ALGORITHM FOR TWO DISJOINT LONG PATHS IN CONNECTED GRAPHS

LI H / ZHOU S / WANG G
Unité Mixte de Recherche 8623
CNRS-Université Paris Sud - LRI
12/2007
Rapport de Recherche $\mathbf{N}^{\circ} 1484$

CNRS - Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490
91405 ORSAY Cedex (France)

Algorithm for two disjoint long paths in connected graphs*

Hao Li ${ }^{a, b}$ Shan Zhou ${ }^{a, b}$ Guanghui Wang ${ }^{a, c}$
${ }^{a}$ LRI, Univ Paris-sud and CNRS Orsay F-91405, France
${ }^{b}$ School of Mathematics and Statistics, Lanzhou University, 730000 Lanzhou, China
${ }^{c}$ School of Mathematics and System Science, Shandong University, 250100 Jinan, China

Abstract

Denote by $\bar{\sigma}_{k}=\min \left\{d\left(x_{1}\right)+d\left(x_{2}\right)+\cdots+d\left(x_{k}\right)-\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap \cdots \cap N\left(x_{k}\right)\right| \mid\right.$ $x_{1}, x_{2}, \cdots, x_{k}$ are k independent vertices in $\left.G\right\}$. Let n and m denote the number of vertices and edges of G. For any connected graph G, we give a polynomial algorithm in $O(n m)$ time to either find two disjoint paths P_{1} and P_{2} such that $\left|P_{1}\right|+\left|P_{2}\right| \geq \min \left\{\bar{\sigma}_{4}, n\right\}$ or output $G=\cup_{i=1}^{k} G_{i}$ such that for any $i, j \in\{1,2, \ldots, k\}$ $(k \geq 3), V\left(G_{i}\right) \cap V\left(G_{j}\right)=\{v\}$, where $v \in V(G)$.

Keywords: path, degree sum, dominating path

1 Introduction and Notations

In this paper we consider finite graphs without loops or multiple edges. We use [2] for terminology and notations not defined here. Let n and m denote the number of vertices and edges of G. A hamiltonian cycle (path, resp.) is a spanning cycle (path, resp.) of the graph. A graph G is called hamiltonian if G has a hamiltonian cycle. The circumference $c(G)$ of graph G is the longest cycle in graph. Given a subset $S \subseteq V(G)$, the subgraph of G induced by S is denoted by $G[S]$. Let $P=x_{1} x_{2} \ldots x_{p}$ be a path in graph G. We use $P\left[x_{i}, x_{j}\right]$ or $x_{i} P x_{j}$ to denote the sub-path $x_{i} x_{i+1} \ldots x_{j}$ of P. Define $P\left(x_{i}, x_{j}\right]=P\left[x_{i+1}, x_{j}\right]$, $P\left[x_{i}, x_{j}\right)=P\left[x_{i}, x_{j-1}\right]$ and $P\left(x_{i}, x_{j}\right)=P\left[x_{i+1}, x_{j-1}\right]$. We use similar definitions for a cycle. For any i, we put $x_{i}^{+}=x_{i+1}, x_{i}^{-}=x_{i-1}, x_{i}^{+2}=x_{i+2}$ and $x_{i}^{-2}=x_{i-2}$. For a vertex set $A \subseteq P, A^{+}=\left\{x^{+} \mid x \in A\right\}, A^{-}=\left\{x^{-} \mid x \in A\right\}, A^{+2}=\left(A^{+}\right)^{+}$and $A^{-2}=\left(A^{-}\right)^{-}$. For a vertex x of G, a neighbor of x means a vertex adjacent to x, denoted by $N_{G}(x)$, and the

[^0]degree of x is the number of neighbors of x, denoted by $d(x)$. Let $N_{P}(x)^{-j}=\left\{x_{i} \mid x_{i}^{+j} \in\right.$ $\left.N_{P}(x)\right\}, j \geq 1$. A path P is called dominating if no component of $G-P$ has more than one vertex. Let $\bar{\sigma}_{k}=\min \left\{d\left(x_{1}\right)+d\left(x_{2}\right)+\cdots+d\left(x_{k}\right)-\left|N\left(x_{1}\right) \cap N\left(x_{2}\right) \cap \cdots \cap N\left(x_{k}\right)\right| \mid\right.$ $x_{1}, x_{2}, \cdots, x_{k}$ are k independent vertices in $\left.G\right\}$ and $\sigma_{k}=\min \left\{d\left(x_{1}\right)+d\left(x_{2}\right)+\cdots+d\left(x_{k}\right) \mid\right.$ $x_{1}, x_{2}, \cdots, x_{k}$ are k independent vertices in $\left.G\right\}$.

Various long path and cycle problems are interesting and important in graph theory and have been deeply studied. Two classical results are due to Dirac and Ore respectively.

Theorem 1.1 (Dirac [3]) Let G be a graph on $n \geq 3$ vertices. If the minimum degree $\delta \geq \frac{n}{2}$, G is hamiltonian.

Theorem 1.2 (Ore [7]) Let G be a graph on $n \geq 3$ vertices. If $\sigma_{2} \geq n, G$ is hamiltonian.
It is natural to consider sufficient conditions concerning the degree sum of more independent vertices. Flandrin, Jung and Li [4] investigated the degree sum of three independent vertices and obtained the following result.

Theorem 1.3 (Flandrin, Jung and Li [4]) Let G be a 2-connected graph of order n. If $\bar{\sigma}_{3} \geq n, G$ is hamiltonian.

These results are also generalized to the circumferences of the graphs.
Theorem 1.4 (Dirac [3]) Let G be a 2-connected graph on $n \geq 3$ vertices. Then $c(G) \geq$ $\min \{n, 2 \delta\}$.

Theorem 1.5 (Bermond [1]) Let G be a 2-connected graph on $n \geq 3$ vertices. Then $c(G) \geq \min \left\{n, \sigma_{2}\right\}$.

Theorem 1.6 (Wei [8]) Let G be a 3-connected graph on $n \geq 3$ vertices. Then $c(G) \geq$ $\min \left\{n, \bar{\sigma}_{3}\right\}$.
H. Li [6] further studied the degree sum of four independent vertices in 3-connected graphs and proved:

Theorem 1.7 ($\mathbf{L i}[6]$) Let G be a 3-connected graph of order n. If $\bar{\sigma}_{4} \geq n+3$, G has a dominating maximum cycle.

Moreover, Zhang and Li [9] gave a bound of the length of a path by the neighborhood condition of any three independent vertices of the path.

Theorem 1.8 (Zhang and Li [9]) Let G be a 2-connected graph of order $n \geq 3$. Then there exists a vertex x and a path P such that x is an end-vertex of P and P contains at least $\min \left\{n, \Gamma_{3}(x, P)+1\right\}$ vertices. Furthermore, P can be found in $O(n m)$ time.

This paper investigates four independent vertices in graph G. The main result is the following:

Theorem 1.9 Let G be a connected graph. Then G has two disjoint paths P_{1} and P_{2} satisfying $\left|P_{1}\right|+\left|P_{2}\right| \geq \min \left\{\bar{\sigma}_{4}, n\right\}$ or $G=\cup_{i=1}^{k} G_{i}$ such that for any $i, j \in\{1,2, \ldots, k\}$ $(k \geq 3), V\left(G_{i}\right) \cap V\left(G_{j}\right)=\{v\}$, where $v \in V(G)$.

In the following two sections, we show that finding two disjoint paths can be realized by a polynomial algorithm. Such an algorithm with time complexity $O(m n)$ is given in this paper.

2 Algorithm

Let $P_{1}=u_{0} u_{2} \ldots u_{p}$ and $P_{2}=v_{0} v_{2} \ldots v_{q}$ be two paths satisfying:
(a) $P_{1} \cup P_{2}$ covers as many vertices as possible,
(b) subject to (a), P_{1} is as long as possible,
(c) subject to (a) and (b), P_{2} is as long as possible.

Based on (a), (b) and (c), two paths P_{1} and P_{2} are constructed such that $\left|P_{1}\right|+\left|P_{2}\right| \geq$ $\min \left\{\bar{\sigma}_{4}, n\right\}$.
Circumstance 1: There is a vertex $v \in V(G) \backslash V\left(P_{1}\right)$ which is adjacent to one end-vertex of P_{1}.

Operation 1: Extend P_{1} by adding v.

Figure 1.

Circumstance 2: u_{0} is adjacent to u_{p} and $V(G) \backslash V\left(P_{1}\right) \neq \emptyset$.
Operation 2: Let v be a vertex in $V(G) \backslash V\left(P_{1}\right)$ which is adjacent to a vertex u_{i} of P_{1}. Reset $P_{1}=v u_{i} u_{i-1} \ldots u_{0} u_{p} u_{p-1} \ldots u_{i+1}$.

Figure 2.

Circumstance 3: $u_{i} \in N_{P_{1}}\left(u_{0}\right) \cap N_{P_{1}}\left(u_{p}\right)^{+}$and $V(G) \backslash V\left(P_{1}\right) \neq \emptyset$.
Operation 3: Reset $P_{1}=u_{i} u_{i+1} \ldots u_{p} u_{i-1} u_{i-2} \ldots u_{0}$ and then extend it further by operation 2.

Figure 3.

Circumstance 4: There is a vertex $v \in V(G) \backslash V\left(P_{1}\right)$ such that $u_{i}, u_{i+1} \in N_{P_{1}}(v)$.
Operation 4: Reset $P_{1}=u_{0} \ldots u_{i} v u_{i+1} \ldots u_{p}$.

Figure 4.

Circumstance 5: There is a vertex $v^{\prime} \in V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right)$ which is adjacent to one end-vertex of P_{2}.

Operation 5: Extend P_{2} by adding v^{\prime}.
Circumstance 6: v_{0} is adjacent to v_{q} and $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right) \neq \emptyset$.
Operation 6: Let v^{\prime} be a vertex in $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right)$ which is adjacent to a vertex v_{i} of P_{2}. Reset $P_{2}=v^{\prime} v_{i} v_{i-1} \ldots v_{0} v_{q} v_{q-1} \ldots v_{i+1}$.
Circumstance 7: $v_{i} \in N_{P_{2}}\left(v_{0}\right) \cap N_{P_{2}}\left(v_{q}\right)^{+}$and $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right) \neq \emptyset$.
Operation 7: Reset $P_{2}=v_{i} v_{i+1} \ldots v_{q} v_{i-1} v_{i-2} \ldots v_{0}$ and extend it further by operation 6.
Circumstance 8: There is a vertex $v^{\prime} \in V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right)$ such that $v_{i}, v_{i+1} \in N_{P_{2}}\left(v^{\prime}\right)$.
Operation 8: Reset $P_{2}=v_{0} \ldots v_{i} v^{\prime} v_{i+1} \ldots v_{q}$.
Circumstance 9: There exists a vertex $u_{i} \in N_{P_{1}}\left(v_{0}\right)^{+j} \cap N_{P_{1}}\left(u_{0}\right), 1 \leq j \leq\left|P_{2}\right|$.
Operation 9: Reset $P_{1}=v_{q} \ldots v_{0} u_{i}^{-j} u_{i}^{-(j+1)} \ldots u_{0} u_{i} u_{i+1} \ldots u_{p}$.

Figure 5.

Circumstance 10: There exists a vertex $u_{i} \in N_{P_{1}}\left(v_{0}\right)^{-j} \cap N_{P_{1}}\left(u_{p}\right), 1 \leq j \leq\left|P_{2}\right|$.
Operation 10: Reset $P_{1}=v_{q} \ldots v_{0} u_{i}^{+j} u_{i}^{+(j+1)} \ldots u_{p} u_{i} u_{i-1} \ldots u_{0}$.
Circumstance 11: There exist two different vertices $u_{i} \in N_{P_{1}}\left(v_{0}\right)^{+l} \cap N_{P_{1}}\left(u_{p}\right)$ and $u_{j} \in$ $N_{P_{1}}\left(v_{0}\right)^{-m} \cap N_{P_{1}}\left(u_{0}\right), i<j, 1 \leq \min \{m, l\} \leq\left|P_{2}\right|$.

Operation 11: If $\min \{m, l\}=m$, reset $P_{1}=v_{q} \ldots v_{0} u_{j}^{+m} \ldots u_{p} u_{i} u_{i-1} \ldots u_{0} u_{j} u_{j-1} \ldots u_{i+1}$. If $\min \{m, l\}=l$, reset $P_{1}=v_{q} \ldots v_{0} u_{i}^{-l} \ldots u_{0} u_{j} \ldots u_{p} u_{i} u_{i+1} \ldots u_{j-1}$.

Figure 6.

Circumstance 12: There exist two vertices $u_{k} \in N_{P_{1}}\left(v_{0}\right)$ and $u_{i} \in N_{P_{1}}\left(u_{0}\right)^{-j} \cap N_{P_{1}}\left(u_{p}\right)$, $1 \leq j \leq\left|P_{2}\right|$.

Operation 12: If $k<i$ or $k>i+j$, reset $P_{1}=v_{q} \ldots v_{0} u_{k} u_{k-1} \ldots u_{0} u_{i}^{+j} \ldots u_{p} u_{i} u_{i-1} \ldots u_{k+1}$ or $P_{1}=v_{q} \ldots v_{0} u_{k} u_{k+1} \ldots u_{p} u_{i} u_{i-1} \ldots u_{0} u_{i}^{+j} \ldots u_{k-1}$. If $i \leq k \leq i+j$, reset $P_{1}=v_{q} \ldots v_{0} u_{k} u_{k-1} \ldots u_{0}$ $u_{i}^{+j} \ldots u_{p}$ or $P_{1}=v_{q} \ldots v_{0} u_{k} u_{k+1} \ldots u_{p} u_{i} u_{i-1} \ldots u_{0}$

Figure 7.

Similarly for vertex v_{q}, repeat operations 9 to 12 .
Circumstance 13: There exists a vertex $v^{\prime \prime} \in V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)$ which is adjacent to one end-vertex of P_{3}.

Repeat the same operations 1, 2, 3 and 4 , until such operations can no longer be carried out. Set $P_{3}=w_{0} w_{1} \ldots w_{l}$.
Circumstance 14: There exists a vertex $u_{i} \in N_{P_{1}}\left(w_{0}\right)^{+j} \cap N_{P_{1}}\left(u_{0}\right), 1 \leq j \leq\left|P_{3}\right|$.
Operation 14: Reset $P_{1}=w_{l} \ldots w_{0} u_{i}^{-j} \ldots u_{0} u_{i} u_{i+1} \ldots u_{p}$.
Circumstance 15: There exists a vertex $u_{i} \in N_{P_{1}}\left(w_{0}\right)^{-j} \cap N_{P_{1}}\left(u_{p}\right), 1 \leq j \leq\left|P_{3}\right|$.
Operation 15: Reset $P_{1}=w_{l} \ldots w_{0} u_{i}^{+j} \ldots u_{p} u_{i} u_{i-1} \ldots u_{0}$.
Circumstance 16: There exists a vertex $u_{i} \in N_{P_{1}}\left(w_{0}\right)^{-j} \cap N_{P_{1}}\left(v_{0}\right)$ or $u_{i} \in N_{P_{1}}\left(w_{0}\right)^{+j} \cap$ $N_{P_{1}}\left(v_{0}\right), 1 \leq j \leq\left|P_{3}\right|$.

Operation 16: Reset $P_{1}=v_{q} \ldots v_{0} u_{i} u_{i-1} \ldots u_{0}$ and $P_{2}=w_{l} \ldots w_{0} u_{i}^{+j} \ldots u_{p}$ such that $\left|P_{1}\right| \geq$ $\left|P_{2}\right|$.

Figure 8.

Circumstance 17: There exist two vertices $u_{i} \in N_{P_{1}}\left(v_{0}\right) \cap N_{P_{1}}^{-m}\left(u_{p}\right)$ and $u_{j} \in N_{P_{1}}\left(w_{0}\right)$, $j>i+m, 1 \leq m \leq\left|P_{3}\right|$.

Operation 17: Reset $P_{1}=v_{q} \ldots v_{0} u_{i} u_{i-1} \ldots u_{0}$ and $P_{2}=w_{l} \ldots w_{0} u_{j} \ldots u_{p} u_{i}^{+m} \ldots u_{j-1}$ such that $\left|P_{1}\right| \geq\left|P_{2}\right|$.

Figure 9.

Circumstance 18: There exists a vertex $v_{i} \in N_{P_{2}}\left(w_{0}\right)^{+j} \cap N_{P_{2}}\left(v_{0}\right), 1 \leq j \leq\left|P_{3}\right|$.
Operation 18: Reset $P_{2}=w_{l} \ldots w_{0} v_{i}^{-j} \ldots v_{0} v_{i} v_{i+1} \ldots v_{q}$.
Circumstance 19: There exists a vertex $v_{i} \in N_{P_{2}}\left(w_{0}\right)^{-j} \cap N_{P_{2}}\left(v_{p}\right), 1 \leq j \leq\left|P_{3}\right|$.
Operation 19: Reset $P_{2}=w_{l} \ldots w_{0} v_{i}^{+j} \ldots v_{p} v_{i} v_{i-1} \ldots v_{0}$.
Circumstance 20: There exists a vertex $v_{i} \in N_{P_{2}}\left(w_{0}\right) \cap\left\{v_{q-l+1}, \ldots, v_{q}\right\}$.
Operation 20: Reset $P_{2}=w_{l} \ldots w_{0} v_{i} \ldots v_{0}$.
Similarly for vertex w_{l}, repeat operations 14 to 19 .

Algorithm

Input: A connected graph G.
Output: Two disjoint paths P_{1} and P_{2} which cannot be extended by operations or $G=\cup_{i=1}^{k} G_{i}$ such that for any $i, j \in\{1,2, \ldots, k\}(k \geq 3), V\left(G_{i}\right) \cap V\left(G_{j}\right)=\{v\}$, where $v \in V(G)$.

Step 1. Set $P_{1}=v$, where v is an arbitrary vertex in G.
Step 2. Extend P_{1} repeatedly by Operations 1 to 4 until such operations can no longer be carried out.

Step 3. If $V(G) \backslash V\left(P_{1}\right)=\emptyset$, set $P_{2}=\emptyset$ and output P_{1} and P_{2}, stop. Else, set $P_{2}=v$, where v is an arbitrary vertex in $V(G) \backslash V\left(P_{1}\right)$.

Step 4. Extend P_{2} repeatedly by operations 5 to 8 until such operations can no longer be carried out.

Step 5. If $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right)=\emptyset$, output P_{1} and P_{2}; stop. Else, if one of circumstances 9 to 12 happens, extend P_{1} by the corresponding operation; go to step 2. If one of circumstances 6 to 8 happens, extend P_{2} by the corresponding operation; go to step 5 .

Step 6. If $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right)=\emptyset$, output P_{1} and P_{2}; stop. Else, set $P_{3}=v$, where v is an arbitrary vertex in $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right)$.

Step 7. Extend P_{3} by operations similarly as 1 to 4 until such operations can no longer be carried out.

Step 8. If one of circumstances 14 to 17 happens, extend P_{1} by the corresponding operation; go to step 2. If circumstances 18 to 20 happens, extend P_{2} by the corresponding operation; go to step 5 .

Suppose that v_{0} and w_{0} are respective end-vertices of P_{2} and P_{3}.
Step 9. If $N_{P_{2}}\left(w_{0}\right) \neq \emptyset$, or $\left|N_{P_{1}}\left(v_{0}\right)\right| \geq 2$, or $\left|N_{P_{1}}\left(w_{0}\right)\right| \geq 2$, output P_{1} and P_{2}. Else, set $P_{i}=v(i \geq 4)$, where v is an arbitrary vertex in $V(G) \backslash V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)$.

Step 10. Extend P_{i} by operations similarly as 1 to 4 until such operation can no longer be carried out, and then repeat steps 8 and 9 for the end-vertex of P_{i}.

Step 11. If $V(G) \backslash \cup_{i=1}^{k} V\left(P_{i}\right) \neq \emptyset$, go to step 9. Else, output $G=\cup_{i=1}^{k} G\left[V\left(P_{i}\right)\right]$; stop. To prove the main Theorem, we need the following Lemmas.

Lemma 2.1 Let G be a graph, $P=v_{1} v_{2} \ldots v_{p}$ a path in G and $u_{1}, u_{2}, u_{3}, u_{4}$ four vertices in $V(G)-V(P)$. Suppose that $v_{1} \notin N_{P}\left(u_{2}\right)$ and $v_{p} \notin N_{P}\left(u_{2}\right)$. If for any integer $m \geq 2$, the following hold:
(i) $N_{P}\left(u_{2}\right)^{-j} \cap N_{P}\left(u_{4}\right)=\emptyset, N_{P}\left(u_{1}\right)^{-j} \cap N_{P}\left(u_{2}\right)=\emptyset$ and $N_{P}\left(u_{1}\right)^{-j} \cap N_{P}\left(u_{4}\right)=\emptyset$, $1 \leq j \leq m$,
(ii) $N_{P}\left(u_{3}\right)^{-} \cap N_{P}\left(u_{4}\right)=\emptyset, N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{3}\right)=\emptyset, N_{P}\left(u_{2}\right)^{+} \cap N_{P}\left(u_{2}\right)=\emptyset$ and $N_{P}\left(u_{3}\right)^{+} \cap N_{P}\left(u_{3}\right)=\emptyset$,
(iii) $N_{P}\left(u_{2}\right)^{-} \cap N_{P}\left(u_{3}\right)=\emptyset$ and $N_{P}\left(u_{3}\right)^{-} \cap N_{P}\left(u_{2}\right)=\emptyset$, then $\sum_{i=1}^{4} d_{P}\left(u_{i}\right) \leq p+2+\lambda$, where $\lambda=\left|\cap_{i=1}^{4} N_{P}\left(u_{i}\right)\right|$.

Proof. If $|P|=1$, the result is trivial. Assume that the result holds for any path P^{\prime} with $\left|P^{\prime}\right|<|P|$.

Suppose that $N_{P}\left(u_{1}\right)=\left\{v_{1}\right\}$ and $N_{P}\left(u_{4}\right)=\left\{v_{p}\right\}$. If one of $v_{1} \notin N_{P}\left(u_{2}\right)$ and $v_{p} \notin$ $N_{P}\left(u_{2}\right)$ holds, by (iii), $\sum_{i=1}^{4} d_{P}\left(u_{i}\right) \leq p+2+\lambda$. So assume $N_{P}\left(u_{1}\right) \neq\left\{v_{1}\right\}$. Let $N_{P}\left(u_{1}\right)=$ $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$. If for any two consecutive vertices $v_{i_{l-1}}$ and $v_{i_{l}}$ of $N_{P}\left(u_{1}\right), i_{l}-i_{l-1} \leq 3$ and $i_{1} \leq 4$, denote $P_{1}=P\left[v_{1}, v_{i_{1}-1}\right], P_{2}=P\left[v_{i_{1}}, v_{i_{2}-1}\right], \cdots, P_{k}=P\left[v_{i_{k-1}}, v_{i_{k}-1}\right], P_{k+1}=$ $P\left[v_{i_{k}}, v_{p}\right]$. By (i) and (ii), $\sum_{i=1}^{4} d_{P_{j}}\left(u_{i}\right) \leq\left|P_{j}\right|+\lambda_{j}, j=1, \ldots, k$. By induction hypothesis, $\sum_{i=1}^{4} d_{P_{k+1}}\left(u_{i}\right) \leq\left|P_{k+1}\right|+2+\lambda_{k+1}$. Thus, $\sum_{i=1}^{4} d_{P}\left(u_{i}\right)=\sum_{j=1}^{k+1} \sum_{i=1}^{4} d_{P_{j}}\left(u_{i}\right) \leq p+2+\lambda$. Let $v_{i_{l}}$ be the first vertex of $N_{P}\left(u_{1}\right)$ such that $i_{l}-i_{l-1} \geq 4$ or $i_{1} \geq 5$. By (i), $v_{i_{l}-1} \notin$ $\cup_{i=1}^{4} N_{P}\left(u_{i}\right)$. If $v_{i_{l}-2} \notin \cup_{i=1}^{4} N_{P}\left(u_{i}\right)$, denote $P_{1}=P\left[v_{1}, v_{i_{l}-3}\right]$ and $P_{2}=P\left[v_{i l}, v_{p}\right]$. Since $v_{1} \notin N_{P_{1}}\left(u_{2}\right)$ and $v_{p} \notin N_{P_{2}}\left(u_{2}\right)$, by induction hypothesis, $\sum_{i=1}^{4} d_{P_{1}}\left(u_{i}\right) \leq\left|P_{1}\right|+2+\lambda_{1}$ and $\sum_{i=1}^{4} d_{P_{2}}\left(u_{i}\right) \leq\left|P_{2}\right|+2+\lambda_{2}$. Then $\sum_{i=1}^{4} d_{P}\left(u_{i}\right) \leq\left|P_{1}\right|+2+\lambda_{1}+\left|P_{2}\right|+2+\lambda_{2}=$ $p+2+\lambda$. Assume $v_{i_{l}-2} \in \cup_{i=1}^{4} N_{P}\left(u_{i}\right)$. By (i), $v_{i_{l}-2} \in N_{P}\left(u_{3}\right)$. By (ii) and (iii), $v_{i_{l}-3} \notin \cup_{i=1}^{4} N_{P}\left(u_{i}\right)$. Denote $P_{1}=P\left[v_{1}, v_{i_{l}-4}\right], P_{2}=v_{i_{l}-2}$ and $P_{3}=P\left[v_{i l}, v_{p}\right]$. Then $\sum_{i=1}^{4} d_{P}\left(u_{i}\right) \leq\left|P_{1}\right|+2+\lambda_{1}+\left|P_{2}\right|+\left|P_{3}\right|+2+\lambda_{3}=p+2+\lambda$.

Lemma 2.2 Let G be a graph, $P=v_{1} v_{2} \ldots v_{p}$ a path in G and u_{1}, u_{2}, u_{4} three vertices in $V(G)-V(P)$. If for any integer $m \geq 2$, the following hold:
(i) $N_{P}\left(u_{1}\right)^{-j} \cap N_{P}\left(u_{2}\right)=\emptyset$ and $N_{P}\left(u_{4}\right)^{+j} \cap N_{P}\left(u_{2}\right)=\emptyset, 1 \leq j \leq m$,
(ii) for two consecutive vertices v_{i} and $v_{j}(j>i)$ of $N_{P}\left(u_{2}\right)$, either $\left\{v_{j-m}, \ldots, v_{j-1}\right\} \cap$ $\left(\cup_{i=1,4} N_{P}\left(u_{i}\right)\right)=\emptyset$ or $\left\{v_{i+1}, \ldots, v_{i+m}\right\} \cap\left(\cup_{i=1,4} N_{P}\left(u_{i}\right)\right)=\emptyset$,
(iii) $N_{P}\left(u_{1}\right)^{-} \cap N_{P}\left(u_{4}\right)=\emptyset$ and $N_{P}\left(u_{2}\right)^{+} \cap N_{P}\left(u_{2}\right)=\emptyset$,
then $\sum_{i=1,2,4} d_{P}\left(u_{i}\right) \leq p+2$.
Proof. If $|P|=1$, the result is trivial. Assume that the result holds for any path P^{\prime} with $\left|P^{\prime}\right|<|P|$.

Suppose $\left|N_{P}\left(u_{2}\right)\right|=1$. By (iii), $\sum_{i=1,2,4} d_{P}\left(u_{i}\right) \leq p+2$. So assume that $\left|N_{P}\left(u_{2}\right)\right| \geq$ 2. Let v_{i}, v_{j} be the first and the second vertices of $N_{P}\left(u_{2}\right)$. Denote $P_{1}=P\left[v_{1}, v_{i}\right]$, $P_{2}=P\left[v_{i+1}, v_{j-1}\right]$ and $P_{3}=P\left[v_{j}, v_{p}\right]$. Since v_{i} is the first vertex of $N_{P}\left(u_{2}\right)$, similarly, $\sum_{i=1,2,4} d_{P_{1}}\left(u_{i}\right) \leq\left|P_{1}\right|+2$ and the equality holds only if $v_{i} \in \cap_{i=1,2,4} N_{P_{1}}\left(u_{i}\right)$. By induction hypothesis, $\sum_{i=1,2,4} d_{P_{3}}\left(u_{i}\right) \leq\left|P_{3}\right|+2$. If $j-i \leq m+1$, by (i), $\sum_{i=1,2,4} d_{P_{2}}\left(u_{i}\right)=0$. If $\sum_{i=1,2,4} d_{P_{1}}\left(u_{i}\right) \leq\left|P_{1}\right|+1, \sum_{i=1,2,4} d_{P}\left(u_{i}\right)=\sum_{i=1,2,4}\left(d_{P_{1}}\left(u_{i}\right)+d_{P_{2}}\left(u_{i}\right)+d_{P_{3}}\left(u_{i}\right)\right) \leq$ $\left|P_{1}\right|+1+\left|P_{3}\right|+2=|P|-\left|P_{2}\right|+3$. By (iii), $\left|P_{2}\right| \geq 1$. Thus $\sum_{i=1,2,4} d_{P}\left(u_{i}\right) \leq|P|+2$. If $\sum_{i=1,2,4} d_{P_{1}}\left(u_{i}\right)=\left|P_{1}\right|+2, v_{i} \in \cap_{i=1,2,4} N_{P}\left(u_{i}\right)$ and then by (i), $\left|P_{2}\right| \geq 2$. Hence $\sum_{i=1,2,4} d_{P}\left(u_{i}\right) \leq\left|P_{1}\right|+2+\left|P_{3}\right|+2=|P|-\left|P_{2}\right|+4 \leq|P|+2$. If $j-i \geq m+2$, by (ii) and (iii), $\sum_{i=1,2,4} d_{P_{2}}\left(u_{i}\right) \leq\left|P_{2}\right|-m$. Thus $\sum_{i=1,2,4} d_{P}\left(u_{i}\right) \leq\left|P_{1}\right|+2+\left|P_{3}\right|+2+\left|P_{2}\right|-m=|P|+4-m$. As $m \geq 2, \sum_{i=1,2,4} d_{P}\left(u_{i}\right) \leq p+2$.

Lemma 2.3 Let G be a graph, $P=v_{1} v_{2} \ldots v_{p}$ a path in G and u_{2}, u_{3} two vertices in $V(G)-V(P)$. If for any integer $l \geq 1$, the following hold:
(i) $N_{P}\left(u_{3}\right) \neq \emptyset$ and $N_{P}\left(u_{3}\right) \cap\left\{v_{p-l+1}, \ldots, v_{p}\right\}=\emptyset$,
(ii) $N_{P}\left(u_{3}\right)^{+} \cap N_{P}\left(u_{3}\right)=\emptyset$ and $N_{P}\left(u_{2}\right)^{-j} \cap N_{P}\left(u_{3}\right)=\emptyset, 1 \leq j \leq l$, then $\sum_{i=2,3} d_{P}\left(u_{i}\right) \leq p-l+1$.

Proof. We proceed by induction on $\left|N_{P}\left(u_{3}\right)\right|$. If $\left|N_{P}\left(u_{3}\right)\right|=1$, by (ii), $\sum_{i=2,3} d_{P}\left(u_{i}\right) \leq$ $p-l+1$.

Assume the result holds for $\left|N_{P}\left(u_{3}\right)\right|<k$. Suppose that $N_{P}\left(u_{3}\right)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$. If for any consecutive vertices $v_{i_{j-1}}$ and $v_{i_{j}}$ of $N_{P}\left(u_{3}\right), i_{j}-i_{j-1} \leq l$, by (i) and (ii), $N_{P}\left(u_{2}\right) \cap\left\{v_{i_{1}+1}, v_{i_{1}+2}, \ldots, v_{i_{k}}, v_{i_{k}}^{+}, \ldots, v_{i_{k}}^{+l}\right\}=\emptyset$. As $N_{P}\left(u_{3}\right)^{+} \cap N_{P}\left(u_{3}\right)=\emptyset, \sum_{i=2,3} d_{P}\left(u_{i}\right) \leq$ $p-l-\left(\left|N_{P}\left(u_{3}\right)\right|-1\right)+1=p-l+1+1-\left|N_{P}\left(u_{3}\right)\right| \leq p-l+1$.

So assume there exist two consecutive vertices $v_{i_{j}}$ and $v_{i_{j+1}}$ of $N_{P}\left(u_{3}\right)$ such that $i_{j+1}-$ $i_{j} \geq l+1$. Denote $P_{1}=P\left[v_{1}, v_{i_{j}+l}\right]$ and $P_{2}=P\left[v_{i_{j}+l+1}, v_{p}\right]$. By induction hypothesis, $\sum_{i=2,3} d_{P_{1}}\left(u_{i}\right) \leq\left|P_{1}\right|-l+1$ and $\sum_{i=2,3} d_{P_{2}}\left(u_{i}\right) \leq\left|P_{2}\right|-l+1$. Thus $\sum_{i=2,3} d_{P}\left(u_{i}\right)=$ $\sum_{i=2,3}\left(d_{P_{1}}\left(u_{i}\right)+d_{P_{2}}\left(u_{i}\right)\right) \leq\left|P_{1}\right|-l+1+\left|P_{2}\right|-l+1=p-l+1+1-l \leq p-l+1$.

3 Proof of Theorem 1.9

Since each of 20 operations either extends P_{1} or increases P_{2} by at least one vertex, at most $O(n)$ extensions are needs. Furthermore, each extension can be completed in $O(m)$ time by graph searching (see for example [5]). Hence, P can be found in $O(m n)$ time. In the following, we prove that G has two paths P_{1} and P_{2} satisfying $\left|P_{1}\right|+\left|P_{2}\right| \geq \min \left\{\bar{\sigma}_{4}, n\right\}$ or $G=\cup_{i=1}^{k} G_{i}$ such that for any $i, j \in\{1,2, \ldots, k\}(k \geq 3), V\left(G_{i}\right) \cap V\left(G_{j}\right)=\{v\}$, where $v \in V(G)$.

Without loss of generality, we assume that $P_{3} \neq \emptyset$. Let $P_{1}=u_{0} u_{1} \ldots u_{p}, P_{2}=v_{0} v_{1} \ldots v_{q}$ and $P_{3}=w_{0} w_{1} \ldots w_{l}$ be the paths found by Algorithm 1. By Operations 1, 2 and 5, u_{0}, u_{p}, v_{0} and w_{0} are independent vertices. Furthermore,
$N_{P_{1}}\left(u_{0}\right) \cap N_{P_{1}}\left(u_{p}\right)^{+}=\emptyset($ by Operation 3$)$,
$N_{P_{1}}\left(v_{0}\right)^{+} \cap N_{P_{1}}\left(v_{0}\right)=\emptyset$ and $N_{P_{1}}\left(w_{0}\right)^{+} \cap N_{P_{1}}\left(w_{0}\right)=\emptyset$ (by Operation 4),
$N_{P_{2}}\left(w_{0}\right)^{+} \cap N_{P_{2}}\left(w_{0}\right)=\emptyset$ (by Operation 8),
$N_{P_{1}}\left(v_{0}\right)^{+j} \cap N_{P_{1}}\left(u_{0}\right)=\emptyset$ and $N_{P_{1}}\left(v_{0}\right)^{-j} \cap N_{P_{1}}\left(u_{p}\right)=\emptyset, 1 \leq j \leq q$ (by Operations 9 and 10),
$N_{P_{1}}\left(w_{0}\right)^{+j} \cap N_{P_{1}}\left(u_{0}\right)=\emptyset, N_{P_{1}}\left(w_{0}\right)^{-j} \cap N_{P_{1}}\left(u_{p}\right)=\emptyset, 1 \leq j \leq l$ (by Operations 14 and 15),
$N_{P_{1}}\left(v_{0}\right) \cap N_{P_{1}}\left(w_{0}\right)^{+j}=\emptyset$ and $N_{P_{1}}\left(v_{0}\right) \cap N_{P_{1}}\left(w_{0}\right)^{-j}=\emptyset, 1 \leq j \leq l($ by Operation 16),
$N_{P_{2}}\left(w_{0}\right)^{+j} \cap N_{P_{2}}\left(v_{0}\right)=\emptyset$ and $N_{P_{2}}\left(w_{0}\right)^{-j} \cap N_{P_{2}}\left(v_{p}\right)=\emptyset, 1 \leq j \leq l$ (by Operations 18 and 19),
$N_{P_{2}}\left(w_{0}\right) \cap\left\{v_{q-l+1}, \ldots, v_{q}\right\}=\emptyset$ (by Operation 20).
Moreover, if $u_{i}, u_{j} \in N_{P_{1}}\left(v_{0}\right), i<j$, by Operations 9 and $11, P\left(u_{i}, u_{i}^{+q}\right] \cap\left(N_{P_{1}}\left(u_{0}\right) \cup\right.$ $\left.N_{P_{1}}\left(u_{p}\right)\right)=\emptyset$ or by Operations 10 and $11, P\left(u_{j}^{-q}, u_{j}\right] \cap\left(N_{P_{1}}\left(u_{0}\right) \cup N_{P_{1}}\left(u_{p}\right)\right)=\emptyset$.

If $N_{P_{1}}\left(v_{0}\right) \cup N_{P_{1}}\left(v_{q}\right)=\emptyset$ and $v_{0} v_{q} \notin E(G)$, then $\bar{\sigma}_{4} \leq d\left(u_{0}\right)+d\left(u_{p}\right)+d\left(v_{0}\right)+d\left(v_{q}\right)-$ $\left|N\left(u_{0}\right) \cap N\left(u_{p}\right) \cap N\left(v_{0}\right) \cap N\left(v_{q}\right)\right| \leq\left|P_{1}\right|-2+\left|P_{2}\right|-2=\left|P_{1}\right|+\left|P_{2}\right|-4$. Thus $\left|P_{1}\right|+\left|P_{2}\right| \geq$ $\bar{\sigma}_{4}+4$. If $v_{0} v_{q} \in E(G)$, by the connectivity of G and the choice of P_{2}, a vertex of P_{2} is adjacent to a vertex of P_{1}. As $G\left[V\left(P_{2}\right)\right]$ contains a Hamilton cycle, assume that $N_{P_{1}}\left(v_{0}\right) \neq \emptyset$. By Operation 12, $N_{P_{1}}\left(u_{0}\right)^{-j} \cap N_{P_{1}}\left(u_{q}\right)=\emptyset, 1 \leq j \leq q$. Similarly, if $N_{P_{1} \cup P_{2}}\left(w_{0}\right)=N_{P_{1} \cup P_{2}}\left(w_{l}\right)=\emptyset$ and w_{0} is non-adjacent to $w_{l},\left|P_{1}\right|+\left|P_{2}\right| \geq \bar{\sigma}_{4}+4$. If $w_{0} w_{l} \in E(G), G\left[V\left(P_{3}\right)\right]$ contains a Hamilton cycle. By the connectivity of G, assume $N_{P_{1} \cup P_{2}}\left(w_{0}\right) \neq \emptyset$. If $N_{P_{1}}\left(w_{0}\right)=\emptyset$, by Lemma 2.2 and Lemma 2.3, $d\left(u_{0}\right)+d\left(u_{p}\right)+d\left(v_{0}\right)+$ $d\left(w_{0}\right)-\left|N\left(u_{0}\right) \cap N\left(u_{p}\right) \cap N\left(v_{0}\right) \cap N\left(w_{0}\right)\right| \leq\left|P_{3}\right|-1+\left|P_{1}\right|+\left|P_{2}\right|-l=\left|P_{1}\right|+\left|P_{2}\right|-1$. Thus $\left|P_{1}\right|+\left|P_{2}\right| \geq \bar{\sigma}_{4}+1$.

So assume that $N_{P_{1}}\left(w_{0}\right) \neq \emptyset$. If there exist two vertices $u_{i} \in N_{P_{1}}\left(v_{0}\right)$ and $u_{j} \in N_{P_{1}}\left(w_{0}\right)$, $i \neq j$, by Operation $16,|j-i|>q$. Without loss of generality, we choose two such vertices $u_{i}, u_{j}(j>i)$, such that $\left\{u_{i+1}, u_{i+2}, \ldots u_{j-1}\right\} \cap\left(N_{P_{1}}\left(v_{0}\right) \cup N_{P_{1}}\left(w_{0}\right)\right)=\emptyset$. By Operation 17, $\left\{u_{i}\right\}^{+m} \cap N_{P_{1}}\left(u_{p}\right)=\emptyset, 1 \leq m \leq l$. Take $P_{1}^{\prime}=v_{q} P_{2} v_{0} u_{i} u_{i-1} \cdots u_{0}$ and
$P_{2}^{\prime}=w_{l} P_{3} w_{0} u_{j} u_{j+1} \cdots u_{p} u_{l} u_{l+1} \cdots u_{j-1}$, where $u_{l} \in N_{P_{1}}\left(u_{p}\right) \cap P\left(u_{i}, u_{j}\right)$. By Lemma 2.1, $d\left(u_{0}\right)+d\left(u_{p}\right)+d\left(v_{0}\right)+d\left(w_{0}\right) \leq\left|P_{1}^{\prime}\right|+2+\lambda_{1}$ and $d\left(u_{0}\right)+d\left(u_{p}\right)+d\left(v_{0}\right)+d\left(w_{0}\right) \leq\left|P_{2}^{\prime}\right|+2+\lambda_{2}$. Then $\sum_{i=1}^{4} d\left(u_{0}\right)+d\left(u_{p}\right)+d\left(v_{0}\right)+d\left(w_{0}\right) \leq\left|P_{1}^{\prime}\right|+2+\lambda_{1}+\left|P_{2}^{\prime}\right|+2+\lambda_{1}=\left|P_{1}\right|+2-l+\lambda$, where $\lambda=\left|\cap_{i=1}^{4} N_{P}\left(u_{i}\right)\right|$. Then $\sum_{i=1}^{4} d\left(u_{i}\right) \leq\left|P_{1}\right|+2-l+\lambda+\left|P_{2}\right|-1+\left|P_{3}\right|-1 \leq\left|P_{1}\right|+\left|P_{2}\right|+\lambda$. So $\left|P_{1}\right|+\left|P_{2}\right| \geq \bar{\sigma}_{4}$. If $N_{P_{2}}\left(w_{0}\right) \neq \emptyset$, or $\left|N_{P_{1}}\left(v_{0}\right)\right| \geq 2$, or $\left|N_{P_{1}}\left(w_{0}\right)\right| \geq 2$, the result holds similarly as above. So $N_{P_{1}}\left(v_{0}\right)=N_{P_{1}}\left(w_{0}\right)=\left\{u_{i}\right\}$.

By the symmetry of v_{0} and $v_{q}, N_{P_{1}}\left(v_{q}\right)=\left\{u_{i}\right\}$. If $v_{0} v_{q} \notin E(G), d\left(u_{0}\right)+d\left(u_{p}\right)+$ $d\left(v_{0}\right)+d\left(v_{q}\right) \leq\left|P_{1}\right|+\lambda+\left|P_{2}\right|-2$. Then $\left|P_{1}\right|+\left|P_{2}\right| \geq \bar{\sigma}_{4}+2$. So assume that $G\left[V\left(P_{2}\right)\right]$ contains a Hamilton cycle. Then for any vertex v_{i} of $V\left(P_{2}\right), N_{P_{1}}\left(v_{i}\right) \subseteq\left\{u_{i}\right\}$. Similarly for other end-vertices of P_{i}. Hence $G=\cup_{i=1}^{k} G_{i}$ such that $V\left(G_{i}\right) \cap V\left(G_{j}\right)=\left\{u_{i}\right\}$, for any $i, j \in\{1,2, . ., k\}(k \geq 3)$.

References

[1] J-C. Bermond, On Hamiltonian walks, in "Proc. Fifth British Combinatorial Conference, Aberdeen, 1975," Utilitas Math. 41-51 (1975)
[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications, Macmillan Press[M]. New York, 1976.
[3] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 3, 69-81 (1952)
[4] E. Flandrin, H. A. Jung, H. Li, Degree sum, neighbourhood intersections and hamiltonism, Discrete Math. 90, 41-52 (1991)
[5] B. Korte and J. Vygen, Combinatorial Optimizatoin: Theory and Algorithms, Springer-Verlag-Berlin-Heidelberg-New York, 2000.
[6] H. Li, On cycles in 3-connected graphs, Graphs and Comb. 16, 319-335 (2000)
[7] O. Ore, Notes on Hamilton circuits, Amer. Math. Mon. 67, 55 (1960)
[8] B. Wei, Longest cycles in 3-connected graphs, Discrete Math. 170, 195-201 (1997)
[9] Z. Zhang and H. Li, Algorithms for long paths in graphs, to appear in Theoretical Computer Science.

[^0]: *The work was partially supported by NNSF of China

