$. Redefine $R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right)=R^{*}\left(F_{j}\left(y_{p}^{m}, z^{\prime}\right)\right)$. Then $R^{*}\left(F_{i}\left(y_{p}^{k}, y_{q}^{l}\right)\right) \cap R^{*}\left(F_{j}\left(y_{p}^{m}, y_{q}^{n}\right)\right)=\emptyset$ and each has
at least $k+1$ vertices.

Figure 2.

Now, we consider the relation between $R^{*}\left(F_{j}\left(y_{p}, y_{q}\right)\right)$ and other segment that is made by a pair different from x_{p} and x_{q}. Without cause of confusion, we breviate $R^{*}\left(F_{j}\left(y_{p}, y_{q}\right)\right)=$ $L_{j_{p q}}^{0} \forall p, q \in\{1,2, \ldots, k+2\}$.

Let $L_{j_{m n}}^{0}$ and $L_{j_{p q}}^{0}$ be two different intersecting segments. Without loss of generality, assume that $x_{p} \neq x_{n}, x_{m}$. Since they are the segments in F_{j}, either $C\left(y_{n}, y_{p}\right) \cap$ $\left\{x_{n}, x_{m}, x_{q}, x_{p}\right\}=\emptyset$ or $C\left(y_{q}, y_{m}\right) \cap\left\{x_{n}, x_{m}, x_{q}, x_{p}\right\}=\emptyset . \quad$ By symmetry, assume that $C\left(y_{n}, y_{p}\right) \cap\left\{x_{n}, x_{m}, x_{q}, x_{p}\right\}=\emptyset$. As $L_{j_{m n}}^{0} \cap L_{j_{p q}}^{0} \neq \emptyset$, similarly as above, we choose the last path $z P z^{\prime}$ from $F_{j}\left(y_{m}, y_{n}\right)$ to $F_{j}\left(y_{p}, y_{q}\right)$, where $z \in F_{j}\left(y_{m}, y_{n}\right)$ and $z^{\prime} \in F_{j}\left(y_{p}, y_{q}\right)$. Take $C^{\prime}=x_{0} P_{n}\left(x_{0}, v_{n}\right) v_{n} \bar{C}\left(v_{n}, x_{p}\right) x_{p} P_{F_{j}}\left(x_{p}, y_{p}\right) y_{p} \bar{C}\left(y_{p}, y_{n}\right) y_{n} \bar{P}_{F_{j}}\left(y_{n}, x_{n}\right) x_{n} C\left(x_{n}, z\right) z P z^{\prime} \bar{C}\left(z^{\prime}, v_{p}\right)$ $v_{p} \bar{P}_{p}\left(v_{p}, x_{0}\right) x_{0}$ (see the bold lines in Fig. 3). By inserting the vertices of $C\left(v_{n}, x_{n}\right)$ and $C\left(v_{p}, x_{p}\right)$ into the corresponding inserting segments, we get a new cycle with $H^{\prime}=H-$ $\left\{x_{0}\right\}$. By the choice of $C,\left|R^{*}\left(F_{j}\left(z, y_{n}\right)\right)\right| \geq k+1$ or $\left|R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)\right| \geq k+1$. Assume that $\left|R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)\right| \geq k+1$. Define $L_{j_{p q}}^{1}=R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)$ and $L_{j_{m n}}^{1}=L_{j_{m n}}^{0}, \forall m, n \in$ $\{1,2, \ldots, k+2\}$ and $\{m, n\} \neq\{p, q\}$. By repeating this process, we obtain a sequence of segments $L_{j_{p q}}^{0} \subseteq L_{j_{p q}}^{1} \subseteq \ldots \subseteq L_{j_{p q}}^{t}$ such that $L_{j_{p q}}^{t} \cap L_{j_{m n}}^{t}=\emptyset, \forall p, q, m, n \in\{1,2, \ldots, k+2\}$ and $\left|L_{j_{p q}}^{t}\right| \geq k+1$.

Figure 3.

Let $L_{i_{m n}}^{t}$ and $L_{j_{p q}}^{t}(i<j)$ be two intersecting segments. By symmetry, we only consider the case that $\left|C\left(y_{n}, y_{p}\right) \cap\left\{x_{n}, x_{m}, x_{q}, x_{p}\right\}\right| \leq 2$. If $C\left(y_{n}, y_{p}\right) \cap\left\{x_{n}, x_{m}, x_{q}, x_{p}\right\}=\emptyset$, we can get two non-intersecting segments similarly as above and each has at least $k+1$ vertices. So assume that $C\left(y_{n}, y_{p}\right) \cap\left\{x_{n}, x_{m}, x_{q}, x_{p}\right\} \neq \emptyset$. Without loss of generality,
assume that $x_{m} \in C\left(y_{n}, y_{p}\right)$. Similarly, we choose the last path $z P z^{\prime}$ from $F_{i}\left(y_{m}, y_{n}\right)$ to $F_{j}\left(y_{p}, y_{q}\right)$, where $z \in F_{i}\left(y_{m}, y_{n}\right)$ and $z^{\prime} \in F_{j}\left(y_{p}, y_{q}\right)$. If $x_{n} \notin C\left(y_{n}, y_{p}\right)$, take $C^{\prime}=$ $x_{0} P_{n}\left(x_{0}, v_{n}\right) v_{n} \bar{C}\left(v_{n}, x_{p}\right) x_{p} P_{F_{j}}\left(x_{p}, y_{p}\right) y_{p} \bar{C}\left(y_{p}, y_{n}\right) y_{n} \bar{P}_{F_{i}}\left(y_{n}, x_{n}\right) x_{n} C\left(x_{n}, z\right) z P z^{\prime} C\left(z^{\prime}, v_{p}\right) v_{p} \bar{P}_{p}$ $\left(v_{p}, x_{0}\right) x_{0}$ (see the bold lines in Fig. $4(\mathrm{a})$). If $x_{n} \in C\left(y_{n}, y_{p}\right)$, take $C^{\prime}=x_{0} P_{n}\left(x_{0}, v_{n}\right) v_{n} \bar{C}\left(v_{n}\right.$, $\left.y_{n}\right) y_{n} \bar{P}_{F_{i}}\left(y_{n}, x_{n}\right) x_{n} C\left(x_{n}, y_{p}\right) y_{p} \bar{P}_{F_{j}}\left(y_{p}, x_{p}\right) x_{p} C\left(x_{p}, z\right) z P z^{\prime} C\left(z^{\prime}, v_{p}\right) v_{p} \bar{P}_{p}\left(v_{p}, x_{0}\right) x_{0}$ (see the bold lines in Fig. $4(\mathrm{~b}))$. By inserting the vertices of $C\left(v_{n}, x_{n}\right)$ and $C\left(v_{p}, x_{p}\right)$ into the corresponding inserting segments, we get a new cycle with $H^{\prime}=H-\left\{x_{0}\right\}$. By the choice of $C,\left|R^{*}\left(F_{i}\left(z, y_{n}\right)\right)\right| \geq k+1$ or $\left|R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)\right| \geq k+1$ holds. Without loss of generality, suppose that $\left|R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)\right| \geq k+1$. Define $L_{j_{p q}}^{t+1}=R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)$, $L_{i_{m n}}^{t+1}=L_{i_{m n}}^{t}$, $\forall m, n \in\{1,2, \ldots, k+2\}$ and $\{m, n\} \neq\{p, q\}$. By continuing this process, for each $j \in\{1,2, \ldots, k+2\}$, we obtain a sequence of segments $L_{j_{p q}}^{t} \subseteq L_{j_{p q}}^{t+1} \subseteq \ldots \subseteq L_{j_{p q}}^{s}$ and $L_{i_{m n}}^{s} \cap L_{j_{p q}}^{s}=\emptyset, \forall p, q, m, n \in\{1,2, \ldots, k+2\}$.

Figure 4.

For any $t \geq r>k+2$, let w_{r} be the first vertex in $C\left(v_{r}, v_{r+1}\right]$ such that $\left|R^{*}\left(C\left(v_{r}, w_{r}\right)\right)\right| \geq$ $k+1$.

Suppose that there exists a segment $L_{j_{p q}}^{s} \cap R^{*}\left(C\left(v_{r}, w_{r}\right)\right) \neq \emptyset$. Let $z P z^{\prime}$ be the last path from $C\left(v_{r}, w_{r}\right)$ to $F_{j}\left(y_{p}, y_{q}\right)$, in the sense that $R^{*}\left(F_{j}\left(z^{\prime}, y_{q}\right)\right) \cap R^{*}\left(C\left(v_{r}, w_{r}\right)\right)=\emptyset$. Take $C^{\prime}=$ $x_{0} P_{q}\left(x_{0}, v_{q}\right) v_{q} \bar{C}\left(v_{q}, z\right) z P z^{\prime} \bar{C}\left(z^{\prime}, x_{q}\right) x_{q} P_{F_{j}}\left(x_{q}, y_{q}\right) y_{q} C\left(y_{q}, v_{r}\right) v_{r} P_{r}\left(v_{r}, x_{0}\right) x_{0}$ (see the bold lines of Fig. 5 (a)). Let $z P^{\prime} z^{\prime}$ be the first path from $C\left(v_{r}, w_{r}\right)$ to $F_{j}\left(y_{p}, y_{q}\right)$, in the sense that $R^{*}\left(C\left(v_{r}, w_{r}\right)\right) \cap R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)=\emptyset$, where $z^{\prime} \in F_{j}\left(y_{p}, y_{q}\right)$ and $z \in C\left(v_{r}, w_{r}\right)$. Take $C^{\prime}=$ $x_{0} P_{p}\left(x_{0}, v_{p}\right) v_{p} \bar{C}\left(v_{p}, z^{\prime}\right) z^{\prime} \bar{P}^{\prime} z C\left(z, y_{p}\right) y_{p} \bar{P}_{F_{j}}\left(y_{p}, x_{p}\right) x_{p} C\left(x_{p}, v_{r}\right) v_{r} \bar{P}_{r}\left(v_{r}, x_{0}\right) x_{0}$ (see the bold lines of Fig. $5(\mathrm{~b}))$. By inserting the vertices of $C\left(v_{q}, x_{q}\right)$ or $C\left(v_{p}, x_{p}\right)$ into the corresponding inserting segments, we get a new cycle with $H^{\prime}=H-\left\{x_{0}\right\}$. By the choice of w_{r}, $\left|R^{*}\left(C\left(v_{r}, z\right)\right)\right| \leq k$ and then $\left|R^{*}\left(F_{j}\left(z^{\prime}, y_{q}\right)\right)\right| \geq k+1$, or $\left|R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)\right| \geq k+1$. Without loss of generality, assume that $\left|R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)\right| \geq k+1$. Define $L_{j_{p q}}^{s+1}=R^{*}\left(F_{j}\left(y_{p}, z^{\prime}\right)\right)$. For each $i \in\{1,2, \ldots, k+2\}$ and $\{m, n\} \neq\{p, q\}, L_{i_{m n}}^{s+1}=L_{i_{m n}}^{s}$.

Finally, we obtain a sequence of segments $L_{j_{p q}}^{0} \subseteq \ldots \subseteq L_{j_{p q}}^{t} \subseteq \ldots \subseteq L_{j_{p q}}^{s} \subseteq \ldots \subseteq L_{j_{p q}}^{h}$. By the above arguments, for each $i \neq j \in\{1,2, \ldots, k+2\}$ and $p, q, m, n \in\{1,2, \ldots, k+2\}$, the following claim holds.

Figure 5.

Claim 2. (1) $\left|L_{j_{p q}}^{h}\right| \geq k+1$,
(2) $L_{j_{m n}}^{h} \cap L_{j_{p q}}^{h}=\emptyset$,
(3) $L_{i_{m n}}^{h} \cap L_{j_{p q}}^{h}=\emptyset$,
(4) $L_{j_{p q}}^{h} \cap R^{*}\left(C\left(v_{r}, w_{r}\right)\right)=\emptyset, r>k+2$.

Lemma 2.1 [5] (1) There is no path between x_{0} and a vertex in $L_{j_{p q}}^{h}$ with all internal vertices in $G-C-P_{j}\left[x_{0}, v_{j}\right)$, for any $p, q \in\{1,2, \ldots, k+2\}$ and $j=1,2, \ldots, t$,
(2) $R^{*}\left(C\left(v_{r}, w_{r}\right)\right) \cap N\left(x_{i}\right)=\emptyset$, for $1 \leq i \leq k+2, r>k+2$ and
(3) $R^{*}\left(C\left(v_{r}, w_{r}\right)\right) \cap R^{*}\left(C\left(v_{r^{\prime}}, w_{r^{\prime}}\right)\right)=\emptyset$ with $r \neq r^{\prime}, r, r^{\prime}>k+2$.

For each $j \in\{1,2, \ldots, k+2\}$, define $L_{j}^{*}=\cup_{p, q \in\{1,2, \ldots, k+2\}} L_{j_{p q}}^{h}$ and $L_{j}=L_{j}^{*} \backslash F_{j}$. Then either $L_{j}^{*}=\emptyset$ or $\left|L_{j}^{*}\right| \geq k+1$. Now, for each $j \in\{1,2, \ldots, k+2\}$, we regard the segment F_{j} as a path $P=v_{1} v_{2} \ldots v_{p}$ and compute the degree sum of $x_{1}, x_{2}, \ldots, x_{k+2}$ in $P \cup L_{j}$.

Lemma 2.2 Let G be a simple graph, $P=v_{1} v_{2} \ldots v_{p}$ a path in G and $x_{1}, x_{2}, \ldots, x_{k+2}$ are $k+2$ vertices in $V(G)-V(P)$ such that $N_{P}^{-}\left(x_{i}\right) \cap N_{P}\left(x_{j}\right)=\emptyset, 1 \leq i<j \leq k+2$, and $N_{P}^{-}\left(x_{i}\right) \cap N_{P}\left(x_{i}\right)=\emptyset, 1 \leq i \leq k+2$. Then

$$
\sum_{i=1}^{k+2} d_{P \cup L_{j}}\left(x_{i}\right) \leq\left\{\begin{array}{l}
\left|P \cup L_{j}\right|+k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
\left|P \cup L_{j}\right|+k, \quad v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right) .
\end{array}\right.
$$

Proof. If $L_{j}^{*}=\emptyset$, then for each pair x_{i} and x_{j} with $i<j, N_{P}^{-s}\left(x_{i}\right) \cap N_{P}\left(x_{j}\right)=\emptyset, s \geq 1$. The result holds. So assume that $\left|L_{j}^{*}\right| \geq k+1$. We prove the Lemma by induction on $|P|$. If $|P|=1,2$, the result is trivial. If $|P|=3, L_{j}^{*}=R^{*}\left(v_{2}\right)$. Since $\left|L_{j}^{*}\right| \geq k+1$, $\left|P \cup L_{j}\right| \geq k+3$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+2} d_{P \cup L_{j}}\left(x_{i}\right) & \leq k+2+\left\{\begin{array}{l}
k+2, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
k+1, v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right),
\end{array}\right. \\
& =k+3+\left\{\begin{array}{lr}
k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
k, & v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right),
\end{array}\right. \\
& \leq \begin{cases}\left|P \cup L_{j}\right|+k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
\left|P \cup L_{j}\right|+k, & v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right)\end{cases}
\end{aligned}
$$

Now assume the result holds for path $\left|P^{\prime}\right|<|P|$. Suppose that x_{q} and $x_{p}(q<p)$ is the first pair such that $N_{P}^{-s}\left(x_{q}\right)=N_{P}\left(x_{p}\right), s \geq 2$, and $N_{P}^{-j}\left(x_{q}\right) \cap\left(\cup_{i=1}^{k+2} N_{P}\left(x_{i}\right)\right)=\emptyset$, $1 \leq j \leq s-1$. Denote $N_{P}\left(x_{p}\right)=y_{p}, N_{P}\left(x_{q}\right)=y_{q}$. Take $P_{1}=P\left[v_{1}, y_{p}\right], P_{2}=P\left[y_{p}^{+}, y_{q}^{-}\right]$ and $P_{3}=P\left[y_{q}, v_{p}\right]$. Then $P_{1} \cup L_{j}^{1}=P_{1}, P_{2} \cup L_{j}^{2}=L_{j_{p q}}^{h}$ and $P_{3} \cup L_{j}^{3}=P_{3} \cup L_{j}^{*}-L_{j_{p q}}^{h}$. By claim $2,\left|L_{j_{p q}}^{h}\right| \geq k+1$. By induction hypothesis, it holds that

$$
\sum_{i=1}^{k+2} d_{P_{1} \cup L_{j}^{1}}\left(x_{i}\right) \leq\left|P_{1} \cup L_{j}^{1}\right|+k+1
$$

and

$$
\sum_{i=1}^{k+2} d_{P_{3} \cup L_{j}^{3}}\left(x_{i}\right) \leq\left\{\begin{array}{l}
\left|P_{3} \cup L_{j}^{3}\right|+k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right) \\
\left|P_{3} \cup L_{j}^{3}\right|+k, \quad v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right)
\end{array}\right.
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{k+2} d_{P \cup L_{j}}\left(x_{i}\right) & \leq\left|P_{1} \cup L_{j}^{1}\right|+k+1+\left\{\begin{array}{l}
\left|P_{3} \cup L_{j}^{3}\right|+k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
\left|P_{3} \cup L_{j}^{3}\right|+k, \\
v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right),
\end{array}\right. \\
& \leq\left|P_{1} \cup L_{j}^{1}\right|+\left|P_{2} \cup L_{j}^{2}\right|+\left|P_{3} \cup L_{j}^{3}\right|+ \begin{cases}k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
k, & v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right),\end{cases} \\
& =\left\{\begin{array}{l}
\left|P \cup L_{j}\right|+k+1, v_{p} \in \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right), \\
\left|P \cup L_{j}\right|+k, \\
v_{p} \notin \cap_{i=1}^{k+2} N_{P}\left(x_{i}\right) .
\end{array}\right.
\end{aligned}
$$

The result holds.
For any distinguish vertices $y_{0}, y_{1}, \ldots, y_{p}$, we define $\varphi\left(y_{0} \mid y_{1}, \ldots, y_{p}\right)=1$ if $y_{0} \in \cap_{i=1}^{p} N\left(y_{i}\right)$ and $\varphi\left(y_{0} \mid y_{1}, \ldots, y_{p}\right)=0$ if $y_{0} \notin \cap_{i=1}^{p} N\left(y_{i}\right)$. For $1 \leq i \leq k+2$, by Lemma 2.2, we have

$$
\begin{aligned}
\sum_{j=1}^{k+2} d_{C\left(v_{i}, v_{i+1}\right] \cup L_{i}}\left(x_{j}\right) & \leq\left|C\left(v_{i}, x_{i}\right)\right|+\left|C\left(x_{i}, v_{i+1}\right] \cup L_{i}\right|+k+\varphi\left(v_{i+1} \mid x_{1}, \ldots, x_{k+2}\right) \\
& =\left|C\left(v_{i}, v_{i+1}\right] \cup L_{i}\right|+k-1+\varphi\left(v_{i+1} \mid x_{1}, \ldots, x_{k+2}\right)
\end{aligned}
$$

For $i>k+2$, by Lemma 2.2 again, we have

$$
\sum_{j=1}^{k+2} d_{C\left(v_{i}, v_{i+1}\right] \cup L_{i}}\left(x_{j}\right) \leq\left|C\left(w_{i}, v_{i+1}\right) \cup L_{i}\right|+k+\varphi\left(v_{i+1} \mid x_{1}, \ldots, x_{k+2}\right)
$$

By the definition of $x_{i}(i=1,2, \ldots, k+2), L_{i}$ and Lemma 2.1, $x_{1}, x_{2}, \ldots, x_{k+2}$ have no neighbor in $H \cup\left(\bigcup_{j=k+3}^{t} R\left(v_{j}, w_{j}\right)\right)$ and any pair of $x_{1}, x_{2}, \ldots, x_{k+2}$ have no common neighbor in $G-C \cup\left(\bigcup_{i=1}^{t} L_{i}\right)$. Hence

$$
\sum_{i=1}^{k+2} d_{G-C \cup\left(\bigcup_{i=1}^{t} L_{i}\right)}\left(x_{i}\right) \leq|G|-|C|-\left|\bigcup_{i=1}^{t} L_{i}\right|-|H|-\left|\bigcup_{i=k+3}^{t} R\left(v_{i}, w_{i}\right)\right|
$$

Thus

$$
\begin{aligned}
& \sum_{i=0}^{k+2} d\left(x_{i}\right) \\
\leq & |H|-1+t+\sum_{i=1}^{k+2}\left(\left|C\left(v_{i}, v_{i+1}\right] \cup L_{i}\right|+k-1+\varphi\left(v_{i+1} \mid x_{1}, \ldots, x_{k+2}\right)\right) \\
& +\sum_{i=k+3}^{t}\left(\left|C\left(w_{i}, v_{i+1}\right) \cup L_{i}\right|+k+\varphi\left(v_{i} \mid x_{1}, \ldots, x_{k+2}\right)\right)+|G|-|H|-|C| \\
& -\sum_{i=1}^{t}\left|L_{i}\right|-\sum_{i=k+3}^{t}\left|R\left(C\left(v_{i}, w_{i}\right)\right)\right| \\
= & n-1+t+\sum_{i=1}^{k+2}\left(\mid C\left(v_{i}, v_{i+1}| |+k-1\right)+\sum_{i=k+3}^{t}\left(\left|C\left(w_{i}, v_{i+1}\right)\right|+k\right)\right. \\
& -\sum_{i=k+3}^{t}\left|R\left(C\left(v_{i}, w_{i}\right)\right)\right|-|C|+\sum_{i=1}^{t} \varphi\left(v_{i} \mid x_{0}, x_{1}, \ldots, x_{k+2}\right) \\
= & n-1+t+(k+2)(k-1)+k(t-k-2)-\sum_{i=k+3}^{t}\left|R^{*}\left(C\left(v_{i}, w_{i}\right)\right)\right|+\left|\cap_{i=0}^{k+2} N\left(x_{i}\right)\right| \\
\leq & n-1+t+(k+2)(k-1)+k(t-k-2)-(k+1)(t-k-2)+\left|\cap_{i=0}^{k+2} N\left(x_{i}\right)\right| \\
= & n-1+k(k+2)+\left|\cap_{i=0}^{k+2} N\left(x_{i}\right)\right| .
\end{aligned}
$$

That is, $\bar{\sigma}_{k+3}(G) \leq n-1+k(k+2)$. This contradiction concludes the proof of Theorem 1.8 .

References

[1] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications, Macmillan Press[M]. New York, 1976.
[2] J. A. Bondy, Integrity in graph theory, In: G. Chartrand, Y. Alavi, D. L. Goldsmith, L. Lesniak-Foster, and D. R. Lick, editors, The Theory and Applications of Graphs, Wiley, New York, 1981, pp. 117-125.
[3] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 3, 69-81 (1952)
[4] E. Flandrin, H. A. Jung and H. Li, Degree sum, neighbourhood intersections and hamiltonism, Discrete Math. 90, 41-52 (1991)
[5] H. Li, On cycles in 3-connected graphs, Graphs and Comb. 16, 319-335 (2000)
[6] M. Lu, H. Q. Liu and F. Tian, Two sufficient conditions for dominating cycles. J. Graph Theory 49, 135-150 (2005)
[7] C. St. J. A. Nash-Williams, Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics, Academic Press, London (1971) 157183.
[8] O. Ore, Notes on Hamilton circuits, Amer. Math. Mon. 67, 55 (1960)

[^0]: *The work was partially supported by NNSF of China (60373012)

