
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

DIGITAL FOUNTAIN CODING WITH XOR OF
ENCODED PACKETS FOR BROADCASTING IN

WIRELESS MULTI-HOP NETWORKS USING
NETWORK CODING

AL AGHA K / KADI N / STOJMENOVIC I

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

12/2008

Rapport de Recherche N° 1509

Digital Fountain coding with XOR of encoded

packets for broadcasting in wireless multi-hop

networks using network coding

Khaldoun Al Agha1, Nour Kadi1, and Ivan Stojmenovic2

1 LRI, Universite de Paris-Sud XI, Orsay, France {Nour.Kadi,alagha}@lri.fr
2 SITE, University of Ottawa, Canada ivan@site.uottawa.ca

Abstract. This paper describes CDSOLT, a protocol which optimizes
LT code to increase the throughput of flooding in ad hoc wireless net-
work. We propose to apply on each hop and locally XOR operation over
encoded packets in decoding process, so that more native packets could
be discovered and avoid hence a break in the decoding process. Encod-
ing also can be applied with both received singletons (native packets)
and non-singletons, and generated candidates can be used in optimiza-
tion criteria or in LT coding as random encoded packet from selected
number of native packets. The efficiency of network coding is further
enhanced by applying source independent backbones. As shown in our
simulation, CDSOLT reduces number of transmissions by making use
of more computations at nodes. Intermediate nodes may either forward
packets without changes over few disjoint routes, or could also apply
same algorithm to produce novel encoded packets and assist destination.

Key words: LT Code, Network Coding, Connected Dominating Set

1 Introduction

Digital Fountain codes were proposed recently for channels with erasures in order
to avoid feedback channels. The main idea is to send as many as needed encoded
packets, in order for each received to decode them and recover the source data. In
wireless networks, XOR , abbreviated as ⊕, is used as coding operation to control
the bit length of transmitted messages. The particular methods differ in the way
new encoded packets are generated, and the way they are processed at receiver.
Some methods [9], [6] search for an encoded packet that will optimize decoding
ability of neighbors by maximizing the number of decoded native packets. We
consider here this method, but also method called LT codes, explored also in [5].

We are particularly interested in wireless ad hoc and sensor networks, in ap-
plications where multiple data sources broadcast data to all other nodes. That
is, in each broadcast, one of the nodes is the source, and the message is to be
received, unaltered, by all the other nodes in the network. One particular appli-
cation of this operation in wireless sensor networks is as follows. [13] proposed
partial network coding for data gathering in sensor networks, without data ag-
gregation. The article, however, does not address the preprocessing step, where

2 A.Agha, Kadi, Stojmenovic

every sensor broadcasts its own information to other sensors, so that they can
make their encoded packet. This step in itself can be carried by network coding
based broadcasting, which is the primary problem being solved here.

Broadcasting using network coding was studied in [4]. However, XOR and
opportunistic listening to neighbor receptions was not applied. XOR-based al-
gorithms were explored in [9], [6], [5]. The set of forwarding nodes is restricted
to MPR (multi-point relay) set. However, this set is source dependent, therefore
particular forwarder node is responsible for some received native packets, but
not others, therefore reducing the impact of network coding. Further, all these
proposals do not use received encoded packets in future encoding process, and
limit the use of already received encoding packets in the process of extracting
native packets. Broadcasting with network coding with XOR algorithms was also
studied in [8], [3]. The algorithms focus on immediate decoding of each incoming
packet and do not refer to any backbone concept. The algorithms also do not
use already received encoded packets (only native packets) in future encoding
process.

This article makes several contributions to network coding based broadcast-
ing. First, it proposes to apply source independent backbones. Next, we propose
to increase the options for coding and encoding, by encoding already encoded
packets, and by combining received encoded packets in search for possibly hid-
den native packet. This will reduce number of needed singletons and speedup
decoding process. We propose to apply this idea for broadcasting with network
coding in wireless ad hoc networks, to reduce number of transmissions by making
use of more computations at nodes.

2 Literature review

2.1 Broadcasting with network coding

Broadcasting using network coding was studied in [4]. Authors apply linear net-
work coding from [2]. Intermediate nodes may combine incoming encoded pack-
ets, by making a random linear combination of them. The vector of coefficients
(coding vector) over n source packets is transmitted together with the encoded
message, and is collected in a decoding matrix G. A received packet is said to be
innovative if its coding vector increases the rank of matrix G. Once a node re-
ceives n linearly independent combinations, it is able to decode and retrieve the
information on n sources. Decoding amounts to solving linear equations with
complexity bounded as O(n3) [2]. The main problem with linear algebra ap-
proaches is that the size of linear combination of packets is not controlled. That
is, if all packets have L bits, it is not clear how to restrict the size of encoded
packets also to L bits. Further, it is not clear how to select and keep small co-
efficients for linear combinations. These coefficients should be much fewer than
L bits, or otherwise the length of transmitted message is much larger than for a
single packet. Another problem is that the number of transmitted encoded pack-
ets is probabilistic and is not linked to the decoding needs of neighbors. That is,
overhearing (opportunistic listening) neighbor receptions is not utilized, as the

Digital Fountain coding with XOR of encoded packets 3

algorithm simply assumes that all neighbors need all the packets. It therefore
does not address dynamic nature of broadcast communications, and receiving
different messages at different stage in the process. These problems, especially
associated message size increases, are not discussed in literature. We therefore
abandon this approach in favor of those with clear and size controlled encoding
operations, such as XOR.

In [10], particular attention is given in deciding probabilities for selecting the
number d of packets for XOR-ing. In expectation, the ideal behavior is achieved
by the following distribution: p(1) = 1/K, p(d) = 1/(d(d − 1)) for 1 < d ≤ K,
where K is the number of native packets to be delivered to neighbors, which are
available at given node in either encoded or decoded form. This distribution is
used in our experiments. However, this leads to often to situation of having no
packet with d=1 in the set, and current decoding process halts in such scenario.
For this reason, a complicated mathematical analysis is performed to arrive
at probability that is sufficiently higher for d = 1, and appropriate for other
d values, while maintaining decoding efficiency with small increase in overall
number of needed packets. Fountain codes were used in [11] to broadcast n
packets from the same source. However in this approach encoding and decoding is
done only at endpoints, while intermediate nodes only forward received packets.
This problem can be solved by our techniques also, since it is a special case of
our more general many to all asynchronous broadcasting process.

Network coding was applied in [9] for deterministic broadcasting. In their
XOR-based algorithm, forwarding nodes store only source packets, and also store
subset of source packets received by each neighbor (via opportunistic listening).
Greedy heuristic is provided to form the encoded packet in which all neighbors
can decode received packet. However the effectiveness of network coding is lim-
ited by demanding the ability of all neighbors to decode received packet. The
algorithm also has little flexibility regarding accuracy of neighbor knowledge
and its impact on decoding process. [9] also proposes a Reed-Solomon based
coding algorithm. Again, no memorization of received encoded packets is used
for combining with future incoming encoded packets. The main drawback of this
algorithm is the need to send k packets at once, and the need for neighbors to
receive them all to complete decoding, otherwise the whole set of transmitted
packets is wasted (even if a single failure happens at a single neighbor). Further,
the algorithm cannot incorporate newly received packet into encoded packets
after some of k packets were already transmitted. Both algorithms in [9] choose
some of nodes to retransmit messages, independent on coding process. We refer
to this set as backbone nodes. The proposed backbone construction used in [9]
is very similar to MPR (multipoint relay). However the forwarding nodes have
to be included in the subsequent packets together with encoded packets, as they
differ for each neighbor. In the traditional MPR method, the set of forwarder is
fixed for a node, and can be sent by a separate message whose dynamics depends
on changes in network topology, but not on neighbors that send messages. This
introduces additional overhead to transmitted messages, reducing their reception
rate under more realistic MAC and physical layers.

4 A.Agha, Kadi, Stojmenovic

Kadi and Al Agha [6] applied network coding to optimize MPR-based flood-
ing. Each node selects its own MPR (multipoint relay) set which is set of one-hop
neighbors that cover two-hop neighbors. Broadcasting from a source node C then
proceeds by retransmitting from any receiving node if it identifies that it is MPR
node of sender node. Their algorithm has similar goal like XOR-based algorithm
[9], to maximize the number of neighbors that can learn one new source packet.
However, they do not require the ability of all neighbors to decode received
packet in their greedy heuristics. Packet with longest queue delay is added first
to the encoded packet. Encoded packets are not memorized at sender or receiving
nodes, as they all store only decoded source packets throughout the process. The
algorithm from [5] allows nodes to store received encoding packets that couldn’t
be decoded immediately. Each time a node has a sending opportunity signaled
by MAC, it applies LT code over native packets that are in need by at least
one of neighbors, and are assigned for retransmission by the node with MPR
based backbone. The number of native packets d to be encoded is decided by
selected distribution [10]. If d > 1 then the receiver will eliminate from the en-
coded packet all native packets that are present in it and already received. After
that, all remaining (and stored) encoded packets will be composed of only native
packets which are not individually decoded. If the degree of encoded packet is
reduced to 1 then new native packet is recognized, and it can be then used to
reduce other, previously received and stored, encoded packets. The receiver then
piggybacks IDs of newly recognized packets to the next packet data to inform
neighbors.

Algorithms [8], [3] focus on immediate decoding of each incoming packet and
assume that sender node is aware of packets already received by it neighbors
by some acknowledgements (this is an alternative to overhearing packets used
in other schemes). The systematic random network coding algorithm [8] sends
every native packets once and afterwards computes random linear combination
of all received packets. The opportunistic algorithm [8] native packets are cho-
sen randomly in each iteration for encoding. The latest symbol is added if it
remains decodable by all neighbors that were previously able to decode it, oth-
erwise the selection stops. The greedy algorithm [3] first selects a native packet
that maximizes the number of neighbors that need it. In the coming iterations,
new native packet is added that maximizes number of decoded packets by all
neighbors, under the condition that this number does not decrease with respect
to the previous iteration. Otherwise the selection stops. This is similar to algo-
rithm [6] described above. The equalizing algorithm [3] chooses, in each step,
the neighbor that has the least recovered native packets among those not yet
considered. Then the algorithm selects and adds one of native packets that this
neighbor has not yet recovered but all the previously selected neighbors can still
decode it.

2.2 MPR-CDS: Multi-point relay based connected dominating set

For each message, there exist a dedicated backbone set of nodes that needs to
retransmit it so that all other nodes receive the message. This type of backbones

Digital Fountain coding with XOR of encoded packets 5

Fig. 1. MPR-CDS algorithm.

is also called connected dominating set. A set V is dominating set for G if each
node from G is either in V or has a neighbor in V . We will describe here only one
type of connected dominating sets, based on the concept of multipoint relays. It
is called here MPR-CDS. Adjih, Jacquet and Viennot [1] proposed a MPR-based
algorithm for CDS (MPR-CDS) backbone construction. Each node computes its
multipoint relay set by selecting a subset of 1-hop neighbors which cover all
2-hop neighbors. The node attaches the relay list to a ’hello’ message which is
broadcasted to its neighbors. Upon receiving the ’hello’ message, an intermediate
node decides to join the CDS if it has either the smallest ID in its neighborhood
or if it is the multipoint relay for the neighbor with the smallest ID. Wu [W03]
improved the rule by eliminating the node that has the smallest ID among its
neighbors, but without two unconnected neighbors. The construction of MPR-
CDS backbone requires 2-hop neighbor knowledge, plus a message containing the
list of relay nodes of each node. This can be treated overall as CDS construction
requiring three rounds of messages, plus another round if the CDS decisions are
to be communicated to neighbors. Consider the example in Figure1. Since a and
b are the nodes with the smallest ID amongst their neighbors, they decide to
belong to the CDS. Node a computes its multipoint relay set {g, h} and then
attaches the list to its ’hello’ message. Upon receiving the ’hello’ message, nodes
g and h decide to belong to the CDS as well. Similarly, node f decides to belong
to the CDS since it is the multipoint relays of b. Finally, nodes {a, b, f, g, h}
form a CDS by the algorithm [1]. Using the improved algorithm [14], node b is
not selected for CDS, and CDS set is {a, f, g, h}.

3 Contributions

3.1 Source independent backbones

As mentioned, source dependent backbones, like those defined by MPR, have
intermediate nodes which retransmit some packets, but not the others. This
means that the power of encoding and assisting neighbors is reduced. We propose
to apply instead any source independent backbone concept. One such choice is
MPR-DS [1] and its improvement [14]. There are other choices, and reader can
consult [12] for their descriptions. It is obviously also important that the average
number of nodes in the backbone is small, or close to the ones selected by MPR,
as otherwise the benefits of shared backbones would be reduced. When applying
source independent backbone concept, intermediate nodes are either responsible
for retransmitting all or none of packets.

6 A.Agha, Kadi, Stojmenovic

3.2 Faster LT decoding with XOR of non-singletons

We propose to apply XOR operation over S encoded packets in decoding process,
so that some new singletons may be generated without any existing singleton
in S. For example, XOR of encoded packets x ⊕ y ⊕ z and y ⊕ z will produce
singleton x from two non-singletons ((x⊕ y⊕ z)⊕ (y⊕ z) = x). This will reduce
number of needed singletons and speedup decoding process. We propose to apply
this idea for broadcasting with network coding in wireless ad hoc networks, to
reduce number of transmissions by making use of more computations at nodes.
However, it is clear that proposed enhancement is a general enhancement to LT
decoding schemes, for any existing application. In case of wireless ad hoc and
sensor networks, the enhancement is especially useful since local computation at
nodes and memory space to store results are much cheaper than communication
cost, and therefore thousands of such steps could still offset the gain of eliminat-
ing even a single transmission. A decoding algorithm applied at receiver node R
that does not limit computation and storage cost can be described as follows.
Limitations to it can be added when resources are constrained. For convenience,
encoded packets can be represented as subsets of set of native packets. For ex-
ample, x⊕ y⊕ z can be represented as subset {x,y,z}. XOR of two such encoded
packets is then corresponding to the symmetric difference of two subsets. For
example, if R has two encoded packets x⊕ y⊕u⊕ v and x⊕w⊕u⊕ t then their
XOR is (x ⊕ y ⊕ u ⊕ v) ⊕ (x ⊕ w ⊕ u ⊕ t) = y ⊕ v ⊕ w ⊕ t which corresponds
to symmetric difference {x, y, u, v} ⊕ {x,w, u, t} = ({x, y, u, v} ∪ {x,w, u, t}) −
({x, y, u, v} ∩ {x,w, u, t}) = {y, v, u, t}. The resulting encoded packet contains
native packets that are present in one of packets but not in the other.

3.3 LT encoding from singletons and non-singletons

All existing methods are based on encoding and retransmitting native packets,
that is, received and/or decoded singletons or native packets generated at the
node itself. However, backbone nodes also store all received encoded packets
which they could not decode, but are aware of the elements in the corresponding
subsets. They can also be used to generate packet with certain desired degree
(number of native packets). For example, if a relay node R has singletons x, u,
and subset{y, z}, then a candidate subsets for encoding are also {x, y, z}, {u, y, z}
and {x, u, y, z} in addition to {x, u}. For instance, if LT coding prefers to encode
three variables into a packet, in this case it is possible only with the participa-
tion of {y, z} and joining either x or u. To achieve randomness, appropriate
weights need to be calculated. In this case, the probability of selecting {y, z}
should be 0.5 since they together represent 2 out of 4 possible variables. Further
study is needed to identify proper soliton probabilities, that is probabilities for
encoding a singleton, or encoding message with d native packets, for each d.
These probabilities are expected to be lower for singletons and higher for others,
leading to increased network coding benefits and reduction of overall number of
transmitted messages.

Digital Fountain coding with XOR of encoded packets 7

3.4 NC broadcasting details

The broadcasting process for static networks can follow general framework, as
summarized in [12]. Any source starts by sending its packet to all its neighbors.
Nodes not in backbone will not retransmit. Nodes in backbone will generate a
waiting timeout period whose duration may depend on the number of neigh-
bors in need of a packet. In this more general scenario, waiting period depends
on number of missing singletons by neighbors, and even number of received
encoded packets. Waiting period can be prolonged/adjusted with reception of
further messages. The selection of a formula for timeout duration may impact the
performance. Note that similar problem also exists with MPR based approach,
and one possible solution is to simply apply random waiting period, which is
basically the criterion used in IEEE 802.11 protocol. Neighbor elimination can
be applied at backbone nodes if they discover that none of their neighbors is in
need of any message. The broadcasting process for mobile networks needs further
adjustments. The protocol should have smooth transitions from static to highly
mobile networks. One such protocol that can be used as a basis for application
in mobile ad hoc networks is described in [7].

4 CDSOLT: Details of the protocol

4.1 CDSOLT overview

CDSOLT is designed to optimize the broadcast traffic in ad-hoc wireless net-
works or sensor networks using network coding. In CDSOLT, we use a source
independent backbone where set of nodes are responsible to forward all the
packets which pass through the network. To find such set we use an algorithm
which computes the connected dominating set based on multipoint relay [1] and
its enhancement [14]. Each node in the network has two buffers, one to keep
the received or decoded native packets (d-buffer), another (e-buffer) for keeping
certain number of received encoded packets until they could be decoded. Each
node in backbone has a timeout which decides how long (number of slots) to wait
before it receives slot for the next transmission. The waiting time is computed
according to a simple formula (in our simulation, it is proportional to 1/(d-buffer
size + e-buffer size). Thus nodes with longer buffers may wait shorter time. Once
a slot is received, node then performs the encoding process to combine packets
from d-buffer and e-buffer to get an encoded packet of degree d and broadcast
it to its neighbors. Degree is the number of native packets which are XORed
together to form the encoded packet. The timeout at a node is recalculated each
time it receives a packet. On the other hand, the node performs the decoding
process when it receives an encoded packet to reduce its degree. However if its
degree is still greater than 1 and before inserting it into e-buffer, the node per-
forms the combining process by combining it with other encoded packets stored
in e-buffer in order to recover more native packets. Any native packets recov-
ered during these processes are inserted into d-buffer and eliminated from other
encoded packets in e-buffer.

8 A.Agha, Kadi, Stojmenovic

4.2 Encoding Process

We use both native packets and encoding packets to form the encoded packet to
broadcast. The aim of the encoding process is to find the coding list C that con-
tains d packets, either native or encoded, to be XORed together and broadcast.
Any distribution could be used in order to choose d. In our simulation we use
ideal soliton distribution described in [10]. In this distribution the p(d=1)=1/k,
p(d=i)=1/i(i-1), where i = 2, 3.., k and k is the number of packets available at
a node either native stored in d-buffer or included in an encoded packet stored
in e-buffer. We choose the d packets sequentially to insert into C. At the first
iteration we choose randomly a packet from d-buffer or the encoded packets
stored in e-buffer which have degree d. However if the selection was a packet
from e-buffer with degree h then it is considered as h native packets, XORed
together, to be inserted into C. We continue in the same way until C contains
d native packets. Finally the packets in C will be XORed together, their IDs
are listed in the header and the result is broadcasted to the neighbors. Consider
an example where the buffers at node X are the following: d-buffer={x, y}, e-
buffer={z⊕w, w⊕u⊕ v}. Assume d = 4, then 4 packets will be chosen to insert
it into C = {}. If i is the number of native packets in C, so the iteration stops
when i = d. At the 1st iteration let y be chosen then C = {y} and i = 1; At
the 2nd iteration let the encoded packet w ⊕ u ⊕ v of degree 3 be chosen. Then
C = {y, w⊕u⊕v} and i = i+3 = 4. As i = d the iteration stop and the encoded
packet will be y ⊕ (w ⊕ u ⊕ v).

4.3 Decoding and Combining process

When a node receives an encoded packet U consisting of d native packet, first
it tries to reduce its degree. Using the IDs of the native packets listed at the
header, the node tries to retrieve the corresponding packets from its buffer. If
any of these packets is found, it is XORed with U which reduce the degree of
U by one thus giving U∗. If the degree of U∗ becomes 1 then a new native
packet P is decoded and inserted into d-buffer. Then P is used to decode other
encoded packets stored in e-buffer. During this process, if the degree of any
encoded packet becomes 1, we repeat the same procedure for the new decoded
packet. If the degree of U∗ still greater than 1, then it is combined with other
encoded packets at e-buffer. The combining process consist of XORing U∗ with
each encoded packet Vi stored in e-buffer. If the result of the XOR is a native
packet then it is inserted into d-buffer and used to decode other encoded packet.
Finally U∗ is inserted into e-buffer. To implement these processes we can use
one of the following algorithms. For notational convenience, the algorithm will
be expressed in terms of subsets. It is applied once between any two receptions
of encoded packets; that is, after receiving any new encoded packet.

Decoding and Combining Algorithm

Stored in e-buffer: encoded packets (subsets) V1, V2,..., Vp

Stored in d-buffer: decoded native packets;

Digital Fountain coding with XOR of encoded packets 9

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140 160

N
b

.
o

f
T

ra
n

sm
is

si
o

n
s

Nb. of Nodes

MPR

MPRLT

CDSOLT

(a)

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120 140 160

A
v

g
.

D
el

ay

Nb. of Nodes

MPR

MPRLT

CDSOLT

(b)

Fig. 2. (a) number of transmissions required to broadcast all the packets into the entire
network. (b) average delay for a packet to be delivered to all the nodes

1- Apply XOR of each native packet from d-buffer which is part

of U to eliminate it from U;

2- If U is native packet then place it in d-buffer

3- Else {

For i=1 to p do {

Wi=U XOR Vi;

If Wi is a singleton then native packet is decoded,

store it in d-buffer, eliminate it from all

other packets in the e-buffer

(possibly then revealing more native packets to move

similarly to d-buffer)}

If no native packets is released from 3 then add U to the storage;

Eliminate duplicates.}

Example Suppose that node x has in its e-buffer the following packets {v1 =
x ⊕ y ⊕ z, v2 = x ⊕ u, v3 = u ⊕ y ⊕ w}. Node x receives the packet U = u ⊕ w
from its neighbor.

The result of combining process is as follow:

W1 = U ⊕ v1 = x ⊕ y ⊕ z ⊕ u ⊕ w ⇒ ”not a singleton” ignore it
W2 = U ⊕ v2 = x ⊕ w ⇒ ”not a singleton” ignored it
W3 = U ⊕ v3 = y ⇒”singleton” store it in d-buffer
The e-buffer of x will be as follow: {x ⊕ z, x ⊕ u, u ⊕ w}

5 Simulation

In order to evaluate the efficiency of the integration of source independent back-
bone with optimized LT code for broadcasting in wireless multi-hop networks

10 A.Agha, Kadi, Stojmenovic

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140 160

A
v

g
.

n
b

.
o

f
co

d
ed

 p
ac

k
et

s

Nb. of Nodes

MPRLT

CDSOLT

(a)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160

A
v

g
.

n
b

.
o

f
d
ec

o
d

ed
 p

ac
k

et
s

Nb. of Nodes

MPRLT

CDSOLT

(b)

Fig. 3. (a) average number of native packet XORed and sent at each transmission, (b)
average number of native packets delivered at each transmission.

we implemented CDSOLT in a custom network simulator written in C++. At
the beginning of the simulation, nodes are placed randomly on the simulation
area and don’t move during the simulation process. Transmissions are received
by all nodes within transmission range. A packet transmission takes exactly one
time unit. A node can either send or receive only one packet at a time unit. For
network traffic, we assume that each node has one packet to broadcast to all the
nodes in the network. All of these packets are generated at the beginning of the
simulation, and then the simulation continues to run without inserting further
packets until all the packets are delivered to the entire network. We assume that
only one node can send at a given time unit and in this way we avoid packet
collisions. We compare the performance for different number of nodes. We sup-
pose that the average number of neighbors per node is about 20. The nodes are
placed randomly in a square network area whose size is chosen according to the
number of nodes. The number of nodes changes from 20 to 170. We only consider
the connected networks. Our performance metrics are the number of transmis-
sions needed for flooding. To evaluate the memory requirement we calculate the
average size of e-buffers and d-buffers. Packets delay is measured by the average
time needed for one packet to be delivered to the entire network. We compare the
performance of four approaches. The first approach is MPR-based flooding. The
second approach, is the original LT code used in flooding where each forwarding
node in addition to the source node perform LT code over the packets it has
received. The third is MPRLT, our previous approach [KA08b] that combines
the Multi Point Relay (MPR) technique with LT code [L02] to perform network
coding at each MPR node. The last approach is CDSOLT which combines CDS
with optimized LT code, described in section 4.

Figure 2 shows the efficiency of our approach CDSOLT in term of the number
of transmissions required for flooding all the packets and the packet delay. Our
gain is about 70% in comparison of MPR approach and about 20% regarding to
LT code. Even more, we see that CDSOLT gives better performance than our

Digital Fountain coding with XOR of encoded packets 11

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160

A
v

g
.

Q
u
eu

e
S

iz
e

Nb. of Nodes

MPRLT

CDSOLT

Fig. 4. memory requirement represented by average buffer size.

previous approach MPRLT. This is due to two reasons: First, using source inde-
pendent backbone (CDS) instead of source dependent backbone(MPR)increases
the benefit of network coding by sending more packets at each transmissions
as we see from fig3-a because all the packets pass through the same forwarder
nodes and this gives more opportunity to perform the encoding. Second, the
optimization accomplished in the encoding and decoding function increases the
number of packets delivered in single transmission especially for large networks
where there are a lot of encoded packets sent and stored in the nodes buffers
and thus create more opportunities to release more native packets during the
combining process. This is clear from fig3-b. In the other hand, CDSOLT in-
creases the average size of the buffer avg(|d − buffer| + |e − buffer|) for large
network as shown in fig4 but this is not a real drawback as nodes have enough
memory to handle them because the increment is not too high. In fact the incre-
ment in buffer size is due to the optimization done in the encoding function as
we choose the combination from singleton and non-singleton. When a node uses
packets that it couldn’t decode to encode together and send to its neighbors, so
its neighbors has less chance to be able to decode and thus they will store more
encoded packets in their buffers. This gives the reason of increasing the size of
the e-buffer.

6 Conclusion

In this paper we present a protocol CDSOLT to optimize flooding in ad hoc wire-
less network. In this protocol we integrate two technique: the connected domi-
nating set which is source independent backbone and the technique of network
coding represented by one of the fountain code which is LT code. We optimize
the coding and decoding process in LT code. We combine the encoding packets
locally to release more native packets and thus increase the packets delivered in
single transmission. Also LT coding is optimized as we use native packets as well
encoded packets to produce new packets to be broadcasted. Our simulation re-

12 A.Agha, Kadi, Stojmenovic

sults show the improvement of the performance when using CDSOLT. For future
work we intend to exploit our approach in secure multi path routing.

References

1. C. Adjih, P. Jacquet, and L. Viennot. Computing connected dominated sets with
multipoint relays, Oct. 2002.

2. P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In Allerton Conference
on Communication, Control, and Computing, Monticello, IL, 2003.

3. R. A. Costa, D. Munaretto, J. Widmer, and J. Barros. Informed network coding
for minimum decoding delay. CoRR, abs/0809.2152, 2008. informal publication.

4. C. Fragouli, J. Widmer, and J.-Y. L. Boudec. Efficient broadcasting using network
coding. IEEE/ACM Trans. Netw, 16(2):450–463, 2008.

5. N. Kadi and K. A. Agha. Network coding based flooding using fountain codes.
Technical Report 1500, Technical Report 1500 LRI, Univ. Paris-Sud XI, 2008.

6. N. Kadi and K. A. Agha. Optimized MPR-Based Flooding in Wireless Ad Hoc
Network using Network Coding. In IFIP/IEEE Wireless days’08, Dubai, UAE,
November 2008. IEEE Explorer.

7. A. A. Khan, I. Stojmenovic, and N. Zaguia. Parameterless broadcasting in static
to highly mobile wireless ad hoc, sensor and actuator networks. In AINA, pages
620–627. IEEE Computer Society, 2008.

8. F. D. L. Keller and C. Fragouli. Online broadcasting with network coding. In
4th Workshop on Network Coding, Theory and Applications, NetCod, Hong Kong,
China, Jan. 2008.

9. E. L. Li, R. Ramjee, M. M. Buddhikot, and S. C. Miller. Network coding-based
broadcast in mobile ad-hoc networks. In INFOCOM, pages 1739–1747. IEEE, 2007.

10. Luby. LT codes. In FOCS: IEEE Symposium on Foundations of Computer Science
(FOCS), 2002.

11. R. Kumar and A. Paul and U. Ramachandran. Fountain broadcast for wireless
networks. In IEEE Int. Workshop on Network Sensing Systems, San Diego, USA,
2005.

12. . D. Simplot-Ryl, I. Stojmenovic, and J. Wu. Energy efficient backbone construc-
tion, broadcasting, and area coverage in sensor networks,. in: Handbook of Sensor
Networks: Algorithms and Architectures (I. Stojmenovic, ed.). Wiley, 2005.

13. D. Wang, Q. Zhang, and J. Liu. Partial network coding: Concept, performance,
and application for continuous data collection in sensor networks. TOSN, 4(3),
2003.

14. J. Wu. An enhanced approach to determine a small forward node set based on
multipoint relay. volume 4, pages 2774 – 2777. Vehicular Technology Conference
VTC 2003-Fall IEEE 58th, 2003.

	RR1509entete
	RR1509rapp

