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Abstract

Let D be a bipartite digraph with color classes X and Y such that
|X| = m ≤ n = |Y |. We give a sufficient size condition for D to con-
tain an almost symmetric cycle of length 2m−2k (0 ≤ k < m

2 ) and, in
consequence, every orientation of a cycle of length 2m−2k. The bound
on size is best possible. We characterize all extremal digraphs for this
problem. We thus obtain generalizations of the results by Wojda and
Woźniak for hamiltonicity in bipartite digraphs.
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1 Terminology

With some exceptions specified below, we follow the standard terminology
of [4] and [5].

Let G be a simple, undirected graph with the vertex set V (G) and the
edge set E(G). Denote by |G| the number of vertices in G, and by ||G|| the
number of edges in G. Let G = (X, Y ; E) denote a bipartite simple graph
with the color classes X and Y and the set of edges E. Such a graph G is
called balanced if X and Y have equal cardinalities.

For a digraph D, we denote by V (D) the vertex set of D, by A(D) the
arc set of D, by |D| the number of vertices in D, and by ||D|| the number of
arcs in D.

For U ⊂ V (D), D(U) denotes the subdigraph of D induced by U, while
D − U stands for the subdigraph of D induced by V (G) \ U. For subsets U
and W of V (D), by e(U → W ) we denote the number of arcs from U to W ,
and e(U,W ) = eD(U → W ) + e(W → U). Let dD(x) denote the degree of
the vertex x in D, i. e., dD(x) = e(x, V (D)).

Let D1 and D2 be vertex disjoint digraphs. By D1 ⇀↽ D2 we denote
the family of digraphs D such that V (D) = V (D1) ∪ V (D2) and
for every x, y ∈ V (D) : (x → y) ∈ A(D) if and only if

(1) x, y ∈ V (Di) and (x → y) ∈ A(Di) (i = 1, 2) or

(2) x ∈ V (Di), y ∈ V (Dj), i 6= j and (y → x) /∈ A(D) (the vertices of
V (D1) are joined with the vertices of V (D2) by antisymmetric arcs).

Among the digraphs of the family D1 ⇀↽ D2 we distinguish one: D1 → D2

with the arc set consisting of the arcs of D1 and D2, and all arcs from D1 to
D2. Let us denote by Hn,k the family K∗

n−k−1
⇀↽ K∗

k+1, where K∗
m denotes a

complete symmetric digraph with m vertices.
Finally, let D1 ∗D2 denote a digraph with V (D1 ∗D2) = V (D1)∪V (D2) and
the arc set consisting of the arcs of D1 and D2, and all arcs between D1 and
D2.

Let D = (X, Y ; A) denote a bipartite digraph with the color classes X
and Y and the set of arcs A. Such a digraph D is called balanced if X and Y
have equal cardinalities. Let D denote the complement of D to the complete
bipartite symmetric digraph K∗

|X|,|Y |.
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For a digraph D = (X, Y ; A), the associated graph G(D) is defined to be
an undirected bipartite graph with the same vertex set and the same color
classes as D, and such that xy is an edge of G(D) precisely when x and y are
joined by a symmetric arc in D (i. e., (x → y) ∈ A(D) and (y → x) ∈ A(D)).
We shall tacitly use an obvious fact that ||G(D)|| ≥ n2 − s for a balanced
bipartite digraph D with 2n vertices, whenever ||D|| ≤ s.

Let Dm,n,k = { D = (X, Y ; A) : |X| = m ≤ n = |Y |, X = U ∪ W,
U = {x ∈ X : dD(x) = 2n}, W = {x ∈ X : dD(x) = n}, |W | = k + 1, and
each vertex of W is joined with all the vertices of Y by antisymmetric arcs }.
We distinguish special digraphs D1

m,n,k and D2
m,n,k of the family Dm,n,k:

in D1
m,n,k all antisymmetric arcs between the vertices of the sets W and

Y are oriented from W to Y , while in D2
m,n,k they are oriented from Y to W.

A sequence ε = (ε1, ..., εp), where εi ∈ {−1, 1}, 1 ≤ i ≤ p, is called the
orientation of a cycle C = x1...xpx1 of D if εi = 1 implies (xi → xi+1) ∈ A(D)
and εi = −1 implies (xi+1 → xi) ∈ A(D) for every i(modp). Then C is a
realization of ε in D. Any realization in a digraph D of the orientation
ε = (ε1, ..., εp) is called a strong cycle of length p if εiεi+1 = 1 for every
i(modp), and is denoted by C→

p . Let C∗
p denote a symmetric cycle of length

p, that is a cycle with symmetric arcs only, and let C∗′
p denote C∗

p minus one
arc, which we call an almost symmetric cycle of length p (see Figure 1).

C→
6 C∗

6 C∗′
6

FIGURE 1
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2 Results

The problem of finding the minimum number of arcs of a digraph D on
n vertices, which guarantees that every orientation of a cycle of length
n − k (for 0 ≤ k < n

2
) is contained in D, was investigated in [3]. To solve

this problem the authors proved the following theorem about symmetric and
almost symmetric cycles in digraphs.

Theorem 1 ([3]) Let D be a digraph on n ≥ 7, n ≥ 5
2
k + 6 vertices and

with at least (n− k − 1)(n− 1) + k(k + 1) arcs. Then:

(1) D contains all symmetric cycles C∗
p for 3 ≤ p ≤ n− k − 2,

(2) D contains an almost symmetric cycle C∗′
n−k−1; moreover, if

n ≥ 3k + 6 then D contains a symmetric cycle C∗
n−k−1,

(3) D contains an almost symmetric cycle C∗′
n−k unless

(3a) D is one of the digraphs from Hn,k,

(3b) n = 3k + 4 and D = T2k+3 ∗K∗
k+1,

(3c) n = 3k + 2 and D = T2k+2 ∗K∗
k ,

where Tp is a tournament of order p.

As a consequence of the above theorem, the authors got the following
corollary for all orientations of a cycle of length n− k.

Corollary 1.1 ([3]) Let D be a digraph. Suppose that |D| = n, n ≥ 7,
n ≥ 5

2
k + 6 and ||D|| ≥ (n− k − 1)(n− 1) + k(k + 1). Then D contains

every orientation of a cycle of length n − k except the strong one in case
D = K∗

n−k−1 → K∗
k+1 or D = K∗

k+1 → K∗
n−k−1.

These results generalize the corresponding theorems by Heydemann, Sot-
teau and Thomassen [6], and Wojda [7], about hamiltonian cycles in digraphs.

Our purpose here is to prove analogous theorems in the case of bipartite
digraphs.

Wojda and Woźniak investigated the existence of almost symmetric hamil-
tonian cycles in such digraphs.
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Theorem 2 ([8]) Let D = (X, Y ; A) be a bipartite digraph, where |X| =
|Y | = n, and ||D|| ≥ 2n2 − 2n + 3. Then D contains an almost symmetric
hamiltonian cycle unless there is a vertex in D which is not incident to any
symmetric arc of D.

This result implies the following corollary about all orientations of hamil-
tonian cycles in balanced bipartite digraphs.

Corollary 2.1 ([8]) Let D = (X,Y ; A) be a bipartite digraph, where |X| =
|Y | = n ≥ 3, and ||D|| ≥ 2n2 − n. Then D contains every orientation of a
hamiltonian cycle unless D = D1

n,n,0 or D = D2
n,n,0 (in both cases D does not

contain a strong hamiltonian cycle).

In the present paper we show generalizations of the above theorems to
long cycles in general bipartite digraphs (not necessarily balanced). The
conditions on size we obtain here are best possible. We characterize also all
extremal digraphs for these problems.

The main result of this article is the following theorem.

Theorem 3 Let D = (X,Y ; A) be a bipartite digraph with |X| = m ≤
n = |Y |, where m ≥ 1

2
k2 + 5

2
k + 6. If

||D|| ≥ f(m,n, k) = 2mn− n(k + 1),

then:

(1) D contains all symmetric cycles C∗
2p for 2 ≤ p ≤ m− k − 1,

(2) D contains an almost symmetric cycle C∗′
2m−2k unless ||D|| = f(m,n, k)

and D ∈ Dm,n,k.

Theorem 3 asserts that either D contains an almost symmetric cycle
C∗′

2m−2k, and hence every orientation of a cycle of length 2m − 2k, or D is
an exceptional digraph of the family Dm,n,k. In the latter case, it is easy to
see that every orientation of a cycle of length 2m − 2k is contained in D
except the strong one in case D = D1

m,n,k or D = D2
m,n,k. Hence we have

the following corollary (observe that for m = n ≥ 6 and k = 0 it is exactly
Corollary 2.1).

Corollary 3.1 Let D = (X, Y ; A) be a bipartite digraph with |X| = m ≤
n = |Y |, where m ≥ 1

2
k2 + 5

2
k + 6. Suppose that ||D|| ≥ f(m,n, k). Then D

contains every orientation of a cycle of length 2m− 2k except the strong one
in case D = D1

m,n,k or D = D2
m,n,k.
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3 Proof of the main theorem

The proof will be divided into two steps. We first show that Theorem 3 is
true for m = n. In the second step we will consider situation when m < n.

Step 1. m = n

Part (1) of Theorem 3 is a simple corollary of the following theorem.

Theorem 4 ([1]) Let G = (X, Y ; E) be a balanced bipartite undirected graph
on 2n vertices, where n ≥ 1

2
l2 + 3

2
l+4. If ||G|| ≥ g(n, l) = n(n− l−1)+ l+2,

then G contains cycles of all even lengths up to 2n− 2l.

Indeed, observe that for a balanced bipartite digraph D with 2n vertices and
at least f(n, n, k) arcs we have ||D|| ≤ n(k + 1). Hence, for the associated
graph G(D), ||G(D)|| ≥ n2 − n(k + 1) = n2 − nk − n.
For n ≥ 1

2
k2 + 5

2
k + 6, have n ≥ 1

2
(k + 1)2 + 3

2
(k + 1) + 4, and

n2 − nk − n ≥ n(n− k − 2) + k + 3 = g(n, k + 1), so can apply Theorem 4
to the graph G(D) with l = k+1. Thus C2p ⊂ G(D) for all 2 ≤ p ≤ n− k − 1,
so that C∗

2p ⊂ D for all 2 ≤ p ≤ n− k − 1.

For the proof of part (2) of Theorem 3, we will proceed by induction on k.

Set k = 0. We want to show that if D is a balanced bipartite digraph with
|D| = 2n ≥ 12 and ||D|| ≥ 2n2 − n then there exists an almost symmetric
hamiltonian cycle in D, unless ||D|| = 2n2 − n and D ∈ Dn,n,0.

Since 2n2 − n ≥ 2n2 − 2n + 3 for n ≥ 3, then by Theorem 2, either D
contains an almost symmetric cycle of length 2n− 2k, or else there is a ver-
tex in D which is not incident to any symmetric arc. In the latter case, the
number of arcs of D implies that D ∈ Dn,n,0.

Now assume the theorem holds for k − 1, k ≥ 1; we will prove that it
holds also for k.
Let us start with the observation that f(n, n, k) − f(n − 1, n − 1, k − 1) =
3n− k − 2. In the proof we shall consider two cases.

Case 1. There are two vertices x ∈ X and y ∈ Y in the digraph D such that
dD(x) + dD(y) ≤ 3n− k − 2.
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Then D − {x, y} is a balanced bipartite digraph with 2n − 2 ver-
tices and at least f(n, n, k) − (3n − k − 2) = f(n − 1, n − 1, k − 1)
edges. By the inductive hypothesis there is an almost symmetric cy-
cle C∗′

2(n−1)−2(k−1) = C∗′
2n−2k contained in D − {x, y}, hence also in D,

unless D − {x, y} ∈ Dn−1,n−1,k−1. In the latter case, dD(x) + dD(y) =
3n − k − 2 and x and y are not adjacent, because ||D − {x, y}|| =
f(n − 1, n − 1, k − 1). What’s more, X ∩ V (D − {x, y}) = U ∪ W ,
where U = {v : dD−{x,y}(v) = 2n− 2}, W = {v : dD−{x,y}(v) = n− 1},
|W | = k, and each vertex of W is joined with all the vertices of Y \{y}
by antisymmetric arcs.
It is easy to check that C∗′

2n−2k ⊂ D if dD(x) ≥ n (then at least one
vertex of Y is joined with x by a symmetric arc). It thus remains to
consider what happens when dD(x) ≤ n− 1. Then dD(y) ≥ 2n− k− 1,
which implies that e(y, U) ≥ n− k and e(y,W ) ≥ k + 1 if only n > 2k.
It means that there are vertices: u in U and w in W, which are joined
with the vertex y by symmetric arcs. In this case it is easy to find a
cycle C∗′

2n−2k contained in D passing through the vertices u, y, and w.

Case 2. For every pair of vertices x ∈ X and y ∈ Y in the digraph D, we have
dD(x) + dD(y) ≥ 3n− k − 1.

By the already proved part (1) of Theorem 3, there is a symmetric
cycle C∗

2n−2k−2 = x1y1x2y2 . . . xn−k−1yn−k−1x1 contained in D. We can
partition the set of vertices of D into two subsets: vertices of the
set V (C∗

2n−2k−2) and the remaining ones, which define a set denoted
by V2k+2.

Suppose that a cycle C∗′
2n−2k is not contained in D. We need to con-

sider several subcases, depending on the way the vertices of V2k+2 are
connected.

Subcase 2.1. There are two vertices x ∈ X ∩ V2k+2 and y ∈ Y ∩ V2k+2 which
are joined by a symmetric arc.
Since C∗′

2n−2k 6⊂ D, we have e(x, yi) + e(y, xi) ≤ 2,
i = 1, 2, . . . , n − k − 1, for otherwise we could extend the cycle
C∗

2n−2k−2 to an almost symmetric cycle of length 2n − 2k using
connections between the vertices xi, y, x, and yi. It follows that
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e(x, V (C∗
2n−2k−2)) + e(y, V (C∗

2n−2k−2)) ≤ 2(n− k − 1). Hence
dD(x) + dD(y) ≤ 2(n − k − 1) + 2(2k + 2). But, by assumption
made at the beginning of Case 2., dD(x) + dD(y) ≥ 3n − k − 1.
Both inequalities imply n ≤ 3k + 3, contrary to the assumption
n ≥ 1

2
k2 + 5

2
k + 6.

Subcase 2.2. No two vertices of the set V2k+2 are adjacent.
Let x ∈ X ∩ V2k+2 and y ∈ Y ∩ V2k+2. Similarly as in the previous
case, since C∗′

2n−2k 6⊂ D, we have e(x, yi) + e(y, xi) + e(x, yi+1) +
e(y, xi+1) ≤ 6, i = 1, 2, . . . , n − k − 1 (reducing indices modulo
n−k−1). If not, we could extend the cycle C∗

2n−2k−2 to an almost
symmetric cycle of length 2n− 2k using connections between the
vertices xi, y, xi+1, yi, x, and yi+1. We deduce that 2dD(x) +
2dD(y) ≤ 6(n− k− 1), contradicting dD(x) + dD(y) ≥ 3n− k− 1.

Subcase 2.3. There exist adjacent vertices in V2k+2, but they are joined only by
antisymmetric arcs.
Let x ∈ X ∩ V2k+2 and y ∈ Y ∩ V2k+2 be adjacent vertices.
Again, since C∗′

2n−2k 6⊂ D, we have e(x, yi) + e(y, xi) ≤ 3,
i = 1, 2, . . . , n − k − 1, for otherwise we could extend the cycle
C∗

2n−2k−2 to an almost symmetric cycle of length 2n − 2k using
connections between the vertices xi, y, x, and yi. Hence
e(x, V (C∗

2n−2k−2)) + e(y, V (C∗
2n−2k−2)) ≤ 3(n− k − 1). It implies

that dD(x)+dD(y) ≤ 3(n−k−1)+2(k+1), because x and y can be
joined with other vertices of the set V2k+2 only by antisymmetric
arcs. But dD(x)+dD(y) ≥ 3n−k−1, so dD(x)+dD(y) = 3n−k−1
and the above inequality was, in fact, an equality, and we get that
dD(V2k+2)(x) = dD(V2k+2)(y) = k + 1. Applying the same argument
to every pair of adjacent vertices of the set V2k+2, we obtain that
the induced digraph D(V2k+2) is a balanced bipartite tournament
Tk+1,k+1. What’s more, for every x ∈ X ∩ V2k+2 and y ∈ Y ∩ V2k+2,
e(x, V (C∗

2n−2k−2)) + e(y, V (C∗
2n−2k−2)) = 3(n − k − 1). There-

fore ||D|| ≤ 2(n − k − 1)2 + 3(n − k − 1)(k + 1) + (k + 1)2 =
2n2 − nk − n = f(n, n, k). It means that ||D|| = f(n, n, k) and
vertices of V (C∗

2n−2k−2) induce a complete bipartite symmetric di-
graph K∗

n−k−1,n−k−1. There are exactly 3(n − k − 1)(k + 1) arcs
between vertices of Tk+1,k+1 and K∗

n−k−1,n−k−1, and hence some of
these arcs are symmetric. Without loss of generality we can as-
sume that there is a vertex v ∈ Y ∩ V (Tk+1,k+1) joined
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by a symmetric arc with xi ∈ X ∩ V (K∗
n−k−1,n−k−1) for some

i ∈ {1, . . . , n− k − 1}. Since C∗′
2n−2k 6⊂ D, there are no symmetric

arcs between vertices of the sets X ∩ V (Tk+1,k+1) and
Y ∩ V (K∗

n−k−1,n−k−1). Thus

e(X ∩ V (Tk+1,k+1), Y ∩ V (K∗
n−k−1,n−k−1)) ≤ (k + 1)(n− k − 1).

Of course,

e(Y ∩ V (Tk+1,k+1), X ∩ V (K∗
n−k−1,n−k−1)) ≤ 2(k + 1)(n− k − 1).

The number of arcs in D implies that the above inequalities are,
in fact, equalities, and D ∈ Dn,n,k.

Step 2. m < n

First order the vertices of Y = {y1, . . . , yn} so that dD(y1) ≤ . . . ≤
dD(yn). Put Y ′ = {y1, . . . , yn−m}.

We shall consider two cases depending on the degree of the vertex yn−m.

Case 1. dD(yn−m) ≥ 2m− k
Then D − Y ′ is a balanced bipartite digraph on 2m vertices such that
||D − Y ′|| ≥ m(2m− k) > f(m, m, k) since m > 0. From what has
already been proved in Step 1., we conclude that D − Y ′ ⊃ C∗

2p for all

2 ≤ p ≤ m− k − 1 and D − Y ′ ⊃ C∗′
2m−2k, which completes the proof

in this case.

Case 2. dD(yn−m) ≤ 2m− k − 1
Now we have ||D − Y ′|| ≥ f(m,n, k)− (n−m)(2m− k − 1) =
2m2 − mk − m = f(m,m, k), which again implies D − Y ′ ⊃ C∗

2p for

all 2 ≤ p ≤ m− k − 1, and also D − Y ′ ⊃ C∗′
2m−2k unless ||D − Y ′|| =

f(m,m, k) and D − Y ′ ∈ Dm,m,k. Therefore it remains to consider
the situation when X = U ∪ W , where U = {v : dD−Y ′(v) = 2m},
W = {v : dD−Y ′(v) = m}, |W | = k + 1, and each vertex of W is joined
with all the vertices of Y \Y ′ by antisymmetric arcs. Then every vertex
of Y ′ has degree in D equal 2m− k − 1 since ||D − Y ′|| = f(m,m, k).

Suppose now that any almost symmetric cycle of length 2m − 2k is
not contained in D. Consequently, no vertex of Y ′ can be joined with
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both a vertex of U and a vertex of W by symmetric arcs, for otherwise
we could simply construct a cycle C∗′

2m−2k in D. Hence the assumption:
dD(yi) = 2m − k − 1 for all 1 ≤ i ≤ n−m, implies (for m > 2k + 2)
that every vertex of Y ′ is joined with all vertices of U by symmetric
arcs and with all vertices of W by antisymmetric arcs. It follows that
D ∈ Dm,n,k, which completes the proof.

4 Conclusion

We expect that the assumption m ≥ 1
2
k2 + 5

2
k + 6 in Theorem 3 may be

relaxed; that is, that m can be assumed to be linear compared to k. The
present quadratic bound on m is simply a consequence of the assumptions of
Theorem 4, which we use in the proof of part (1) of Theorem 3.
The essential assumption on m in the proof of part (2) of Theorem 3 is
m > 3k + 3 (see Subcase 2.1. in Step 1.). Thus the condition on m would
be weakened automatically if only we could improve Theorem 4, for example
by proving the following conjecture which was stated in [2].

Conjecture 1 Let G = (X,Y ; E) be a balanced bipartite undirected graph
on 2n vertices, where n ≥ 2k + 2. If ||G|| ≥ n(n− k − 1) + k + 2, then G
contains cycles of all even lengths up to 2n− 2k.
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