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Abstract

Denote by σ̄k = min {d(x1)+d(x2)+ · · ·+d(xk)−|N(x1)∩N(x2)∩· · ·∩N(xk)| |
x1, x2, · · · , xk are k independent vertices in G}. Let n and m denote the number
of vertices and edges of G. For any connected graph G, we give a polynomial
algorithm in O(nm) time to either find two disjoint paths P1 and P2 such that
|P1|+ |P2| ≥ min{σ̄4, n} or output G = ∪k

i=1Gi such that for any i, j ∈ {1, 2, ..., k}
(k ≥ 3), V (Gi) ∩ V (Gj) = {v}, where v ∈ V (G).

Keywords: path, degree sum, dominating path

1 Introduction and Notations

In this paper we consider finite graphs without loops or multiple edges. We use [2] for

terminology and notations not defined here. Let n and m denote the number of vertices

and edges of G. A hamiltonian cycle (path, resp.) is a spanning cycle (path, resp.) of the

graph. A graph G is called hamiltonian if G has a hamiltonian cycle. The circumference

c(G) of graph G is the longest cycle in graph. Given a subset S ⊆ V (G), the subgraph

of G induced by S is denoted by G[S]. Let P = x1x2...xp be a path in graph G. We use

P [xi, xj] or xiPxj to denote the sub-path xixi+1...xj of P . Define P (xi, xj] = P [xi+1, xj],

P [xi, xj) = P [xi, xj−1] and P (xi, xj) = P [xi+1, xj−1]. We use similar definitions for a

cycle. For any i, we put x+
i = xi+1, x−i = xi−1, x+2

i = xi+2 and x−2
i = xi−2. For a vertex

set A ⊆ P , A+ = {x+ | x ∈ A}, A− = {x− | x ∈ A}, A+2 = (A+)+ and A−2 = (A−)−. For

a vertex x of G, a neighbor of x means a vertex adjacent to x, denoted by NG(x), and the

∗The work was partially supported by NNSF of China
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degree of x is the number of neighbors of x, denoted by d(x). Let NP (x)−j = {xi | x+j
i ∈

NP (x)}, j ≥ 1. A path P is called dominating if no component of G− P has more than

one vertex. Let σ̄k = min {d(x1) + d(x2) + · · ·+ d(xk)− |N(x1) ∩N(x2) ∩ · · · ∩N(xk)| |
x1, x2, · · · , xk are k independent vertices in G} and σk = min {d(x1)+d(x2)+ · · ·+d(xk) |
x1, x2, · · · , xk are k independent vertices in G}.

Various long path and cycle problems are interesting and important in graph theory

and have been deeply studied. Two classical results are due to Dirac and Ore respectively.

Theorem 1.1 (Dirac [3]) Let G be a graph on n ≥ 3 vertices. If the minimum degree

δ ≥ n
2
, G is hamiltonian.

Theorem 1.2 (Ore [7]) Let G be a graph on n ≥ 3 vertices. If σ2 ≥ n, G is hamiltonian.

It is natural to consider sufficient conditions concerning the degree sum of more inde-

pendent vertices. Flandrin, Jung and Li [4] investigated the degree sum of three indepen-

dent vertices and obtained the following result.

Theorem 1.3 (Flandrin, Jung and Li [4]) Let G be a 2-connected graph of order n.

If σ̄3 ≥ n, G is hamiltonian.

These results are also generalized to the circumferences of the graphs.

Theorem 1.4 (Dirac [3]) Let G be a 2-connected graph on n ≥ 3 vertices. Then c(G) ≥
min{n, 2δ}.

Theorem 1.5 (Bermond [1]) Let G be a 2-connected graph on n ≥ 3 vertices. Then

c(G) ≥ min{n, σ2}.

Theorem 1.6 (Wei [8]) Let G be a 3-connected graph on n ≥ 3 vertices. Then c(G) ≥
min{n, σ̄3}.

H. Li [6] further studied the degree sum of four independent vertices in 3-connected

graphs and proved:

Theorem 1.7 (Li [6]) Let G be a 3-connected graph of order n. If σ̄4 ≥ n + 3, G has a

dominating maximum cycle.

Moreover, Zhang and Li [9] gave a bound of the length of a path by the neighborhood

condition of any three independent vertices of the path.

Theorem 1.8 (Zhang and Li [9]) Let G be a 2-connected graph of order n ≥ 3. Then

there exists a vertex x and a path P such that x is an end-vertex of P and P contains at

least min{n, Γ3(x, P ) + 1} vertices. Furthermore, P can be found in O(nm) time.
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This paper investigates four independent vertices in graph G. The main result is the

following:

Theorem 1.9 Let G be a connected graph. Then G has two disjoint paths P1 and P2

satisfying |P1| + |P2| ≥ min{σ̄4, n} or G = ∪k
i=1Gi such that for any i, j ∈ {1, 2, ..., k}

(k ≥ 3), V (Gi) ∩ V (Gj) = {v}, where v ∈ V (G).

In the following two sections, we show that finding two disjoint paths can be realized

by a polynomial algorithm. Such an algorithm with time complexity O(mn) is given in

this paper.

2 Algorithm

Let P1 = u0u2...up and P2 = v0v2...vq be two paths satisfying:

(a) P1 ∪ P2 covers as many vertices as possible,

(b) subject to (a), P1 is as long as possible,

(c) subject to (a) and (b), P2 is as long as possible.

Based on (a), (b) and (c), two paths P1 and P2 are constructed such that |P1| + |P2| ≥
min{σ̄4, n}.
Circumstance 1: There is a vertex v ∈ V (G)\V (P1) which is adjacent to one end-vertex

of P1.

Operation 1: Extend P1 by adding v.

u0 up u0 upv v

Figure 1.

Circumstance 2: u0 is adjacent to up and V (G)\V (P1) 6= ∅.
Operation 2: Let v be a vertex in V (G)\V (P1) which is adjacent to a vertex ui of P1.

Reset P1 = vuiui−1...u0upup−1...ui+1.

u0 up u0 u p

v v

iu iui+1u i+1u

Figure 2.

Circumstance 3: ui ∈ NP1(u0) ∩NP1(up)
+ and V (G)\V (P1) 6= ∅.

Operation 3: Reset P1 = uiui+1...upui−1ui−2...u0 and then extend it further by opera-

tion 2.
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u0 up u0 up

v

u0 up

v

ui ui uii-1u i-1u i-1u

Figure 3.

Circumstance 4: There is a vertex v ∈ V (G)\V (P1) such that ui, ui+1 ∈ NP1(v).

Operation 4: Reset P1 = u0...uivui+1...up.

u0 up u0 up

v v

uiu i+1 uiu i+1

Figure 4.

Circumstance 5: There is a vertex v
′ ∈ V (G)\V (P1) ∪ V (P2) which is adjacent to one

end-vertex of P2.

Operation 5: Extend P2 by adding v
′
.

Circumstance 6: v0 is adjacent to vq and V (G)\V (P1) ∪ V (P2) 6= ∅.
Operation 6: Let v

′
be a vertex in V (G)\V (P1) ∪ V (P2) which is adjacent to a vertex

vi of P2. Reset P2 = v
′
vivi−1...v0vqvq−1...vi+1.

Circumstance 7: vi ∈ NP2(v0) ∩NP2(vq)
+ and V (G)\V (P1) ∪ V (P2) 6= ∅.

Operation 7: Reset P2 = vivi+1...vqvi−1vi−2...v0 and extend it further by operation 6.

Circumstance 8: There is a vertex v
′ ∈ V (G)\V (P1)∪ V (P2) such that vi, vi+1 ∈ NP2(v

′
).

Operation 8: Reset P2 = v0...viv
′
vi+1...vq.

Circumstance 9: There exists a vertex ui ∈ NP1(v0)
+j ∩NP1(u0), 1 ≤ j ≤ |P2|.

Operation 9: Reset P1 = vq...v0u
−j
i u

−(j+1)
i ...u0uiui+1...up.

u0 up

v

iu

0 vq

u0 up

v

iu

0 vq

-j

iu -j

iu

Figure 5.

Circumstance 10: There exists a vertex ui ∈ NP1(v0)
−j ∩NP1(up), 1 ≤ j ≤ |P2|.

Operation 10: Reset P1 = vq...v0u
+j
i u

+(j+1)
i ...upuiui−1...u0.

Circumstance 11: There exist two different vertices ui ∈ NP1(v0)
+l ∩ NP1(up) and uj ∈

NP1(v0)
−m ∩NP1(u0), i < j, 1 ≤ min{m, l} ≤ |P2|.

Operation 11: If min{m, l} = m, reset P1 = vq...v0u
+m
j ...upuiui−1...u0ujuj−1...ui+1. If

min{m, l} = l, reset P1 = vq...v0u
−l
i ...u0uj...upuiui+1...uj−1.
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u0 up

v

u

0 vq

i uui j
-lu j

+m
u0 up

v

u

0 vq

i uui j
-lu j

+m u0 up

v

u

0 vq

i uui j
-lu j

+m

Figure 6.

Circumstance 12: There exist two vertices uk ∈ NP1(v0) and ui ∈ NP1(u0)
−j ∩ NP1(up),

1 ≤ j ≤ |P2|.
Operation 12: If k < i or k > i+j, reset P1 = vq...v0ukuk−1...u0u

+j
i ...upuiui−1...uk+1 or

P1 = vq...v0ukuk+1...upuiui−1...u0u
+j
i ...uk−1. If i ≤ k ≤ i + j, reset P1 = vq...v0ukuk−1...u0

u+j
i ...up or P1 = vq...v0ukuk+1...upuiui−1...u0

u0 up

v

u

0 vq

i
+ju i u0 up

v

u

0 vq

i
+ju iku

ku

Figure 7.

Similarly for vertex vq, repeat operations 9 to 12.

Circumstance 13: There exists a vertex v
′′ ∈ V (G)\V (P1) ∪ V (P2) ∪ V (P3) which is

adjacent to one end-vertex of P3.

Repeat the same operations 1, 2, 3 and 4, until such operations can no longer be

carried out. Set P3 = w0w1...wl.

Circumstance 14: There exists a vertex ui ∈ NP1(w0)
+j ∩NP1(u0), 1 ≤ j ≤ |P3|.

Operation 14: Reset P1 = wl...w0u
−j
i ...u0uiui+1...up.

Circumstance 15: There exists a vertex ui ∈ NP1(w0)
−j ∩NP1(up), 1 ≤ j ≤ |P3|.

Operation 15: Reset P1 = wl...w0u
+j
i ...upuiui−1...u0.

Circumstance 16: There exists a vertex ui ∈ NP1(w0)
−j ∩ NP1(v0) or ui ∈ NP1(w0)

+j ∩
NP1(v0), 1 ≤ j ≤ |P3|.

Operation 16: Reset P1 = vq...v0uiui−1...u0 and P2 = wl...w0u
+j
i ...up such that |P1| ≥

|P2|.
u0 up

v

u

0 vq

i

0w w

+ju i u0 up

v

u

0 vq

i

0w

+ju i

l wl

Figure 8.
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Circumstance 17: There exist two vertices ui ∈ NP1(v0) ∩ N−m
P1

(up) and uj ∈ NP1(w0),

j > i + m, 1 ≤ m ≤ |P3|.
Operation 17: Reset P1 = vq...v0uiui−1...u0 and P2 = wl...w0uj...upu

+m
i ...uj−1 such

that |P1| ≥ |P2|.
u0 up

v

u

0 vq

i

0w wl

ju+mu i u0 up

v

u

0 vq

i

0w wl

ju+mu i

Figure 9.

Circumstance 18: There exists a vertex vi ∈ NP2(w0)
+j ∩NP2(v0), 1 ≤ j ≤ |P3|.

Operation 18: Reset P2 = wl...w0v
−j
i ...v0vivi+1...vq.

Circumstance 19: There exists a vertex vi ∈ NP2(w0)
−j ∩NP2(vp), 1 ≤ j ≤ |P3|.

Operation 19: Reset P2 = wl...w0v
+j
i ...vpvivi−1...v0.

Circumstance 20: There exists a vertex vi ∈ NP2(w0) ∩ {vq−l+1, ..., vq}.
Operation 20: Reset P2 = wl...w0vi...v0.

Similarly for vertex wl, repeat operations 14 to 19.

Algorithm

Input: A connected graph G.

Output: Two disjoint paths P1 and P2 which cannot be extended by operations or

G = ∪k
i=1Gi such that for any i, j ∈ {1, 2, ..., k} (k ≥ 3), V (Gi) ∩ V (Gj) = {v}, where

v ∈ V (G).

Step 1. Set P1 = v, where v is an arbitrary vertex in G.

Step 2. Extend P1 repeatedly by Operations 1 to 4 until such operations can no

longer be carried out.

Step 3. If V (G)\V (P1) = ∅, set P2 = ∅ and output P1 and P2, stop. Else, set P2 = v,

where v is an arbitrary vertex in V (G)\V (P1).

Step 4. Extend P2 repeatedly by operations 5 to 8 until such operations can no longer

be carried out.

Step 5. If V (G)\V (P1) ∪ V (P2) = ∅, output P1 and P2; stop. Else, if one of circum-

stances 9 to 12 happens, extend P1 by the corresponding operation; go to step 2. If one

of circumstances 6 to 8 happens, extend P2 by the corresponding operation; go to step 5.

Step 6. If V (G)\V (P1)∪ V (P2) = ∅, output P1 and P2; stop. Else, set P3 = v, where

v is an arbitrary vertex in V (G)\V (P1) ∪ V (P2).

Step 7. Extend P3 by operations similarly as 1 to 4 until such operations can no

longer be carried out.
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Step 8. If one of circumstances 14 to 17 happens, extend P1 by the corresponding

operation; go to step 2. If circumstances 18 to 20 happens, extend P2 by the corresponding

operation; go to step 5.

Suppose that v0 and w0 are respective end-vertices of P2 and P3.

Step 9. If NP2(w0) 6= ∅, or |NP1(v0)| ≥ 2, or |NP1(w0)| ≥ 2, output P1 and P2. Else,

set Pi = v (i ≥ 4), where v is an arbitrary vertex in V (G)\V (P1) ∪ V (P2) ∪ V (P3).

Step 10. Extend Pi by operations similarly as 1 to 4 until such operation can no

longer be carried out, and then repeat steps 8 and 9 for the end-vertex of Pi.

Step 11. If V (G)\∪k
i=1 V (Pi) 6= ∅, go to step 9. Else, output G = ∪k

i=1G[V (Pi)]; stop.

To prove the main Theorem, we need the following Lemmas.

Lemma 2.1 Let G be a graph, P = v1v2...vp a path in G and u1, u2, u3, u4 four vertices

in V (G)− V (P ). Suppose that v1 /∈ NP (u2) and vp /∈ NP (u2). If for any integer m ≥ 2,

the following hold:

(i) NP (u2)
−j ∩ NP (u4) = ∅, NP (u1)

−j ∩ NP (u2) = ∅ and NP (u1)
−j ∩ NP (u4) = ∅,

1 ≤ j ≤ m,

(ii) NP (u3)
− ∩ NP (u4) = ∅, NP (u1)

− ∩ NP (u3) = ∅, NP (u2)
+ ∩ NP (u2) = ∅ and

NP (u3)
+ ∩NP (u3) = ∅,

(iii) NP (u2)
− ∩NP (u3) = ∅ and NP (u3)

− ∩NP (u2) = ∅,
then

∑4
i=1 dP (ui) ≤ p + 2 + λ, where λ = | ∩4

i=1 NP (ui)|.

Proof. If |P | = 1, the result is trivial. Assume that the result holds for any path P
′
with

|P ′| < |P |.
Suppose that NP (u1) = {v1} and NP (u4) = {vp}. If one of v1 /∈ NP (u2) and vp /∈

NP (u2) holds, by (iii),
∑4

i=1 dP (ui) ≤ p+2+λ. So assume NP (u1) 6= {v1}. Let NP (u1) =

{vi1 , vi2 , ..., vik}. If for any two consecutive vertices vil−1
and vil of NP (u1), il − il−1 ≤ 3

and i1 ≤ 4, denote P1 = P [v1, vi1−1], P2 = P [vi1 , vi2−1], · · · , Pk = P [vik−1
, vik−1], Pk+1 =

P [vik , vp]. By (i) and (ii),
∑4

i=1 dPj
(ui) ≤ |Pj|+ λj, j = 1, ..., k. By induction hypothesis,∑4

i=1 dPk+1
(ui) ≤ |Pk+1|+ 2 + λk+1. Thus,

∑4
i=1 dP (ui) =

∑k+1
j=1

∑4
i=1 dPj

(ui) ≤ p + 2 + λ.

Let vil be the first vertex of NP (u1) such that il − il−1 ≥ 4 or i1 ≥ 5. By (i), vil−1 /∈
∪4

i=1NP (ui). If vil−2 /∈ ∪4
i=1NP (ui), denote P1 = P [v1, vil−3] and P2 = P [vil , vp]. Since

v1 /∈ NP1(u2) and vp /∈ NP2(u2), by induction hypothesis,
∑4

i=1 dP1(ui) ≤ |P1| + 2 + λ1

and
∑4

i=1 dP2(ui) ≤ |P2| + 2 + λ2. Then
∑4

i=1 dP (ui) ≤ |P1| + 2 + λ1 + |P2| + 2 + λ2 =

p + 2 + λ. Assume vil−2 ∈ ∪4
i=1NP (ui). By (i), vil−2 ∈ NP (u3). By (ii) and (iii),

vil−3 /∈ ∪4
i=1NP (ui). Denote P1 = P [v1, vil−4], P2 = vil−2 and P3 = P [vil , vp]. Then∑4

i=1 dP (ui) ≤ |P1|+ 2 + λ1 + |P2|+ |P3|+ 2 + λ3 = p + 2 + λ. 2

Lemma 2.2 Let G be a graph, P = v1v2...vp a path in G and u1, u2, u4 three vertices in

V (G)− V (P ). If for any integer m ≥ 2, the following hold:
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(i) NP (u1)
−j ∩NP (u2) = ∅ and NP (u4)

+j ∩NP (u2) = ∅, 1 ≤ j ≤ m,

(ii) for two consecutive vertices vi and vj (j > i) of NP (u2), either {vj−m, ..., vj−1} ∩
(∪i=1,4NP (ui)) = ∅ or {vi+1, ..., vi+m} ∩ (∪i=1,4NP (ui)) = ∅,

(iii) NP (u1)
− ∩NP (u4) = ∅ and NP (u2)

+ ∩NP (u2) = ∅,
then

∑
i=1,2,4 dP (ui) ≤ p + 2.

Proof. If |P | = 1, the result is trivial. Assume that the result holds for any path P
′
with

|P ′| < |P |.
Suppose |NP (u2)| = 1. By (iii),

∑
i=1,2,4 dP (ui) ≤ p + 2. So assume that |NP (u2)| ≥

2. Let vi, vj be the first and the second vertices of NP (u2). Denote P1 = P [v1, vi],

P2 = P [vi+1, vj−1] and P3 = P [vj, vp]. Since vi is the first vertex of NP (u2), similarly,∑
i=1,2,4 dP1(ui) ≤ |P1|+2 and the equality holds only if vi ∈ ∩i=1,2,4NP1(ui). By induction

hypothesis,
∑

i=1,2,4 dP3(ui) ≤ |P3| + 2. If j − i ≤ m + 1, by (i),
∑

i=1,2,4 dP2(ui) = 0.

If
∑

i=1,2,4 dP1(ui) ≤ |P1| + 1,
∑

i=1,2,4 dP (ui) =
∑

i=1,2,4(dP1(ui) + dP2(ui) + dP3(ui)) ≤
|P1| + 1 + |P3| + 2 = |P | − |P2| + 3. By (iii), |P2| ≥ 1. Thus

∑
i=1,2,4 dP (ui) ≤ |P | + 2.

If
∑

i=1,2,4 dP1(ui) = |P1| + 2, vi ∈ ∩i=1,2,4NP (ui) and then by (i), |P2| ≥ 2. Hence∑
i=1,2,4 dP (ui) ≤ |P1|+2+|P3|+2 = |P |−|P2|+4 ≤ |P |+2. If j−i ≥ m+2, by (ii) and (iii),∑
i=1,2,4 dP2(ui) ≤ |P2|−m. Thus

∑
i=1,2,4 dP (ui) ≤ |P1|+2+|P3|+2+|P2|−m = |P |+4−m.

As m ≥ 2,
∑

i=1,2,4 dP (ui) ≤ p + 2. 2

Lemma 2.3 Let G be a graph, P = v1v2...vp a path in G and u2, u3 two vertices in

V (G)− V (P ). If for any integer l ≥ 1, the following hold:

(i) NP (u3) 6= ∅ and NP (u3) ∩ {vp−l+1, ..., vp} = ∅,
(ii) NP (u3)

+ ∩NP (u3) = ∅ and NP (u2)
−j ∩NP (u3) = ∅, 1 ≤ j ≤ l,

then
∑

i=2,3 dP (ui) ≤ p− l + 1.

Proof. We proceed by induction on |NP (u3)|. If |NP (u3)| = 1, by (ii),
∑

i=2,3 dP (ui) ≤
p− l + 1.

Assume the result holds for |NP (u3)| < k. Suppose that NP (u3) = {vi1 , vi2 , ..., vik}.
If for any consecutive vertices vij−1

and vij of NP (u3), ij − ij−1 ≤ l, by (i) and (ii),

NP (u2)∩ {vi1+1, vi1+2, ..., vik , v
+
ik
, ..., v+l

ik
} = ∅. As NP (u3)

+ ∩NP (u3) = ∅, ∑
i=2,3 dP (ui) ≤

p− l − (|NP (u3)| − 1) + 1 = p− l + 1 + 1− |NP (u3)| ≤ p− l + 1.

So assume there exist two consecutive vertices vij and vij+1
of NP (u3) such that ij+1−

ij ≥ l + 1. Denote P1 = P [v1, vij+l] and P2 = P [vij+l+1, vp]. By induction hypothesis,∑
i=2,3 dP1(ui) ≤ |P1| − l + 1 and

∑
i=2,3 dP2(ui) ≤ |P2| − l + 1. Thus

∑
i=2,3 dP (ui) =∑

i=2,3(dP1(ui) + dP2(ui)) ≤ |P1| − l + 1 + |P2| − l + 1 = p− l + 1 + 1− l ≤ p− l + 1. 2
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3 Proof of Theorem 1.9

Since each of 20 operations either extends P1 or increases P2 by at least one vertex, at

most O(n) extensions are needs. Furthermore, each extension can be completed in O(m)

time by graph searching (see for example [5]). Hence, P can be found in O(mn) time. In

the following, we prove that G has two paths P1 and P2 satisfying |P1|+|P2| ≥ min{σ̄4, n}
or G = ∪k

i=1Gi such that for any i, j ∈ {1, 2, ..., k} (k ≥ 3), V (Gi) ∩ V (Gj) = {v}, where

v ∈ V (G).

Without loss of generality, we assume that P3 6= ∅. Let P1 = u0u1...up, P2 = v0v1...vq

and P3 = w0w1...wl be the paths found by Algorithm 1. By Operations 1, 2 and 5, u0,

up, v0 and w0 are independent vertices. Furthermore,

NP1(u0) ∩NP1(up)
+ = ∅ (by Operation 3),

NP1(v0)
+ ∩NP1(v0) = ∅ and NP1(w0)

+ ∩NP1(w0) = ∅ (by Operation 4),

NP2(w0)
+ ∩NP2(w0) = ∅ (by Operation 8),

NP1(v0)
+j ∩ NP1(u0) = ∅ and NP1(v0)

−j ∩ NP1(up) = ∅, 1 ≤ j ≤ q (by Operations 9

and 10),

NP1(w0)
+j ∩NP1(u0) = ∅, NP1(w0)

−j ∩NP1(up) = ∅, 1 ≤ j ≤ l (by Operations 14 and

15),

NP1(v0) ∩NP1(w0)
+j = ∅ and NP1(v0) ∩NP1(w0)

−j = ∅, 1 ≤ j ≤ l (by Operation 16),

NP2(w0)
+j ∩ NP2(v0) = ∅ and NP2(w0)

−j ∩ NP2(vp) = ∅, 1 ≤ j ≤ l (by Operations 18

and 19),

NP2(w0) ∩ {vq−l+1, ..., vq} = ∅ (by Operation 20).

Moreover, if ui, uj ∈ NP1(v0), i < j, by Operations 9 and 11, P (ui, u
+q
i ] ∩ (NP1(u0) ∪

NP1(up)) = ∅ or by Operations 10 and 11, P (u−q
j , uj] ∩ (NP1(u0) ∪NP1(up)) = ∅.

If NP1(v0) ∪NP1(vq) = ∅ and v0vq /∈ E(G), then σ̄4 ≤ d(u0) + d(up) + d(v0) + d(vq)−
|N(u0)∩N(up)∩N(v0)∩N(vq)| ≤ |P1|− 2+ |P2|− 2 = |P1|+ |P2|− 4. Thus |P1|+ |P2| ≥
σ̄4 + 4. If v0vq ∈ E(G), by the connectivity of G and the choice of P2, a vertex of

P2 is adjacent to a vertex of P1. As G[V (P2)] contains a Hamilton cycle, assume that

NP1(v0) 6= ∅. By Operation 12, NP1(u0)
−j ∩ NP1(uq) = ∅, 1 ≤ j ≤ q. Similarly, if

NP1∪P2(w0) = NP1∪P2(wl) = ∅ and w0 is non-adjacent to wl, |P1| + |P2| ≥ σ̄4 + 4. If

w0wl ∈ E(G), G[V (P3)] contains a Hamilton cycle. By the connectivity of G, assume

NP1∪P2(w0) 6= ∅. If NP1(w0) = ∅, by Lemma 2.2 and Lemma 2.3, d(u0) + d(up) + d(v0) +

d(w0) − |N(u0) ∩ N(up) ∩ N(v0) ∩ N(w0)| ≤ |P3| − 1 + |P1| + |P2| − l = |P1| + |P2| − 1.

Thus |P1|+ |P2| ≥ σ̄4 + 1.

So assume that NP1(w0) 6= ∅. If there exist two vertices ui ∈ NP1(v0) and uj ∈ NP1(w0),

i 6= j, by Operation 16, |j − i| > q. Without loss of generality, we choose two such

vertices ui, uj (j > i), such that {ui+1, ui+2, ...uj−1} ∩ (NP1(v0) ∪ NP1(w0)) = ∅. By

Operation 17, {ui}+m ∩ NP1(up) = ∅, 1 ≤ m ≤ l. Take P
′
1 = vqP2v0uiui−1 · · ·u0 and
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P
′
2 = wlP3w0ujuj+1 · · ·upulul+1 · · ·uj−1, where ul ∈ NP1(up) ∩ P (ui, uj). By Lemma 2.1,

d(u0)+d(up)+d(v0)+d(w0) ≤ |P ′
1|+2+λ1 and d(u0)+d(up)+d(v0)+d(w0) ≤ |P ′

2|+2+λ2.

Then
∑4

i=1 d(u0)+d(up)+d(v0)+d(w0) ≤ |P ′
1|+2+λ1+|P ′

2|+2+λ1 = |P1|+2−l+λ, where

λ = |∩4
i=1 NP (ui)|. Then

∑4
i=1 d(ui) ≤ |P1|+2− l+λ+ |P2|−1+ |P3|−1 ≤ |P1|+ |P2|+λ.

So |P1| + |P2| ≥ σ̄4. If NP2(w0) 6= ∅, or |NP1(v0)| ≥ 2, or |NP1(w0)| ≥ 2, the result holds

similarly as above. So NP1(v0) = NP1(w0) = {ui}.
By the symmetry of v0 and vq, NP1(vq) = {ui}. If v0vq /∈ E(G), d(u0) + d(up) +

d(v0) + d(vq) ≤ |P1|+ λ + |P2| − 2. Then |P1|+ |P2| ≥ σ̄4 + 2. So assume that G[V (P2)]

contains a Hamilton cycle. Then for any vertex vi of V (P2), NP1(vi) ⊆ {ui}. Similarly

for other end-vertices of Pi. Hence G = ∪k
i=1Gi such that V (Gi) ∩ V (Gj) = {ui}, for any

i, j ∈ {1, 2, .., k} (k ≥ 3). 2
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