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Abstract 

 

This article focuses on ontology matching in a decentralized setting. The work takes place in the 

MediaD project. Ontologies are the description of peers data belonging to the peer data 

management system SomeRDFS. 

First, we present some particularities of ontology matching in a peer-to-peer setting, the data model 

and query answering in SomeRDFS PDMSs. Then, we show how to take advantage of query 

answering in order to help discovering new mappings between ontologies, either mapping shortcuts 

corresponding to a composition of pre-existent mappings or mappings which can not be inferred 

from the network but yet relevant. This work has been partly implemented. We present the results of 

some experiments which confirm the interest of our approach. 

 

 

 

Résumé 

 

Dans cet article, nous nous intéressons à l'alignement d'ontologies dans un contexte distribué.                                                             

Ce travail est réalisé dans le cadre du projet MediaD réalisé en partenariat avec France Telecom 

R&D. Les ontologies sont la description des données appartenant aux pairs du système pair à pair 

de gestion de données SomeRDFS. Dans une première partie,  nous présentons les spécificités du 

processus de mise en correspondance en contexte distribué ainsi que la plateforme SomeRDFS. 

Nous montrons ensuite comment exploiter les mécanismes de raisonnement mis 

 en oeuvre dans SomeRDFS pour aider à découvrir de nouveaux mappings entre ontologies. Les 

mappings que nous cherchons à découvrir sont soit des raccourcis de mappings  correspondant à 

une composition de mappings préexistants, soit des mappings qui ne peuvent pas être inférés à 

partir du PDMS mais qui sont pertinents. Ce travail a été partiellement implémenté. Nous 

présentons à la fin de ce papier quelques résultats d'expérimentations montrant l'intérêt de 

l’approche proposée. 
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1 Introduction
The use of peer-to-peer systems consists of querying for information to a network of peers. Queries are asked to
one of the peers. The peers communicate to each other to answer queries in a collective way.
We focus on the ontology matching process in the peer data management system (PDMS) SomeRDFS (1). On-
tologies are the description of peers data. Peers in SomeRDFS interconnect through mappings which are semantic
correspondances between their own ontologies. Thanks to its mappings a peer may interact with the others in
order to answer a query. A crucial aspect in SomeRDFS is that peers are equivalent in functionalities. No peer has
a global view of the data management system. Each peer has its own ontology, its own mappings and its own data.
It ignores the ontology, the mappings and the data of the other peers. In this setting, our work aims at increasing
the mappings of the peers in SomeRDFS in order to increase the quantity and the quality of the answers of the
whole data management system.

Our work takes place in the MediaD project1, which aims at creating a peer-to-peer data management system
allowing the deployment of very large applications that scale to thousands of peers. Earliest work produces the
SomeWhere platform (2) based on a simple data model: propositional logic. Then, we deploied a PDMS using
a data model based on RDF on top of the SomeWhere infrastructure. We called such a PDMS a SomeRDFS
PDMS. The work described in this paper takes place in this setting. We are interested in identifying two kinds of
mappings: mapping shortcuts corresponding to a composition of pre-existent mappings and mappings which can
not be inferred from the network but yet relevant. In both cases, the idea is to make the generation of mappings
automatically supported by query answering. We take also into account the strategy followed by a peer which
is important to select the most relevant mappings to be represented. The method that we propose for discov-
ering mapping shortcuts is based on query answering composed of two different and well-distinguished phases,
rewriting and evaluation. The method that we propose for discovering the other kind of mappings is based on
the identification of target relations. These relations are starting points in the mapping discovering process. They
allow identifying relevant mapping candidates by limiting the matching process to a restricted set of elements. The
main steps of the approach able to discover this second kind of mappings are the following: (1) looking for target
relations, (2) looking for sets of mapping candidates for each target relation previously identified, (3) alignment
of the elements of the sets of the mapping candidates. In this paper we focus only on steps 1 and 2. Future work
will be devoted to step 3.

Thus, the paper is organized as follows. Section 2 defines the problem. We precise what makes the matching
process specific in a distributed setting with reference to a centralized one. Then, we describe the fragment of
RDFS that we consider as data model for SomeRDFS and query answering. Section 3 shows how the query
answering process can be used to discover new relevant mappings according to a given strategy of a peer. First,
we present the different strategies that can be followed by a peer. Then we present how mapping shortcuts and
target relations can be identified using query answering. Finally we describe the techniques used to obtain a set
of relevant mapping candidates from a set of target relations and according to a given strategy. In Section 4,
we present experimentations made with SpyWhere, a prototype which partially implements our approach. Some
related work is described in Section 5. We conclude and outline remaining research issues in Section 6.

2 Problem Definition
In this section, we present the specificities of a matching process performed on ontologies distributed over peers,
data model and query answering in SomeRDFS PDMSs.

2.1 Matching Ontologies Distributed Over Peers
PDMSs combine features coming from peer-to-peer infrastructure and from traditional schema-based integration
techniques.

Peer-to-peer computing consists of a network of distributed computational peers where the number of peers is
unknown. Peers come and leave. The set of peers is highly dynamic. Moreover each peer is autonomous. There
is no global control.

In information integration systems query answering is the main inference. When these systems are based on
centralized mediators query answering process is usually achieved using a rewrite strategy.

1Research project funded by France Telecom R&D



In P2P data management systems each peer may have data to share with other peers and query processing
is performed within the network. Users queries are propagated across the heterogeneous sources in a transparent
way. The expected answers may be found all over the PDMS. In SomeRDFS PDMSs, data are semantically related
with semantic mappings between the peers ontologies. Query answering takes into account the ontologies and is
achieved using a rewrite and evaluate strategy.

We describe below how all these features influence the ontology matching process.

2.1.1 Huge Number of Elements to be Matched

In a centralized setting, matching ontologies often consists in a cartesian product of every element of both ontolo-
gies. One or more distance measures are computed and the results are analyzed. In PDMSs the unknown and a
priori huge number of peers makes this kind of method unusable. Elements which are relevant to be matched must
first be selected by filtering methods.

2.1.2 Distributed Ontology and Data

In a PDMS both the ontology and data are distributed through, respectively, the union of the peer ontologies
and mappings and the union of the peer storage description. Each peer has a partial knowledge of the PDMS. In
SomeRDFS, for example, it just knows its ontology, its mappings with the other peers and its own data. A peer can
only access to a part of the data of a PDMS using its mappings. Mappings that can automatically be discovered,
and usable discovering methods are so influenced by this restricted access.

2.1.3 Using Query Rewriting

Query rewriting provides information that can offer automated support for generating mappings. For example, the
analysis of the answers may point that data are only provided by the original queried peer. In such a case it could
be interesting to increase the mappings of this peer in order to obtain more answers.

2.2 Data Model of a SomeRDFS PDMS
In SomeRDFS ontologies and mappings are expressed in RDFS and data are represented in RDF. (Sub)classes,
(sub)properties can be defined. Domain and range of properties can be typed. Classes inclusion, properties
inclusion, domain and range typing of a property are the only authorized constructors. This language, denoted
core-RDFS, has a clear and intuitive semantics. It is constructed on unary relations that represent classes and
binary relations that represent properties. The logical semantics of core-RDFS, expressed in description logic (DL
notation) and its translation in first-order logic (FOL), is given in Table 1.

Peers ontologies are made of core-RDFS statements involving the vocabulary of only one peer. A peer vo-
cabulary is the union of a set of class names and a set of property names that are disjoint. The class and property
names are unique to each peer. We use the notation P:R for identifying the relation (class or property) R of the
ontology of the peer P .

Operator DL Notation FOL translation
Class inclusion C1 ! C2 ∀X, C1(X) ⇒ C2(X)
Property inclusion P1 ! P2 ∀X∀Y R1(X, Y ) ⇒ R2(X, Y )
Domain typing of a property ∃P ! C ∀X∀Y, P (X, Y ) ⇒ C(X)
Range typing of a property ∃P− ! C ∀X∀Y, P (X, Y ) ⇒ C(Y )

Table 1: Core-RDF(S) operators

The specification of the data stored in a peer is done through the declaration of assertion statements relating
data of a peer to relations of its vocabulary. The DL notation and the FOL translation of assertion statements are
C(a) and P (a,b) where a and b are constants.

A mapping is an inclusion statement between classes or properties of two distinct peers (cf. Table 2 (a) and
(b)) or a typing statement of a property of a given peer with a class of another peer (cf. Table 2 (c) and (d)).
Mappings are defined as core-RDFS statements involving vocabularies of different peers.



Mappings DL Notation FOL translation
(a) Class inclusion P1:C1 ! P2:C2 ∀X,P1:C1(X) ⇒ P2:C2(X)
(b) Property inclusion P1:P1 ! P2:P2 ∀X∀Y,P1(X, Y ) ⇒ P2(X, Y )
(c) Domain typing of a property ∃P1:P ! P2:C ∀X∀Y,P1:(X, Y ) ⇒ P2:C(X)
(d) Range typing of a property ∃P1:P− ! P2:C ∀X∀Y,P1:(X, Y ) ⇒ P2:C(Y )

Table 2: Mappings

2.3 Query Answering in a SomeRDFS PDMS
In SomeRDFS PDMSs ontologies, mappings and storage descriptions have all a FOL correspondence. Query
rewriting is reduced to consequence finding over logical propositional theories solved by the DECA (DEcentral-
ized Consequence finding Algorithm (1)) algorithm of SomeWhere, a propositional peer-to-peer reasoner. We
illustrate the rewrite and evaluate strategy for query answering in a SomeRDFS PDMS on the following example.

Let us consider two peers P1 and P2, their ontologies (cf. Table 3), mappings (cf. Table 4) and data (cf. Table
5).

P1 P2

∀X,P1:Painter(X) ⇒ P1:Artist(X) ∀X∀Y,P2:Sculpts(X, Y ) ⇒ P2:Sculptor(X)
∀X,P1:Painting(X) ⇒ P1:Artifact(X) ∀X∀Y,P2:Sculpts(X, Y ) ⇒ P2:Sculpture(Y )
∀X∀Y,P1:Paints(X, Y ) ⇒ P1:Creates(X, Y ) ∀X∀Y,P2:Refersto(X, Y ) ⇒ P2:Sculptor(X)
∀X∀Y,P1:Paints(X, Y ) ⇒ P1:Painter(X) ∀X,P2:Refersto(X, Y ) ⇒ P2:Movement(Y )
∀X∀Y,P1:Paints(X, Y ) ⇒ P1:Painting(Y ) ∀X,P2:SteelSculptor(X) ⇒ P2:Sculptor(X)
∀X∀Y,P1:Creates(X, Y ) ⇒ P1:Artist(X) ∀X,P2:GlassSculptor(X) ⇒ P2:Sculptor(X)
∀X∀Y,P1:Creates(X, Y ) ⇒ P1:Artifact(Y ) ∀X,P2:WoodSculptor(X) ⇒ P2:Sculptor(X)
∀X∀Y,P1:Belongsto(X, Y ) ⇒ P1:Artifact(X)

Table 3: Ontologies of P1 and P2

Let us consider the user query Q1(X) ≡ P1:Artifact(X) asked to the peer P1 to get all the artifacts known in
the PDMS. Query answering is a two-step process: first, Q1 is rewritten in a set of more specific queries. The set
of all the rewritings of a query can be obtained from the conjunctions of the rewritings of each relation (property
or class) of the query. Then, every rewriting is evaluated to get corresponding data.

P1 P2

∀X∀Y,P1:Belongsto(X, Y ) ⇒ P2:Movement(Y ) ∀X,P2:Sculptor(X) ⇒ P1:Artist(X)
∀X,P2:Sculpture(X) ⇒ P1:Artifact(X)

Table 4: Mappings of P1 and P2

P1 P2

P1:Painter(Monet) P2:Sculpts(Rodin, Le Penseur)
P1:Paints(Picasso, Les demoiselles d′Avignon) P2:Sculptor(Cesar)
P1:Painting(La Joconde) P2:Sculpture(statue de David)
P1:Refersto(Les demoiselles d′Avignon, Cubisme) P2:Refersto(deV inci, Renaissance)

Table 5: Data of P1 and P2

One possible rewriting of Q1(X) ≡ P1:Artifact(X) is P1:Painting(X). This means that one way
to get data about Artifact(X) is to get data about Painting(X) in the same peer. Another rewriting can
be P2:Sculpture(X). That means that another way to get data about Artifact(X) is to obtain data about
Sculpture(X) in P2. In this example rewritings are:

-R1(X) ≡ P1:Artifact(X) -R5(X) ≡ ∃Y,P1:Creates(Y, X)
-R2(X) ≡ P1:Painting(X) -R6(X) ≡ ∃Y,P2:Sculpts(Y, X)
-R3(X) ≡ ∃Y,P1:Belongsto(X, Y ) -R7(X) ≡ P2:Sculpture(X)
-R4(X) ≡ ∃Y,P1:Paints(Y, X)

Let us note that P1 obtains R2 by using a class inclusion statement and R4 and R5 by using the do-
main and range typing statements of the P1:Paints and P1:Creates properties. P1 uses the mappings ∀X
∀Y,P1:Belongsto(X, Y ) ⇒ P2:Movement(Y ) and ∀X,P2:Sculpture(X) ⇒ P1:Artifacts(X) to get R3

and R7. Because of the relations of its vocabulary involved in the foreobtained rewritings, P2 is then queried. P2



will send obtained rewritings to P1 i.e. R6. Finally, every rewriting is evaluated to get corresponding data. The
answer set of Q1 is:

Q1(S) = ∅︸︷︷︸
R1(S)

⋃
{LaJoconde}︸ ︷︷ ︸

R2(S)

⋃
∅︸︷︷︸

R3(S)

⋃
{lesdemoisellesd′Avignon}︸ ︷︷ ︸

R4(S)⋃
∅︸︷︷︸

R5(S)

⋃
{lePenseur}︸ ︷︷ ︸

R6(S)

⋃
{statuedeDavid}︸ ︷︷ ︸

R7(S)

Users can pose unary or conjunctive queries. In case of conjunctive queries, rewritings are obtained from the
conjunctions of the rewritings of each relation of the original query.

3 Exploiting SomeRDFS Reasoning
SomeRDFS reasoning, in particular, query answering can offer an automated support for discovering new map-
pings. We propose in this section a method to guide the ontology matching process based on query answering.
Query answering is used to generate mapping shortcuts and to identify relations, denoted target relations, which
are starting points in the mapping discovering process. These relations allow identifying relevant mapping candi-
dates limiting that way the matching process to a restricted set of elements. Discovered mappings can be relevant
or not according to the strategy involved in the PDMS. Thus, in a first sub-section we present the different strate-
gies that can be followed by a peer. In the next sub-section, we present how mapping shortcuts and target relations
can be identified using query answering. In the last sub-section, we describe the techniques used to obtain a set of
relevant mapping candidates from a set of target relations and corresponding to a given strategy.

3.1 Strategies of a Peer
A PDMS can be seen as a very large data management system with a schema and data distributed through, respec-
tively, the union of the peer ontologies and mappings, and the union of the peer storage description. It can also
be viewed as a system where many peers each with its own ontology, mappings and data, choose to share data. In
any case each peer has to access knowledge of the other peers. Having more mappings can be beneficial for three
reasons. It is a way to access new data sources and so obtaining richer answers. It is a way to allow more precise
queries assuming users are able to pose queries using the relations in mappings belonging to the vocabulary of
distant peers. Finally, it is a way to make the PDMS steadier because less dependant of the comings and leavings
of the peers in the network. Thus, any peer may decide to increase the number of its mappings. It can decide
to look for new mappings whatever they are (strategy denoted S1) or to look for particular mappings: either new
mappings involving peers already logically connected to it (strategy denoted S2) or mappings involving peers not
yet logically connected to it (strategy denoted S3). Two peers are logically connected if there exists a mapping
between their two ontologies. The choice of one of these strategies depends on the number of already connected
peers and on the number of mappings involving a given peer.

If a peer is logically connected to few other peers its access to the PDMS is unsteady and can easily be lost.
To make its situation safer the peer will try and find mappings with not yet logically connected peers. The more
peers a peer will be logically connected to the less it will be isolated. This is why this strategy makes the PDMS
steadier. Moreover, new mappings can allow to establish direct links with relations that are more precise than
the relations of the peer. They also may allow to obtain data which could not be obtained using query answering
throughout the network.

A peer may be connected to another one through only a low number of connections. In that case, it can be
relevant to try to establish more links with it before trying to learn from the rest of the PDMS. The more mappings
there are between two peers the more complete description one peer has of the other one. New mappings make
new data obtainable. It is also a way to favor answers to conjunctive queries because very often this kind of queries
obtains answers only from rewritings containing relations belonging to the same peer.

3.2 Using Query Answering
3.2.1 Mappings Shortcuts Discovery

A mapping shortcut is a composition of mappings. Mapping shortcuts consolidate PDMSs by creating di-
rect links between indirectly connected peers. In Figure 1, the P1:Pianist(X) ⇒ P2:Artist(X) class in-



clusion is a mapping shortcut equivalent to the composition of P1:Pianist(X) ⇒ P3:Musician(X) and
P3:Musician(X) ⇒ P2:Artist(X).

Artist

P ianist

P2

Musician

P1

P3

Figure 1: Mapping
shortcut example

We could imagine automatically combining mappings in order to obtain shortcuts. In-
deed, given a peer P systematic queries corresponding to each of its relation allows to
identify mapping shortcuts involving each of them. However, this method generates a lot
of traffic on the network and all the mappings obtained this way are not always useful.
Mapping shortcuts are useful when some peers disappear from the PDMS. As an exam-
ple, in Figure 1, each class belongs to a different peer. Without the P1:Pianist(X) ⇒
P2:Artist(X) mapping shortcut if P3 leaves the network at any time P1 will not be able
to access P3 or P2 anymore. However, they do not lead to more answers and they add
caching in the rewriting process.

We propose a two-step automatic selection process. We first identify potentially useful mappings shortcuts
exploiting query answering. In this step, the goal is to retain only mappings which would be useful in the rewriting
process in regard to the queries really posed by users to the peer P . However, all these mappings will not be
systematically added to the set of mappings of P because the usefulness of some of them may be low. Thus, we
propose then a second selection step based on filtering criteria which can be different from one peer to another.

To achieve the first step we need to distinguish the rewriting and evaluation phases of query answering. Query
answering will not be a unique and global process anymore but two connected processes which can be separated
if needed. Indeed, users do not always find the right needed relations in the ontology of the queried peer. In that
case, they choose other relations among the relations of the queried peer. However, if a more specific relation
is queried all the required data will not be obtained. On the other hand, if a more general relation is asked, all
the required data will be obtained together with others, may be useless. For example, a user may need asking
P1 for instances of SteelSculptor. Such a query can not be posed because of the lack of the SteelSculptor
relation in P1. The user could decide to ask for a more general relation, for example P1:Artist(X). Rewritings
obtained involve P2:SteelSculptor(X) which is the relation he is interested in, but also P2:WoodSculptor(X)
and P2:GlassSculptor(X). The evaluations of these two later relations are not needed with respect to the user’s
expectations. Considering rewriting as a process different from evaluation allows the user to examine the results
of the rewriting phase in order to select which rewritings have to be evaluated.

The fact that the user selects rewritings that have to be evaluated is a good indicator of the relations he is
really interested in. Thus, we propose to analyze the interactions between users and peers and to add mappings
that are direct specialization links between the (more general) queried relation and the one the user has chosen
to be evaluated. In this example, it would be P2:SteelSculptor(X) ⇒ P1:Artist(X) added to P1. We con-
sider that this mapping is a useful mapping shortcut. Note that if the user asks for the evaluation of several
relations several mapping shortcuts will be proposed. For example, if a user of P1 is looking for instances of
MineralSculptor, as MineralSculptor is not a relation belonging to P1, his query may be P1:Artist(X).
Then, if the two relations P2:SteelSculptor(X) and P2:GlassSculptor(X), are required to be evaluated,
P2:SteelSculptor(X) ⇒ P1:Artist(X) and P2:GlassSculptor(X) ⇒ P1:Artist(X) will be both identified
as useful mapping shortcuts.

With regard to conjunctive queries, two cases can be distinguished. First, one of the relations in the query is
not precisely the relation needed by the user. It is a relation in the vocabulary of the queried peer which is more
general than the needed relation but the closest to it. In that case, we have first to distinguish between rewritings
of the relations corresponding precisely to the needs of the user and those which do not satisfy his requirements
and second to be able to make a correspondence between the relations in the query and their rewritings. If possible
we have the same scenario than before dealing only with unitary queries. Thus, we would be able to propose
adding mappings in the same way. Second, a conjunctive query can be a definition of what the user is looking
for assuming that there is no relation within the queried peer vocabulary corresponding to his needs. Mapping
shortcuts can be defined in that case when there are rewritings composed of only one relation. Those rewritings
denote that the formula in the query refers to an entity in the domain. Thus, several mapping shortcuts can be
added, one per relation in the query. In the same way mapping shortcuts can be defined when the number of
relations in rewritings is lower than the number of relations in a query. We do not detail more discovering of
mapping shortcuts based on conjunctive queries in this paper because of space limitations.

The second selection step is based on the strategy of the peer and potentially exploits filtering criteria defined
by the administrator of this peer. Indeed, according to the strategy S2 or S3 chosen by a peer P only a subset of
the mapping shortcuts will be considered: mappings only involving peers not yet connected to P will be retained
for S2, only mappings involving already connected peers will be retained for S3. Then a peer may want to operate



a finer selection using additional filtering criteria. The usable criteria are specific to each peer but are limited.
They concern either the kind of user (member of a particular group or of a given category: permanent users,
temporary users, users making an intensive use of the peer, ... assuming that the group and the category are given
when a user registers) who posed the query which originated the mapping (user-criterion) or the kind of relation
belonging to P involved in the mapping (relation-criterion). The favored relations can be indicated one by one or
according to their level in the hierarchy. We can, for instance, favor mappings establishing a connection with the
n last levels in the class or property hierarchy of the ontology. A value is associated to each criterion, 1, 0.5 or 0,
depending on whether the involved mapping has to be more or less favored. Let us note that the same mapping
can be obtained several times from different queries potentially posed by different users. The weight of the user-
criterion may be different from one mapping to another but the weight of the relation-criterion will always be the
same. Thus, we propose a relevance measure for the mapping shortcuts which takes into account the weight of
each additional filtering criterion but also the number of times that the mapping was obtained. Table 6 gives the
value of the relevance measure of a mapping shortcut mj when this mapping has been obtained n times given a
sample of studied shortcut mappings composed of M elements. W (Ui,j) is the weight of the user-criterion for the
occurrence i of the mapping mj . W (Rj) is the weight of the relation-criterion for the relation Rj .

We favor mapping shortcuts that are obtained a high number of times. They must be added to the set of
mappings of the peer P whatever the user and the relation are. When the number n of times that a mapping is
obtained is relatively high but not very high the relevance measure will be at least 0.5. That means that the number
of times the mapping has been obtained is considered but with a medium value. When the number of times that a
mapping is obtained is low (less than 50 of M ), its relevance measure only depends on the average of the weights
of the criteria.

n : # occurrences of mj relevance measure
n ≥ 80%×M 1

50%×M ≤ n < 80%×M Max
“
0.5,

Pn
i=1 W (Ui,j)+n×W (Rj)

2n

”

n < 50%×M
Pn

i=1 W (Ui,j)+n×W (Rj)

2n

Table 6: Relevance measure of the mapping mj with n occurrences

3.2.2 Identification of Target Relations Using Query Answering

In SomeRDFS mappings are the key notion for establishing semantic connections between the peers ontologies.
They are used to rewrite queries posed in terms of a local ontology and rewritings are then run over the ontology of
logically connected peers. That way, distant peers may contribute to answers. However, when a user interrogates
the PDMS through a peer of his choice answers may come only from the original queried peer. This reveals a
lack of specialization mappings. For instance, let consider the query Q3(X) ≡ P1:Painter(X) asked to P1

and the rewriting ∃Y, P1:Paints(X, Y ). The relation in the answer only comes from P1. That means that there
is no specialization mapping for P1:Painter(X). Such relations are blocking points in query answering. They
are what we call target relations. Our objective is to identify them and to consider them as starting points in
the ontology matching process in order to discover mappings establishing connections with distant peers and so
limiting answers provided only by one peer.

In the previous example we illustrated the notion of target relation by considering that these relations have
no specialization mapping. However, this example is a simplification to present the intuition behind this notion.
In fact, in our approach we consider that a relation is a target relation if it is an obstacle for its peer in achieving
the strategy it has chosen to implement. As the different strategies that we consider (cf. Section 3.1) rely on
the number of logically connected peers and on the number of specialization mappings the definition of a target
relation will be based on a counting function. That function will differ according to the strategy of the peer
and also according to the method used to count. Indeed, given a relation R of a peer P , the number of distant
relations involved together with R in RDFS statements, either specialization mappings of P or locally inferred
statements, can be calculated either with regard to the knowledge of the peer P or with regard to rewritings
obtained from queries. This is also true when given a relation R of a peer P we want to compute the number of
distant peers corresponding to relations involved in specialization mappings of R1 or locally inferred statements.
The result of the counting function will be compared to a threshold that will be fixed by the administrator of
the peer. When the value of the function is lower than the threshold the relation will be a target relation. We



first give a general definition of a target relation. We will then precise the general definition to handle all the
different cases (one strategy has been chosen or not - counting is done in regard to peers’ knowledge or rewritings).

Definition 1 (Target Relation) P1:R1 is a target relation iff f(P1:R1) < t, f being a counting function and t a
threshold.

In Table 7, we precise the definition of the function f for the relation R1 of the peer P1 according to the strategy
chosen by the peer and according to the method used to count. Three strategies are mentioned. The strategy S1

is the default strategy. A peer which has this strategy will try to find new mappings, whatever they are. The
two others are described in section 3.1. In Table 7, we precise the definition of the function f for the relation R1

!!!!!!!!!!!
Strategy
of a peer

Method used to
count

C1 (in regard to the knowledge of P1) C2 (based on rewritings)

S1

|{Pi$=1:Rj / [Pi:Rj ⇒ P1:R1]
or [∃P1:Rk such that P1:Rk ⇒ P1:R1 can be
inferred and Pi:Rj ⇒ P1:Rk]}|

|{Pi:Rj ∈ RW}| where RW is the query
rewriting set of Q ≡ P1:R1

S2

|{Pi$=1 / ∃Pi:Rj such that [Pi:Rj ⇒ P1:R1]
or [∃P1:Rk such that P1:Rk ⇒ P1:R1 can be
inferred and Pi:Rj ⇒ P1:Rk]}|

|{Pi$=1 / Pi:Rj ∈ RW}| where RW is the
query rewriting set of Q ≡ P1:R1

S3

mini(|{Pi:Rj / Pi:Rj ⇒ P1:R1

or [∃P1:Rk $=1) such that P1:Rk ⇒ P1:R1 can
be inferred and Pi:Rj ⇒ P1:Rk]}|)

mini |{Pi$=1:Rj ∈ RW}| where RW is the
query rewriting set of Q ≡ P1:R1

Table 7: Definition of f(P1:R1)

of the peer P1 according to the strategy chosen by the peer and according to the method used to count. Three
strategies are mentioned. The strategy S1 is the default strategy. A peer which has this strategy will try to find
new mappings, whatever they are. The two others are described in section 3.1

A peer which chooses the strategy S2 looks for mappings involving peers not yet connected to it. A peer which
implements the strategy S3 looks for new mappings involving peers already connected to it. C1 and C2 are two
counting methods. C1 operates in regard to the knowledge of the peer, its ontology and its mappings. C2 is based
on rewritings obtained from queries. The target relations obtained using the counting function C2 will be different
from the target relations obtained using C1; this is because C2 takes into account distant relations which belong to
rewritings produced by connected distant peers but not distant relations coming from disconnected peers and C1

does the opposite.
If the strategy of P1 is S1 and if C1 is used the result of f(P1:R1) is the number of distant relations specializing

R1 according to the mappings of P1 or specializing another relation Rk of P1 with Rk ⇒ R1 locally inferred.
Using C2 the result of f(P1:R1) will be the number of distant relations belonging to the rewritings of R1. If this
number of distant relations is lower than the threshold t then R1 will be a target relation.

If the strategy of P1 is S2 and if C1 is used the result of f(P1:R1) is the number of distant peers involved
in specialization mappings of R1 or in statements specializing another relation Rk of P1 with Rk ⇒ R1 locally
inferred. If this number of distant peers is lower than the threshold t then R1 will be a target relation. Using C2

the result of f(P1:R1) will be the number of distant peers involved in the rewritings of R1.
If the strategy of P1 is S3, R1 will be a target relation if there is at least one peer involved in not enough

specialization statements of R1. Thus, if C1 is used, f(P1:R1) provides the minimum number of relations of a
given distant peer specializing R1 according to the mappings of P1 or specializing another relation Rk of P1 with
Rk ⇒ R1 locally inferred. If C2 is used, f(P1:R1) will provide the minimum number of distant relations which
belong to the rewritings of R1 and which are involved in the mappings of P1.

Let us note that as the two counting methods are based either on the knowledge of a peer or on the rewritings
of queries the computation may differ in time. Applying f using C1 can be done off-line. Distant relations will be
considered once a logical connection exists. On the contrary, using C2, distant relations will only be considered if
their peer is really connected. Moreover, C2 will consider distant relations which belong to rewritings produced by
connected distant peers and which cannot be obtained locally by using C1. Furthermore, applying f using C2 relies
on rewritings which depend on queries. That means that the counting must be done several times. We assume that
the administrator defines what several times means. Once we know how many measures are necessary, we can
wait until enough measures are obtained. Another solution can be to store each query posed by a user, and to pose
it again and again until enough measures are obtained according to a frequency fixed by the administrator.



3.3 Obtaining a Set of Relevant Mapping Candidates
Our objective is to use target relations in order to identify relevant mapping candidates, limiting that way the
matching process to a restricted set of elements. In this section, we propose methods to discover new mappings
from target relations. These methods are performed by a given peer given its target relations.

Target relations can allow discovering relevant mapping candidates according to two scenarios. In the first
scenario, let us consider P1, P2 and P3 three peers with C1, C2 and C3 three classes and the following mappings:
P1:C1(X) ⇒ P2:C2(X) and P3:C3(X) ⇒ P2:C2(X), each known by the two involved peers. This scenario is
represented Figure 2.

C3C1

P3

C2

P2

P1

Figure 2: Scenario 1

From the point of view of P1 C1(X) is a target relation because there is no dis-
tant relation specializing C1(X). The query Q4(X) ≡ P1:C1(X) has no rewriting.
That target relation is interesting since P1:C1(X) ⇒ P2:C2(X) is a mapping in P1,
Q5(X) ≡ P2:C2(X) could be a query posed to P2 by P1. The obtained rewritings
would be P1:C1(X) and P3:C3(X) and looking for mappings between all the rela-
tions belonging to this set of rewritings is relevant. Indeed, it could allow to discover
the mapping P3:C3(X) ⇒ P1:C1(X) making that way a connection between P3 and

P1. Note that, according to this scenario 1, the peers P1 and P2 can be the same, and P2 and P3 too.
In the second scenario let us consider P1 and P2 two peers, P1:C1, P2:C2 and P2:C3 three classes.

P2:C2(X) ⇒ P2:C3(X) is a statement in P2. P2:C2(X) ⇒ P1:C1(X) is a mapping in P2 and P1. This
scenario is represented Figure 3.

C1C3

C2

P2 P1

Figure 3: Scenario 2

From the point of view of P2 C2(X) and C3(X) are target relations because there
is no distant relation specializing C2(X) nor C3(X). The query Q6(X) ≡ P2:C3(X)
has only one local rewriting which is P2:C2(X). No distant relations belong to
the rewritings. This scenario is also interesting since P2:C2(X) ⇒ P1:C1(X) is
a mapping in P2, it could be relevant to look for mappings between C1(X) and
C3(X), two relations which subsume C2(X). It could allow to discover the map-
ping P1:C1(X) ⇒ P2:C3(X) establishing a connection between P2 and P1 usable to

rewrite P2:C3(X).
Let us note that theP1:C1(X) ⇒ P2:C2(X) mapping in scenario 1 and theP2:C2(X) ⇒ P2:C3(X) mapping

in scenario 2 can be locally inferred in P1 and P2, respectively. Furthermore, these two scenarios are elementary
and could be combined in order to deal with more complex ones. These two scenarios use that target relations
as starting points for the identification of relevant mapping candidates. However, all target relations will not
allow finding relevant mapping candidates. Thus, we just consider target relations in regard to the two scenarios
described above.

For each target relation we look for sets of mapping candidates, denoted MC. Our approach is based on the
idea that it is relevant to look for connections between relations if they have common points. In our setting the
common point that we are going to consider is a common relation, either more general or more specific. The
construction of the set of mapping candidates can be achieved according to two processes, one for each scenario.

Specific Candidates Algorithm:
This algorithm is performed for target relations with one or more general relations, Rg , according to the knowledge
of its peer (according to the ontology or to the mappings). This scenario is represented Figure 2 with C2 in the
place of Rg . In that case, we propose to pose the query Q(X) ≡ Rg(X) in order to obtain its rewritings. The set
of the rewritings is MC. It is composed of relations that are more specific than Rg .

Algorithm 1 SPEC_MC(Pi:Rj)
Require: A target relation, Rj , of Pi

Ensure: Output contains the set of relations which are mapping candidates associated with Rj

for all Pk:Rm relation more general than Pi:Rj do
Add Rewrite(Pk:Rm) to MC(Pi:Ri)

end for

General Candidates Algorithm:
This algorithm is performed for target relations Rs with several (at least two) more general relations according to
the knowledge of its peer (according to the ontology or to the mappings). This scenario is represented Figure 3



with C2 in the place of Rs. In that case, all the more general relations are members of the set MC.

Algorithm 2 GEN_MC(Pi:Rj)
Require: A target relation, Rj , of Pi

Ensure: Output contains the set of relations which are mapping candidates associated with Rj

for all Pm:Rn directly more general than Pi:Rj do
Add Pm:Rn to MC(Pi:Rj)

end for

Let us note that a target relation may sometimes not match with any of these scenarios. A target relation which
matches with one of them will be called a target relation with mapping candidates (TR_MC). Furthermore, one
can decide to restrict MC to relations belonging to some given peers in order to represent mappings only with
these particular peers (strategy S2 or S3).

4 Experiments
We conduct experiments to evaluate our approach with four SomeRDFS peers included local SpyWhere modules
in the publication domain. We particularly focus on the applicability of our approach when very few mappings
have already been specified. Our goal was to evaluate the identification process of target relations and of mapping
candidates, and also to test counting methods and strategies used in this process.

Ontologies: Each peer had its own ontology in the publication domain whose characteristics are shown in
Table 8. We tried to choose ontologies on the Web modelling publications from different points of view and being
different according to their size (number of relations) and to encoded details (simplified or general views / more
specialized ones). P1, P3 and P4 ontologies mainly describe conferences: events, publications, people. In all
of them Publication is a root node of a tree but in P4 publications are described more precisely: 47 % of the
relations in the ontology are specialized relations of Publication. P2 is much less similar to the other ones. It
describes documentation in a library. The root node is Documentation and Publication is a direct descendant of
Documentation.

Peer Ontology # relations # Publication sub-relations
P1 http://lsdis.cs.uga.edu/proj/semdis/testbed/ 172 14
P2 webode://droz.dia.fi.upm.es/Documentation+Ontology 95 26
P3 http://139.91.183.30:9090/RDF/VRP/Examples/rdf.rdf 144 36
P4 http://swrc.org/swrc.rdfs 231 110

Table 8: Descriptions of the ontologies

Experiments: We began by adding 3 mappings in P1 each of them being an inclusion statement between the
class Publication in P1 and the class Publication in P2, P3 and P4, respectively. Mappings are oriented such that
a distant relation is always a sub-relation of the local one. That way each peer can access to parts of the data of
the PDMS. P1 is directly connected to all the other peers and P2, P3 and P4 are connected to all the other peers
but sometimes not directly. Only the connection with P1 is direct. Then we look for target relations in each peer
with regard to its knowledge. Table 9 shows the number of target relations being obtained with a threshold t =
1, with any strategy and counting method. Since there are only few mappings in each peer at this stage most of
the relations are target relations (cf. # target relations in Table 9). Then we select the target relations that match
scenario 1, the only scenario applicable in that case. The number of these relations (cf. # TR_MC) varies from 8 %
to 92 % of the number of the relations in the ontology. It grows with the size of the sub-tree containing Publication.
In this very simple case mapping candidates are easy to calculate. Whatever TR_MC may be MC(TR_MC) is
the set of local or distant relations which specializes the root of the sub-tree including TR_MC. The alignment

Peer # relations # target relations # TR_CM
P1 172 171 14
P2 95 93 87
P3 144 143 36
P4 231 230 110

Table 9: Number of target relations obtained from the first experiment



process will then compare elements of the set two by two, a local relation to a distant one. That way each of
the 36 TR_MC of P3 will be compared to 150 relations belonging to the other peers. To reduce the number of
comparisons one can choose to focus only on relations belonging to some given peers. Thus, for example, if P3

considers only P1 relations in the alignment process each of its 36 TR_MC will be compared to only 14 relations.
This proves the relevance of the applicability of S2 and S3 strategies.

P3:Book⇒ P1:Book P4:Volume_Book⇒ P1:Volume P4:Journal⇒ P1:Journal
P4:Book⇒ P1:Book P4:Volume_Article⇒ P1:Volume P3:contains_article⇒ P1:Journal

P4:author_Book⇒ P1:Book P4:Volume_Proceeding⇒ P1:Volume P2:Book⇒ P3:Book
P4:author_Book⇒ P1:listed_author_in P4:keyword⇒ P1:keyword P2:Article⇒ P4:Article
P4:author_Article⇒ P1:listed_author_in P4:Article⇒ P1:Article

P4:author_Unpublished⇒ P1:listed_author_in P3:Journal⇒ P1:Journal

Table 10: Added mappings

We made a second experiment adding 16 new mappings (cf. Table 10) in P1 involving 6 local relations which
are direct sub-classes of Publication. We computed the number of target relations obtained by P1 as a function of
the threshold t using the counting methods C1 and C2 according to the 3 strategies S1, S2 and S3 (cf. Figure 4).
Whatever the strategy or the counting method we note that 8 of P1 relations are always defined as target relations
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Figure 4: Number of target relations with the different strategies and counting methods

when the threshold is low (relations not involved in mappings in that experiment) and 14 (equal to # TR_MC in
Table 9) when it is high. Let us note that the result obtained using C2 assumes that all peers are connected. Given
this same hypothesis, the number of target relations using C1 is always higher than when using C2. A given
relation will be considered as a target one with a threshold higher when using C2 than when using C1.
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Figure 5: Number of target relations
with the alternate S3 strategy and both
counting methods

Considering the strategies, we observed that when using S3 and
C1, the number of target relations is constant and when using C2 it
takes only two values. Indeed, 14 P1 relations are not involved in
mappings with P2 relations and 12 of them are not involved even
when considering query rewriting. Figure 5 shows the evolution
of the number of target relations when the max function replaces
the min one in the computation of f(Pi:Rj). The number of target
relations grows more progressively. All these experiments show
that different sets of target relations can be obtained according to
strategies, counting methods and the threshold t. These variable
elements could be parameters allowing the administrator of a peer
to select the set of target relations that are the most convenient for
him.

5 Related Work
Currently a lot of works aim at automating generation of mappings. Usually we distinguish terminological, struc-
tural and semantic techniques. A survey of these techniques is presented in (3), (4) and (5). In the peer-to-peer
setting the alignment problem can be solved in several ways.



Ontology matching techniques suited to data integration systems and developed at first in a centralized medi-
ation context can be used. In Piazza (6), tools and techniques have been developed to simplify and assist mapping
creation. A schema matching phase identifies elements in schemas that are to be mapped. Then, automatic tech-
niques and human intervention combine the correspondences to provide a precise mapping. The focus in Piazza
was more particularly on automated techniques for schema matching. Various machine learning techniques are
composed each learner exploiting a different type of information either in the source schemas or in the data.
Furthermore, knowledge from known validated mappings among schemas is reused. Such an approach assumes
that the whole ontology of a peer can be known by any other peer. These techniques grounds on the techniques
employed in the GLUE system (7) for the integration of heterogeneous data sources.

Other works consider that knowledge of interest in a domain is provided through the network by different
ontologies that are autonomous. In (8) a peer stores its data according to same data model and provides a schema
and a query language for accessing its data. To be indexed it has to export its schema by means of ontologies
that is it has to define mappings between its schema and pre-existent ontologies. Once again all concepts and
properties in the ontologies are assumed to be able to be known from all peers.

In (9) the ontology of a HELIOS peer P is organized as a two-layer ontology where the upper layer describes
the knowledge of P and the lower layer describes the knowledge that P has of other peers of the network it has
interacted with. Each peer can acquire new knowledge or extend its knowledge by querying peers. Special queries,
called probe queries, are sent by a peer interested in extending its knowledge of the network. Returned concepts
generate new mappings in P .

Our work differs in several ways. First, ontologies in SomeRDFS PDMSs are entirely decentralized. Each
peer has its own ontology and ignores the ontology of the others. Second, we benefit from the query processing
of the PDMS but queries are only routed to a limited number of peers not to all peers in the network as in (9).
Furthermore, queries used in our approach are not specific. They are usual queries submitted to SomeRDFS
PDMSs and specific processes are not needed to deal with. Thus, our approach is original because it reuses usual
SomeRDFS reasoning mechanisms in order to select elements relevant to be mapped. Once this selection is done,
we are going to focus on the matching process itself. In a previous work, we addressed the problem of taxonomy
alignment when the structures of the taxonomies are heterogeneous and dissymmetric, one taxonomy being deep
whereas the other is flat (10). We are going to explore the suitability of these techniques to our new context in
order to propose extensions or adaptations really suited to the SomeRDFS PDMSs setting.

6 Conclusion and Perspectives
In this paper we have presented how SomeRDFS query answering can offer an automated support for discovering
new mappings. In particular, we have shown that query answering in a decentralized setting can be used to select
elements which are relevant to be matched when the number of elements to be matched is a priori huge and when
no peer has a global view of the ontologies in the network. Our approach is based on query answering and filtering
criteria.

Currently, we implemented the identification process of target relations and mapping candidates according to
the default strategy S1 and the counting method C1. We have a running prototype, SpyWhere, providing mapping
candidates in SomeRDFS peers. The first experiments show the relevance of our approach but also the need for
filtering methods when query answering is used in a P2P setting to support discovering of new mappings. Thus, in
a near future, we plan to extend our prototype SpyWhere for handling the other strategies and the second counting
method and then we will integrate alignment techniques. That way we will be able to evaluate our approach more
completely and to tune the thresholds in the definition function of target relations according to the size of the
knowledge and of the mappings of a peer. Future research includes also considering coherence issues due to the
integration of discovered mappings among older ones.
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