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Abstract

Consider a class of decomposable combinatorial structures, using different types
of atoms Z = {Z1, . . . , Z|Z|}. We address the random generation of these struc-
tures with respect to a size n and a targeted distribution in k of its distinguished
atoms. The targeted distribution is given by a vector of natural numbers N =
(n1, n2, . . . , nk) such that n1 + n2 + · · · + nk ≤ n. We consider two alternatives of
the problem.

In the first one, the structures must be generated uniformly among the set of
structures of size n that contain exactly ni atoms Zi (1 ≤ i ≤ k). We give a

O(r2
∏k

i=1 n2
i + mnk log n) algorithm for generating m structures. It simplifies into

a O(r
∏k

i=1 ni + mn) one for regular specifications.
The second alternative consists in generating random structures among the

whole set of structures of size n, in such a way that the expected number of oc-
currences of any distinguished atom Zi equals ni. We address this problem by
parametrizing the atoms by a set π of real-valued weights. We first adapt the clas-
sical recursive random generation scheme into an algorithm taking O(n2+mn logn)
arithmetic operations to draw m structures from the π-weighted induced distribu-
tion. Secondly, we address the analytical computation of weights π such that the
targeted frequencies are achieved asymptotically, i. e. for large values of n. We de-
rive systems of functional equations whose resolution gives an explicit relationship
between π and N . Lastly, we give an algorithm in O(kn4) for the inverse problem,
i. e. computing the frequencies associated with a given set of weights π, and an
optimized version in O(kn2) in the case of context-free languages. This allows for
a heuristic resolution of the weights/frequencies relationship.

1. Introduction

The problem of uniform random generation of combinatorial structures has been
extensively studied in the past few years. Notably, the wide class of decomposable
structures, that is combinatorial structures that can be constructed recursively in
an unambiguous way, has been subject to great attention. Two general methods
have been developed for the uniform generation of these structures: the recursive
method [1] and, more recently, the so-called Boltzmann method [2, 3, 4]. In the
present paper, we generalise this problem to the problem of generating combinatorial
structures according to a given (non uniform) distribution. The distribution is
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defined by the desired frequencies of some given atoms in the structures that are
generated.

According to [1], decomposable structures are defined by combinatorial specifi-
cations. Briefly, a combinatorial specification of a given class C0 of combinatorial
structures is a (m + 1)-uple (C0, C1, . . . , Cm) of classes which are interrelated by
means of productions made from basic objects of size zero (empty structures) or size
one (atoms), and from constructions (+ for disjoint union, · for products, sequence
for sequences, set for multisets and cycle for directed cycles).

We are interested in the following problem. Let C be a combinatorial class,
whose set of atoms is Z = {Z1, Z2, . . . , Z|Z|}. Let us distinguish k ≤ |Z| atoms
in Z, say Z1, Z2, . . . Zk. Now let n be an integer, and let us denote Cn the set of
structures of C of length n. The problem consists in generating random structures
in Cn while respecting a distribution of the k distinguished atoms. The distribution
is given by a vector of k positive numbers (n1, . . . , nk) such that n1+n2+· · ·nk ≤ n.
We consider two alternatives:

1. Generation according to exact frequencies. The distribution of the number of
distinguished atoms of any structure must respect the given vector exactly.
In other words, we generate structures uniformly at random in a subset of
Cn constituted of all the structures s ∈ Cn such that |s|Zi

= ni for all i ∈
{1, 2, . . . , k}, where |s|Zi

stands for the number of atoms Zi in s.

2. Generation according to expected frequencies. The structures must respect on
average the given frequency vector. More precisely, we generate structures at
random in such a way that

(a) any structure of Cn has a positive probability to be generated;
(b) for any i ∈ {1, 2, . . . , k}, the expected number of occurrences of Zi in the

structures is equal to ni: if P(s) is the probability of the structure s to
be generated by the algorithm, we must have

∑
s∈Cn

|s|Zi
P(s) = ni ;

(c) two structures having the same distribution of the k distinguished atoms
have the same probability of being generated.

Our approach is based on the recursive method, which was initiated by Nijenhuis
and Wilf [5], and then generalized and formalized by Flajolet, Zimmermann and
Van Cutsem [1]. Section 2 is devoted to a short presentation of this methodology
in the classical context of uniform generation. We present in Section 3 a variant
which allows to generate structures according to exact frequencies. In Section 4, we
focus on generating structures according to expected frequencies.

2. Combinatorial specifications and uniform generation.

As seen above, a combinatorial specification of a given class C0 of combinatorial
structures is a (m + 1)-uple (C0, C1, . . . , Cm) of classes which are interrelated by
means of productions made from basic objects (empty structures and atoms, of size
0 and 1 respectively) and from constructions (+ for disjoint union, · for products,
sequence for sequences, set for multisets and cycle for directed cycles).

The algorithm works as follows: First translate the specification into a standard
one, where all products are binary, and the sequence, set, cycle constructions
have been replaced with the marking and unmarking constructions Θ and Θ−1 (see
[1]). Then the standard specification translates directly into procedures for count-
ing the number of structures of a given size generated from a given non-terminal
(see Table 1), or for generating one such object uniformly at random. (see Table 2).
The computation of all tables up to size n requires O(n2) operations on coefficients,
which can be lowered to O(()n(log n)2 log log n) by using Joris van der Hoeven’s
technique for computing the coefficients [6]. Then one random generation needs
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C = 1 ⇒ c0 = 1 ; (empty structure) C = Zi ⇒ c1 = 1 ; (atom) (1)

C = A + B ⇒ cn = an + bn ; C = A · B ⇒ cn =

n∑
k=0

akbn−k ; (2)

ΘC = A · B ⇒ cn =
1

n

n∑
k=0

akbn−k ; C = ΘA ⇒ cn = nan. (3)

Table 1: Counting procedures for standard specifications.

Case: C = 1.
gC := procedure(n: integer);

if n = 0 then Return(1)
end.

Case: C = Z.
gC := procedure(n: integer);

if n = 1 then Return(Z)
end.

Case: C = A + B.
gC := procedure(n: integer);

U :=Uniform([0, 1]);
if U < an/cn

then Return(gA(n))
else Return(gB(n))

end.

Case: C = A ·B.
gC := procedure(n: integer);

U :=Uniform([0, 1]);
k := 0;
S := a0bn/cn;
while U > S do

k := k + 1;
S := S + akbn−k/cn;

Return([gA(k),gB(n− k)])
end.

Table 2: Uniform random generation procedures for standard specifications. The straightforward
pointing and unpointing cases are omitted.

O(n log n) operations in the worst case using the boustrophedonic method. These
complexities can be lowered for some particular classes of combinatorial structures,
notably those that give rise to holonomic generating functions, so that the count-
ing sequences satisfy linear recurrences [7, 8], leading to O(n) operations only for
computing the tables. This is the case for context-free specifications for example [9].

The integer coefficients used in the algorithm usually have an exponential growth
with respect to the size n: O(n log n) in the labelled case and O(n) in the unla-
belled case [1]. Therefore, with Schönhage’s multiplication algorithm [10] for integer
arithmetic or Fürer’s recent improvement [11], the preprocessing and the genera-
tion have bit-complexity O(n2+o(1)). Furthermore, it has been shown that, using
adaptative floating point computations, the bit-complexity of the generation step
can be lowered to O(n1+o(1)) [12].

Another work extends this approach to unlabeled objects [13]. From now on,
we suppose we are given an unlabeled standard specification, with union, product,
marking and unmarking constructions. Tables 1 and 2, respectively, summarize
the counting and generating procedures. The labeled case is very similar, with
additional binomial coefficients.

3. Generation according to exact frequencies

Recall that, given (n1, . . . , nk) a vector of integers, our goal is to generate uni-
formly at random a structure of Cn which contains exactly ni atoms Zi, for all
1 ≤ i ≤ k. The principle of the method that we describe here is a natural extension
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C = 1 ⇒ c0,0,...,0 = 1 ;
C = Zi ⇒ c0,...,0,1,0,...,0 = 1 (ji = 1) ;

C = A + B ⇒ cj1,...,jk,r = aj1,...,jk,r + bj1,...,jk,r ;
C = A ·B ⇒ cj1,...,jk,r =

∑
j′1+j′′1 =j1

...

j′k+j′′k =jk

r′+r′′=r

aj′
1
,...,j′

k
,r′bj′′

1
,...,j′′

k
,r′′ ;

ΘC = A · B ⇒ cj1,...,jk,r = 1
n

∑
j′1+j′′1 =j1

...

j′k+j′′k =jk

r′+r′′=r

aj′
1
,...,j′

k
,r′bj′′

1
,...,j′′

k
,r′′ ;

C = ΘA ⇒ cj1,...,jk,r = naj1,...,jk,r.

Table 3: Counting procedures for standard specifications in the case of the random generation
according to exact frequencies.

of the general outline given in the previous section. A close approach has been
implicitly used in [14], where the problem of randomly generating structures while
fixing more than one parameter is addressed. Also, one needs to mention a recent
and very elegant Θ(n) algorithm for generating words from regular languages with
two types of atoms [15]. Finally, a first general algorithm has been given in [16] by
two of the authors of the present paper. Here we present an improvement of that
algorithm.

Proposition 1 The generation of m structures of size n = n1+· · ·+nk+r featuring
exactly ni occurrences of atom Zi can be performed in O(r2

∏k
i=1 n2

i + mnk log n)

arithmetic operations for general specifications, or in O(r
∏k

i=1 ni +mn) for regular
specifications.

For any class C given as a standard specification, we write cj;j1,...,jk,r for the

number of structures of C of size j = r +
∑k

i=1 ji, which contain ji atoms Zi

for each i ∈ [1, k], and r other atoms. For short, we can also write cj, where
j = (j; j1, . . . , jk, r).

Let us first outline the algorithm given in [16]. The preprocessing stage consists
in computing a table of the cj;j1,...,jk,r for 0 ≤ j ≤ n, {0 ≤ ji ≤ ni}i∈[1,k] and

0 ≤ r ≤ n−∑k
i=0 ni. This requires computing a table of Θ(r

∏k
i=1 ni) entries, with

the recurrences stated in Table 3. Since Θ(r
∏k

i=1 ni) arithmetic operations are

required to compute each entry, this preprocessing clearly takes time Θ(r2
∏k

i=1 j2
i )

for general specifications. For regular specifications, given using only rules of the
form C = TiB, Ti = Zi and C = 1, only one of the entries associated with the Tis
is non-null, and the product rule can be evaluated in O(1) arithmetic operations,

bringing the preprocessing complexity down to Θ(r
∏k

i=1 ni).
Now, each step of the generation stage consists in choosing a rewriting rule

of the current class. Suppose that, at a given step of generation of a structure
having distribution j = (j1, . . . , jk, r), one has to choose a rewriting rule for the
class C. If C = A + B, one generates a structure with distribution j deriving from
A with probability aj/cj, or deriving from B with probability bj/cj. If C = A · B,
one chooses a vector h = (h1, . . . , hk, s) with probability ahbj−h/ch. Then one
generates a structure deriving from A having distribution h and a structure from
B having distribution j− h.
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This generation stage, which has a worst-case complexity in Θ(n
∏k

i=1 ni), can
be improved drastically. Indeed, the bottleneck of the above procedure is the case

C = A ·B, where there are j1j2 . . . jkr possible different choices. Now, let c
(h1,...,hi)
(j1,...,jk,r)

be the number of structures generated from C, having distribution (j1, . . . , jk, r) and
such that, for each x ∈ [1, i], exactly hx of the targeted jx occurrences of atom Zx

are generated from A. We have:

c
(h1,...,hi)
(j1,...,ji,...,jk,r) =

∑
hi+1≤ji+1

. . .
∑

hk≤jk

∑
r′≤r

ah1,...,hk,r′bj1−h1,...,jk−hk,r−r′ .

Now the probability of counting hi atoms Zi in the structure from A, given that
the structure contains h1 atoms Z1, . . . , hi−1 atoms Zi−1 is:

P(hi|h1, . . . , hi−1) =
c
(h1,...,hi)
(j1,...,ji,...,jk,r)

c
(h1,...,hi−1)
(j1,...,ji,...,jk,r)

and the probability of counting h1 atoms Z1 in the structure from A is:

P(h1|∅) =
c
(h1)
(j1,...,jk,r)

cj1,...,jk,r

.

This allows to choose the adequate decomposition h1, . . . , hk sequentially. Since
picking a suitable value for hi involves investigating at most ji alternatives, the
overhead compared to the classic generation is limited to a factor O(k).

Hence the whole algorithm is as follows:

1. Preprocessing stage. For any combinatorial class C in the standard specifica-

tion, compute a table of the c
(h1,...,hi)
(j1,...,ji,...,jk,r) for 1 ≤ i ≤ k, {0 ≤ jx ≤ nx}x∈[1,k]

and {0 ≤ hx ≤ jx}x∈[1,i]. This can be done with the same recurrences as

for the previous approach. Indeed the c
(h1,...,hi)
(j1,...,jk,r) are in fact partial sums

of the one involved in products, and can therefore be computed on the fly
during the computation of coefficients cj1,...,jk,r. This gives a complexity in

O(r2
∏k

i=1 n2
i ) arithmetic operations, while requiring storage of Θ(kr

∏k
i=1 ni)

numbers.
For regular specifications, the sums associated with product rules only have
one non-null term, so we can add a specific counting procedure

C = Ti ·A ⇒ cj1,...,jk,r = cj1,...,ji−1,...,jk,r

which lowers the time/space complexity to Θ(r
∏k

i=1 ni).

2. Generation stage. The C → 1, C → Zi, and C → A+B rules are trivially bor-
rowed from [16]. In the case of product rules, a sequential choice of h described
above leads to an overall generation complexity in O(kn log n) arithmetic op-
erations through a Boustrophedon investigation of eligible decompositions in
each dimension [1]. Again, in the case of regular specifications, only binary
decisions appear and the generation can be performed in Θ(mn) operations.

4. Generation according to expected frequencies

4.1. Weighted combinatorial structures and random generation

In this section, we consider the problem of generating structures of Cn at random
in such a way that each structure s is generated with positive probability P(s), and
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the vector of expected distributions of the atoms Z1, Z2, . . . , Zk equals the given
vector (n1, n2, . . . , nk). Formally:

P(s) > 0 ∀s ∈ Cn (4)

and ∑
s∈Cn

|s|Zi
P(s) = ni ∀i ∈ {1, 2, . . . , k}. (5)

Moreover, any two structures having the same distribution of the atoms Z1, . . . , Zk

must be equally generated:

(|s|Zi
= |s′|Zi

∀i ∈ {1, 2, . . . , k}) ⇒ P(s) = P(s′). (6)

Our method consists in assigning a weight to each of the k distinguished atoms
of Z. For this purpose, we define a weight function π : {Z1, Z2, . . . , Zk} → IR∗+.
The weight of any combinatorial structure equals the product of the weights of its
distinguished atoms:

π(s) =
∏

1≤i≤k

π(Zi)
|s|Zi ,

and the weight of a finite combinatorial class is the sum of the weights of its mem-
bers. In particular, for Cn we have:

π(Cn) =
∑

s∈Cn

π(s).

If the algorithm is such that

P(s) =
π(s)

π(Cn)
, ∀s ∈ Cn, (7)

then the larger the weight of any given atom is (with regard to the weights of the
other ones), the more this atom occurs in a random sample. On the other hand,
formula (7) implies conditions (4) and (6).

Now we have to solve two problems:

1. Find a function π satisfying (5), providing that (7) holds;

2. Design a generation algorithm which satisfies (7).

Let us first solve the latter, for which we adapt the recursive scheme.

Proposition 2 Suppose that π is given. Then an adaptation of the recursive ap-
proach gives an algorithm which takes O(n2 + mn log n) arithmetic operations for
generating m structures d size n such that each structure s is generated with prob-
ability P(s).

In order to generate words with the required distribution (7), we use the method-
ology presented in section 2, with just a slight change: Now the rule

C = Zi ⇒ c1 = π(Zi).

replaces rule (1) in Table 2. The generation process then works exactly like the
uniform one of section 2. In this way, it can be easily shown that the probability of
generating a structure s occurs will be proportional to its weight π(s).

From now on, given C, π and n, let us write fπ(Zi, C, n) for the average number
of atoms Zi in the structures of Cn generated by the above scheme. Now our
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problem is the following: given the vector (n1, . . . , nk), find the weight function π
that achieves the targeted frequencies, that is such that

fπ(Zi, C, n) = ni for any1 ≤ i ≤ k.

We give two different approaches to tackle with this problem. The first one,
detailed in Subsections 4.2, is analytic and gives, if some conditions on C hold,
asymptotic formulas for fπ(Zi, C, n) when n is large, assuming we are able to solve
some system of functional equations. By contrast, our second approach, described
in Subsection 4.3, leads to an heuristic for approximating fπ(Zi, C, n) in the general
case.

4.2. Computing weights suitable for asymptotical frequencies

4.2.1. The (non-rational) context-free case

A combinatorial class is said to be context-free if it can be specified without using
set and cycle operations. A result of Drmota [17], applied by Denise et al to the
case of weighted context-free grammars allows us to foresee a symbolic approach
to the computation of weights compatible with expected frequencies [16]. More
specifically, it defines sufficient conditions such that the number cn of structures of
size n asymptotically follows the ubiquitous behaviour

cn ∼ κπ · ρn

n
√

n
(1 +O(1/

√
n))

and such that the coefficients ci
n that count the total number of symbols Zi in all

words of size n follow asymptotic expansions of the form

ci
n ∼ κπ,i · ρn

√
n

(1 +O(1/
√

n))

for κπ and κπ,i some computable constants of n. It follows that a relationship exists
between the weight function π and the asymptotical frequencies fπ(Zi, C, n) for each
atom Zi. This relationship is in most cases quite simple, and allows to derive a π
function for most reasonable objective sets of frequencies (n1, . . . , nk).

Definition 3 (Simple type specification) Let Ψ = {Ψi} be a set of standard
specifications for algebraic (context-free) combinatorial classes {Ci}.
Let ci

n,k1,...,k|Z|−1
be the number of structures of size n in the combinatorial class Ci

having kj occurrences of the atom Zj, j ∈ [1, |Z| − 1].
Then Ψ is said to be of simple type if there exists, for each combinatorial class Ci, a
(|Z| − 1)-dimensional cone Ni ⊂ R

|Z| that is centered in 0 and saturated, or more
formally that

∀(n, k1, . . . , k|Z|−1) ∈ Ni ∩ N
|Z|−1, ci

n,k1,...,k|Z|−1

= 0.

Theorem 4 (Asymptotics of algebraic specifications [17, 16]) Let Ψ = {Ψi}
be a combinatorial specification for combinatorial classes Ci such that:

1. C /∈ Rat.

2. Ψ doesn’t use any ε-production.

3. Ψ is a simple type specification.

4. Ψ is strongly connected.

For each i ∈ [1, |Z|] and j ∈ [1, |Ψ|]:
- Let ui be a random complex variable and πi a real valued weight.
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G : S → T U
T → U ( T U ) T

→ ε
U → • U

→ ε

S

T

U

G′ : S → ( S ) S
→ • S
→ ε

S

Figure 1: Two equivalent grammars for the Motzkin language along with their dependency graphs.

- Let Cj be the multivariate generating function for class Cj.

- Let Φj(x, u1, . . . , u|Z|, C1, . . . , C|Ψ|) the term obtained from Ψj through replac-
ing Zi by x · πi · ui, and Cj by Cj .

Finally, let A be the Jacobian matrix of Φ, such that A =
(

∂Φi

∂Cj

)
i,j∈[1,|Ψ|]

.

Consider the following system:


C1(xπ1u1, . . . , xπ|Z|u|Z|) = Φ1(x, u1, . . . , u|Z|, C1, . . . , C|Ψ|)
. . .

C|Ψ|(xπ1u1, . . . , xπ|Z|u|Z|) = Φ|Ψ|(x, u1, . . . , u|Z|, C1, . . . , C|Ψ|)
0 = det(I−A)

(8)

Let (x∗π , C∗1 , . . . , C∗|Ψ|) be a |Ψ|+1-uple of functions on variables u1, . . . , u|Σ|, solution

of the system (8), and such that x∗π(1, . . . , 1) > 0. Then we have:

fπ(Zi, C, n) = − 1

x∗π(1, . . . , 1)

∂x∗

∂ui

(1, . . . , 1) . n (9)

The intuition behind the conditions of this theorem is the following:

- The strongly connected condition ensures that the dominant singularity is the
same for all functions Ci(x, . . . , x).

- Furthermore, adding a simple type condition guarantees a square-root type
dominant singularities for all generating functions Ci.

- The value x∗π(1, . . . , 1) is the dominant singularity, necessarily positive as we
are considering series with positive coefficient (This is Pringsheim’s Theorem).
Since there exists multiple solutions in x to the system above

Remark 5 The original formulation of the theorem [17] addresses a wider range
of candidate systems (8) than the context-free languages, thus it is expected that
some of its most stringent constraints can sometimes be relaxed. For instance, the
coefficients of the equations derived from Ψ are positive, which is a real restriction
since the class of context-free languages is not closed under complement.

Also, the ε-free condition can be relaxed, since it is a classic result that any
grammar can be transformed into an ε-free one generating the same language.

Lastly, a property that might be too stringent is the strong-connectedness, whose
role is to avoid some complicated cases where several concurrent singularities may
interfere, e. g. giving rise to oscillating asymptotic behaviors. Indeed, many con-
crete examples show that, as can be verified through singularity analysis [18], correct
frequencies can be predicted by mean of the theorem although their graphs are not
strongly connected.
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Some of these examples are purely artifactual, a phenomenon illustrated by the
two grammars from Figure 1. In this example, the two grammars have different
dependency graphs, and grammar G trivially does not meet the strong-connectedness
criteria of theorem 4, despite generating the same combinatorial class. One can even
build classes of languages such that the conclusions of theorem 4 applies, whereas
the language cannot be generated by any strongly-connected grammar. For instance,
one may consider all sorts of k-ary trees whose leaves are sequences of a dedicated
axiom.

Therefore it remains to propose a tighter characterization of eligible specifica-
tions, not necessarily based on the structure of the system but on intrinsic properties
of the associated combinatorial classes. Such a characterization remains a challeng-
ing problem at the moment.

Example 6 (Motzkin words/Unary-binary trees) Motzkin words are the eas-
iest and most ubiquitous representant of the context-free class of languages for which
two atoms can occur independently. They are also known to be in bijection with the
rooted trees having nodes of degrees 1 and 2. They are generated by the following
context-free grammar:

S → aSbS | cS | ε
Through weighting the non-terminal letter c with a real-valued weight µ and marking
the non-terminal symbol c with a complex variable u, we get the following expression
for ΦSµ

Sµ(x, xu) = ΦSµ
(x, u, Sµ) = xSµ(x, xu)xSµ(x, xu) + xuµSµ(x, xu) + 1. (10)

Since there is only one non-terminal (e.g. combinatorial class) S, the Jacobian is
reduced to a 1× 1 matrix A such that:

A = 2x2Sµ(x, xu) + µux

and
det (I−A) = 1− 2x2Sµ(x, xu) + µux. (11)

Putting together the two equations 10 and 11 from above yields the following system{
Sµ(x, xu) = xSµ(x, xu)xSµ(x, xu) + xuµSµ(x, xu) + 1

0 = 1− 2x2Sµ(x, xu) + µux
(12)

whose solutions for x are

x± =
1

µu± 2
.

Taking the positive solution x+ and applying equation 9 yields the following asymp-
totic weight µ that achieves a frequency fc for the terminal symbol c

µ =
2fc

1− fc

.

It is then possible to gain full control over the asymptotic frequency for termi-
nal letters c and (a, b). Since these letters map respectively into unary and binary
branches through the classic unary-binary tree bijection, we can draw random in-
stances of weighted unary-binary trees. We get the typical behaviors exhibited in
Figure 9 for increasing values of µ.

It might be of some interest to further investigate the evolution of the average
height for different increasing values of fc. Indeed, the average profile of a tree for
low proportion of c seems to remain unaffected by a gradual increase of µ, until some
threshold is encountered. This could be explained by a sort of phase transition, the
unary-binary tree’s profile being that of a binary tree until a certain proportion of c
is bypassed.
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f+ = 1/4 f1 = 1/3
f+ = 1/3 f1 = 1/4
f+ = 1/6 f1 = 1/4

f+ = f1 = 1/4
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Figure 2: Average value of an arithmetic expression, computed by generating 100 000 random
expression, for various sizes n and frequencies of symbols + and 1.

Example 7 (Binary arithmetic expressions) Another class of structures that
can be seen as a context-free language is the language of arithmetic expressions. We
will restrict our operations to the addition and substraction and accept only numbers
having one binary digit. This yields the following grammar, given in polish notation
(prefix form) to avoid potential ambiguity:

E → +EE

E → −EE

E → N

N → 0 | 1

Average value of an expression: Although this problem can probably be solved
exactly through bivariate generating function techniques, we choose a random gen-
eration approach to get a rough idea of the influence of the number of occurrences of
the + symbol over the average asymptotic value of an arithmetic expression. There-
fore, we adjoin a weight µ to the atom + that will be used to control its frequency
f+.

As shown previously, the hereabove unambiguous context-free grammar can be
translated into a system of functional equations. Solving the system gives the gen-
erating functions associated with each non-terminal. In particular for E, we have

Eµ(z, u) =
1−√

1− 8 (1 + uµ) z2

2z (1 + uµ)

which, after some basic singularity analysis, yields

µ =
2f+

1− 2f+
.

Unsurprisingly, it is impossible to find a weight µ such that more than 50% of the
symbols are +’s, which follows directly from the binary tree-like structure of our
expressions. Then, we plot in Figure 2 the average value E(Vn) of an expression,
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for frequencies of + being equal to 1/6 (µ = 1/2), 1/4 (µ = 1), and 1/3 (µ = 2).
The results show three distinct regimes, depending on whether µ is greater, less or
equal to 1. Namely, we conjecture a O(log(n)) growth if µ > 1 and show below that
E(Vn) = 1/2 for µ = 1, independently from the size n.

One could also adjoin a second weight τ to each occurrence of the atom 1,
along with a new complex variable v. Solving the new system yields the following
generating functions:

Eµ,τ (z, u, v) =
1−√

1− 4z2(1 + uµ)(1 + vτ)

2z(uµ + 1)

Again it is possible to link the asymptotic frequency f1 (resp. f+) for 1 (resp. +)
with both weights µ and τ , which yields

f1 =
2τ

1 + τ
and f+ =

2µ

1 + µ
.

A remarkable property here is the absence of correlation between the frequencies of
1 and +, once again due to the tree-like structure of arithmetic expressions. We can
then use these equations to estimate the average value of an arithmetic expression
having 1/3 of 1’s, and 1/4 of +’s. A random generation of 100 000 expressions for
sizes ranging from 1 to 200 allows us to conjecture a size-independent average value
of 2/3 (See Figure 2).

Exact analysis of the µ = 1 case : In the µ = 1 case, it is an interesting fact
that the average value E(Vn) of an expression is in fact independent from n. More
specifically, it can be shown that

E(Vn) =
τ

1 + τ
, ∀n ≥ 1.

This can be proven by induction on n, since

E(V1) =
1

1 + τ
· 0 +

τ

1 + τ
· 1 =

τ

1 + τ

and that assuming E(Vk) = τ/(1 + τ), ∀k < n yields

E(Vn) =

n−1∑
k≥1

p+
k,n (E(Vk) + E(Vn−k)) +

n−1∑
k≥1

p−k,n (E(Vk)− E(Vn−k))

=

n−1∑
k≥1

p+
k,n

2τ

1 + τ

where p+
k,n (resp. p−k,n) is the probability that an expression of size n having root +

(resp. −) is composed of two subexpressions having sizes k and n− k. Since

n−1∑
k≥1

p+
k,n +

n−1∑
k≥1

p−k,n = 1, ∀n ≥ 1

and p−k,n = p+
k,n when µ = 1, then

∑n−1
k≥1 p+

k,n = 1/2 and the claimed result holds.
The results then specializes into E(Vn) = 1/2 in the uniform (µ = 1, τ = 1) case, and
into E(Vn) = 2/3 in the (µ = 1, τ = 2), values both being conjectured from reading
Figure 2. To our opinion, this is a perfect illustration of one of the purposes of
random generation, which is to help one build intuitions on the average behavior of
combinatorial structures, which can in turn be proven rigorously.
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4.2.2. The rational case

In this section, we show that we can solve, asymptotically, the problem of finding
a suitable weight function for generating words according to given frequencies for a
non trivial class of rational languages. As we will see in some examples below, the
result generalises to combinatorial classes whose generating functions are rational.

If C is a rational language, then its (weighted) generating series writes

Sπ(t, z) =
Pπ(t, z)

Qπ(t, z)

where there exists r > 0 and ε1, ε2, . . . , εk > 0 such that Pπ and Qπ are analytic in
the domain D = {(t, z) : |t| ≤ r, |zi − 1| < εi∀i}.

Now, a rational language can be defined by a deterministic finite-state automa-
ton. This automaton is irreducible if its underlying directed graph is strongly con-
nected. It is aperiodic if, for any two states q and q′ of the automaton and for any
integer i, there exists a path of length i from q to q′.

Proposition 8 Lest C be a rational language that has an irreducible and aperiodic
deterministic finite-state automaton. Then, for any weight function π such that
π(s) 
= 0 for any letter s and for any i we have:

fπ(Zi, C, n) = ρ−1 ci(ρ, 1)

c(ρ, 1)
n +O(1),

where

ci(t, z) =
∂

∂zi

Qπ(t, z), c(t, z) =
∂

∂t
Qπ(t, z)

and where ρ is the unique real zero of smallest modulus of Qπ(t,1).

Proof. Irreducibility and aperiodicity, together with the fact that π(s) 
= 0 for any
letter s, imply that Qπ(t,1) has an unique dominant singularity ρ with multiplicity
1. Given that, the result is an immediate application of [19, Theorem IX-9, p656].
�

Now consider that we are given a k-tuple (n1, n2, . . . , nk) and we aim to find a
weight function π such that, for any i, fπ(Zi, C, n) ∼ ni. Let µi = ni/n for any i.
The following algorithm can solve the problem, numerically:

• From Qπ(t, z), compute c(ρ, π) and the ci(ρ, π)’s (for 1 ≤ i ≤ k) where ρ and
the πi’s remain symbolic variables.

• Then we have to solve a system of k algebraic equations:


Qπ(ρ,1) = 0

ρ−1 c1(ρ, π)

c(ρ, π)
= µ1

...

ρ−1 ck(ρ, π)

c(ρ, π)
= µk

in the unknown variables ρ, π1, π2, . . . , πk. This system can be solved with
numerical techniques (using FGb [20] for example)

• Among the solutions, take one for which ρ is real and has the smallest modulus.
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Example 9 (The Fibonacci language.) The simple and well known Fibonacci
language is defined by the regular expression (a + bb)∗, and admits a strongly con-
nected aperiodic automaton. Suppose we want to generate words while biasing the
average number of a’s. We thus put a weight πa on the letter a. The weighted
generating function writes:

Sπ(t, a, b) =
1

1− πaat− b2t2
,

so Qπ(t, a, b) = 1− πaat− b2t2. We have

ca(t, a, b) = −πat and c(t, a, b) = −πaa− 2b2t,

which leads to

fπ(a, C, n) ∼ ρ−1 −πaρ

−πa − 2ρ
n

∼ πa

πa + 2ρ
n.

Now let µa be the desired asymptotic proportion of a’s in the generated words. We
just have to solve: {

1− πaρ− ρ2 = 0
πa

πa + 2ρ
= µa.

This gives, for example, πa ≈ 1.1547 (and ρ ≈ 0.577) in order to reach µa = 0.5, that
is an asymptotically equal proportion of a’s and b’s in random Fibonacci words. Note
that, in the uniform generation scheme (that is πa = 1), we get µa = 1√

5
≈ 0.447.

Figure 3 shows some generated random Fibonacci words for different values of πa.

Example 10 (Motifs in random sequences) We consider here the number of
occurrences of a given motif in a random sequence. This is a classical issue in
bioinformatics. Our approach follows, in some sense, the one in [21], though for a
different purpose. Our example is the following: we want to fix the average number
of occurrences of the motif aug in a random RNA sequence, that is a sequence
on the alphabet {a, c, g, u}. In order to distinguish the aug’s, we mark the last g,
replacing it with ḡ. Hence, in fact we consider words on {a, c, g, ḡ, u} where there
is no occurrence of uag and where every occurrence of ḡ is immediately preceded
by ua. Obviously, counting the auḡ’s in this language is equivalent to counting the
aug’s in {a, c, g, u}∗. And, in order to generate words in the suitable alphabet, we
will just have to replace each letter ḡ with a letter g during the random generation
process.

Our language can be represented by the (strongly connected and aperiodic) de-
terministic finite automaton of Figure 4 or, equivalently, by the following non-
ambiguous regular grammar:

S0 → ε|aS1|cS0|gS0|uS0

S1 → ε|aS1|cS0|gS0|uS2

S2 → ε|aS1|cS0|ḡS0|uS0

Now, by putting a weight πḡ on ḡ, we will be able to tune the number of occurrences
of the motif. We have:

Sπ(t, a, c, g, ḡ, u) =
1

1− t(a + c + g + u) + t3aug − πḡt3auḡ
,

13
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Figure 3: Sets of randomly generated Fibonacci words of length 100 for different values of πa.
White boxes: a’s; grey boxes: b’s

thus
Qπ(t, a, c, g, ḡ, u) = 1− t(a + c + g + u) + t3aug − πḡt

3auḡ

which gives

cḡ(t, a, c, g, ḡ, u) = −πḡt
3ua

and

c(t, a, c, g, ḡ, u) = −(a + c + g + u) + 3t2uag − 3πḡt
2uaḡ

Hence we find

fπ(ḡ, C, n) ∼ πḡρ
2

4 + 3ρ2 − 3πḡρ2
n

where ρ satisfies the equation Qπ(ρ, 1, 1, 1, 1, 1) = 0, that is 1− 4ρ + (1− πḡ)ρ
3 = 0.

Thus we have to solve the system


1− 4ρ + (1 − πḡ)ρ
3 = 0

πḡρ
2

4 + 3ρ2 − 3πḡρ2
= µḡ.

in order to find the suitable value of πḡ that gives the desired asymptotic ratio µḡ

of motifs atg in the words to be generated. For example, setting µḡ = 0.1 gives
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c|g|u

c|g|u
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c|g
S1 a

u
a

S0

S2

Figure 4: A finite state automaton recognizing the language generated by the grammar.

πḡ ≈ 5.829 and setting µḡ = 0.01 gives πḡ ≈ 0.644. Note that, in the uniform
generation scheme (that is πḡ = 1), we would have µḡ = 1

64 ≈ 0.016.
Let us take additional parameter into account. We aim to fix the proportion of

letters a and u (together) in the words. This is a natural issue in bioinformatics,
where the observed frequences of nucleotides have to be taken into account in most
cases. For this purpose, let us replace each letter a or u with a new letter α, and
let us put the weight πα on this letter. We get

Qπ(t, c, g, ḡ, α) = 1− t(2παα + c + g) + π2
αt3α2g − πḡπ

2
αt3α2ḡ

then

cḡ(t, c, g, ḡ, α) = −π2
απḡt

3α2,

cα(t, c, g, ḡ, α) = −2παt + 2π2
αt3αg − 2π2

απḡt
3αḡ

and

c(t, c, g, ḡ, u, α) = −(2παα + c + g) + 3π2
αt2α2g − 3π2

απḡt
2α2ḡ

Hence

fπ(ḡ, C, n) ∼ π2
απγρ2

2 + 2πα − 3π2
αρ2 + 3π2

απḡρ2
n.

and

fπ(α, C, n) ∼ 2πα(1− παρ2 + παπḡρ
2)

2 + 2πα − 3π2
αρ2 + 3π2

απḡρ2
n

Now, adjusting the a + u content and the number of motifs atg reduces to solve a
system of three algebraic equations in πα, πγ , and ρ:



1− 2ρ + (1 + πα) + ρ3π2
α(1 − πḡ) = 0

π2
απγρ2

2 + 2πα − 3π2
αρ2 + 3π2

απḡρ2
= µḡ

2πα(1− παρ2 + παπḡρ
2)

2 + 2πα − 3π2
αρ2 + 3π2

απḡρ2
= µα.

For example, setting µα = 0.7 and µḡ = 0.1 gives πα ≈ 2.475 and πḡ ≈ 9.430 (with
ρ ≈ 0.128).
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Example 11 (RNA multiple stem-loops) Here we show that Proposition 8 can
be even applied in some cases where the language is not rational. At first, let
us consider the following language : L = {ancmbn : m, n > 0}. In molecular
biology, this represents what is called a stem-loop in a RNA secondary structure
(see [22] or [23] for details). Roughly, a’s and b’s represent paired nucleotides
(in the stem), while c’s represent unnpaired ones (in the loop). Now let us define
the language L′ = d∗(Ld∗)∗. that is the language consisting in series of stem-loops,
where each two consecutive stem-loops are possibly separated by stretches of unpaired
nucleotides, represented by d’s. Obviously L and L′ are not rational languages, but
their generating function are rational. Indeed, there is a straightforward one-to-
one correspondence between the words of L′ and the words of the rational language
d∗((ab)+c+d∗)∗. Additionally, the minimal automaton of this language is aperiodic
and strongly connected, thus Proposition 8 holds.

Suppose we aim to generate words of L′ while fixing the average number of stem-
loops and the average number of paired nucleotides. For the latter, it suffices to put
a weight πa on each letter a. As regards the number of stem-loops, let us distinguish
one letter in each loop (for example the last one) by changing the c to c̄. Now our
language obeys the following grammar:

S → DTS|D
T → aT b|aCb

C → cC|c̄
D → dD|ε

The weighted generating function is:

Sπ(a, b, c, d) =
1− tc− πat2ab + πat3abc

1− t(c + d)− t2(πaab− cd)− πat3(πc̄abc̄− abc− abd)− πat4abcd

Finally we find the following system:


1− 2ρ + (1− πa)ρ2 + (2πa − πaπc̄)ρ
3 − πaρ4 = 0

πaρ(1 + (πc̄ − 2)ρ + ρ2)

2 + 2ρ(πa − 1) + 3ρ2πa(πc̄ − 2) + 4ρ3πa

= µa

πaπc̄ρ
2

2 + 2ρ(πa − 1) + 3ρ2πa(πc̄ − 2) + 4ρ3πa

= µc̄

It can be solved symbolically, leading to


ρ =
1− 2µa − µc̄

1− 2µa + µc̄

πa =
(µa − µc̄)(1 − 2µa + µc̄)

2

µa(1 − 2µa − µc̄)2

πc̄ =
4µ3

c̄

(µa − µc̄)(1 − 2µa − µc̄)(1− 2µa + µc̄)

Note that we must have 2µa + µc̄ < 1 since there are as many b’s as a’s in the
words to be generated, and room must be left too for c’s and d’s. For example,
setting µa = 0.4 (for 80% of paired nucleotides in average) and µc̄ = 0.1 (for n/10
stem-loops in average in a structure of size n) gives πa = 27/4 and πc̄ = 4/9 (with
ρ = 1/3).

Example 12 (RNA stem loops with bulges) Here is again a non rational lan-
guage which has a rational generating function (and a bioinformatics flavour). We
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define it as the shuffle of the two languages {anbn : n ≥ 0} and c∗. In the con-
text of genomics, it can be seen as the set of stem-loops where so-called bulges, i.e.
unpaired nucleotides within the stem, are allowed. We get the following grammar:

S → CaSbC|ε
C → cC|ε

Le us put a weight on the c’s. The weighted generating function is:

Sπ(t, a, b, c) =
1− 2πctc + π2

c t2c2

1− 2πctc + π2
c t2c2 − abt2

.

Then

Qπ(ρ, 1, 1, 1) = 1− 2πcρ + (2πc − 1)ρ2

and setting Qπ(ρ, 1, 1, 1) = 0 gives one real zero of smallest modulus, ρ = (1+πc)
−1.

Then we just have to solve

πc(1− πcρ)

πc − π2
cρ + ρ

= µc

which simply gives

πc =
µc

1− µc

.

4.3. Computing weights for fixed lengths: An heuristic approach.

Now we address the problem of finding suitable weights for expected frequencies
in its most general setting. Indeed, it is not always possible to apply purely analytic
methods such a the ones described in Section 4.2, or even only to compute explicitly
the generating function. By contrast, it is always possible to translate an unam-
biguous context-free grammar into a recurrence equation, which allows for an exact
evaluation of the numbers of words in the grammar. Applying this method to the
weighted context-free languages gives an algorithm, described in Subsection 4.3.1,
for computing the frequencies associated with given weights. From this, we can
use a continuous optimization algorithm, which is described in Subsection 4.3.2, to
obtain a precise approximation of suitable weights.

4.3.1. Preliminary: Computing frequencies from weights

Let us consider the following generating function:

Sπ(t, z) =
∑
s∈C

π(s)t|s|z|s|Z1

1 . . . z
|s|Zk

k ,

where z = (z1, z2, . . . , zk). We can write

Sπ(t, z) =
∑

n,j1,...,jk≥0

πn,j1,...,jk
tnzj1

1 · · · zjk

k ,

where πn,j1,...,jk
stands for the sum of weights of the structures of size n having ji

atoms Zi, for i = 1, 2, . . . , k. The following result holds:

Proposition 13 Let fπ(Zi, C, n), be the expected number of occurrences of Zi in
the structures of Cn generated by the algorithm. We have:

fπ(Zi, C, n) =
[tn]∂Sπ

∂zi
(t,1)

[tn]Sπ(t,1)

17



Proof. This is a standard result. By definition, we have

fπ(Zi, C, n) =
∑

s∈Cn

|s|Zi
P(s).

This gives

fπ(Zi, C, n) =

∑
s∈Cn

|s|Zi
π(s)

π(Cn)
.

since P(s) = π(s)
π(Cn) by Formula (7). We have

∑
s∈Cn

|s|Zi
π(s) =

∑
j1,...,jk≥0

jiπn,j1,...,jk

= [tn]
∂Sπ

∂zi

(t,1),

and

π(Cn) =
∑

j1,...,jk≥0

πn,j1,...,jk

= [tn]Sπ(t,1).

�

This result allows to compute fπ(Zi, C, n) from the generating series Sπ(t, z).
However, computing the partial derivatives requires a closed-form expression of the
generating function Sπ, which can be hard to obtain for complex grammars. There-
fore for practical applications, we propose a different approach based on recurrence
formulas.

Proposition 14 The frequencies fπ(Zi, C, n) associated with all Zi’s can be com-
puted in O(n4) arithmetic operations. Moreover, if C uses only the product and
union constructs (context-free language), then there exists a O(n2) arithmetic op-
erations algorithm for computing the fπ(Zi, C, n).

We define gπ(Zi, C, n, m) to be the sum of weights for all structures in Cn fea-
turing m occurrences of Zi. Then we have:

C = Zj ⇒ gπ(Zi, C, n, m) =




π(Zi) if i = j, n = 1 and m = 1
π(Zj) if i 
= j, n = 1 and m = 0
0 otherwise

C = A + B ⇒ gπ(Zi, C, n, m) = gπ(Zi, A, n, m) + gπ(Zi, B, n, m)

C = A · B ⇒ gπ(Zi, C, n, m) =

n−1∑
a=1

m∑
b=0

gπ(Zi, A, a, b) . gπ(Zi, B, n− a, m− b)

C = ΘA ⇒ gπ(Zi, C, n, m) = n . gπ(Zi, A, n, m)

and then in turn

fπ(Zi, C, n) =

∑n
m=0 k . gπ(Zi, C, n, m)∑n
m=0 gπ(Zi, C, n, km)

.

These recurrence relations lead to an algorithm, which needs to compute a table
of the values for each gπ(Zi, C, n, m). Its size is O(n2), and each entry needs, at
worst, O(n2) arithmetic operations. Thus the overall worst-case complexity for
computing the expected number of occurrences of any atom Zi in a structure of size
n is O(n4).
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An alternative way to compute these frequencies for context free grammar spec-
ifications takes advantage of a grammar transform associated with the pointing
operator [3]. Namely, the pointing operator on a context-free grammar G is equiva-
lent to the following transform on non-terminal symbols, giving a grammar G• such
that:

C → Zj ⇒ C• → Z•j
C → A | B ⇒ C• → A• | B•
C → A ·B ⇒ C• → A• · B | A ·B•

On the other hand, if Sπ(t, z) is the multivariate generating function associated
with a grammar G, then the generating function of G• := Θ(G) the pointed version

of G is t · ∂Sπ(t,z)
∂t

. It is then possible to compute the number g•n of pointed words
of size n by using rules of table 1 on G•.

While this approach does not yield astonishing improvement in this context
since it is always possible to evaluate the number Gn of words of size n from G using
rules of table 1 to obtain G•n := n · Gn, it allows for a fruitful generalization to the
multivariate case. Indeed, now focusing on a given atom Zi, we define the partially
pointed grammar G•i to be the grammar that generates same set of words as G,
while pointing occurrences of the atom Zi. Namely, any object ω generated by G
featuring k copies of atom Zi will appear with multiplicity k in the set of structures
generated by G•i, each of his appearance being pointed by the new atom Z•ii at one
of the position where Zi once occurred.
In term of generating functions, if Sπ(t, z) i the generating function of G, then the
generating function of G•i is S•iπ (t, z) such that

S•iπ (t, z) =
∑
ω∈G

|ω|Zi
t|ω|z|ω|Z1

1 . . . z
|ω|Zk

k = zi · ∂Sπ(t, z)

∂zi

where |ω|Zi
stands for the number of occurrences of Zi in ω.

In term of grammar, the partial pointing of a grammar is almost equivalent to the
classic pointing, with the exception of the atom type of rule, for which we now have

C → Zj ⇒ C•i →
{

Z•ij If i = j
∅ Otherwise.

The ∅ symbol tags as non-productive a specification C, which can be eliminated
through an iterated post-treatment. However non-necessary, this may decrease the
constants involved in the complexity of this approach, since the complexity of our
enumeration algorithm depends, in a somewhat hidden fashion, on the number of
non-terminals.

Using counting rules from table 1, we can then evaluate the number g•in of
words of size n in G•i. Since the generating function S•iπ (t, z) of G•i is such that

S•iπ (t, z) = zi · ∂Sπ(t,z)
∂zi

, then we have

[tn]
∂Sπ

∂zi

(t,1) = [tn]S•iπ (t,1) = g•in

The expression of Proposition 13 for fπ can then be rephrased as follows :

fπ(Zi,G, n) =
g•in

gn

Since both g•in and gn are numbers of words in context-free grammars, they
can be computed in O(n2) arithmetic operations and in Θ(n3) space complexity
and so can fπ(Zi,G, n). These can be lowered to O(n) arithmetic operations and
Θ(n2) space complexity by using the linear recurrences obtained for any grammar
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Figure 5: General principle of our heuristic approach to the problem of computing weights π that
achieve targeted frequencies µ.

by symbolic methods (GFun [24]). Although this approach could in principle be
adapted to general standard specifications, it is unclear at the moment how some of
the partial/general pointing/unpointing combinations will interact, thus we favor
the former approach to the later one despite its higher theoretical complexity.

4.3.2. Evaluating the weights using an optimisation heuristic

Remember we want to find a weight vector π = (πi)i∈[1,k] that achieves targeted
cardinalities (n1, . . . , nk) associated with our k distinguished atoms (Z1, . . . , Zk). To
that purpose, we reformulate our problem as an optimization one.

Let µ = (µi)i∈[1,k] a vector such that µi = ni/n for all i. Let Φ : R
k×N → R

k be
the function that takes a vector of weights (πi)i∈[1,k] and a length n ∈ N, and returns
the vector of frequencies (f∗i )i∈[1,k] observed among words of length n. We described
in Section 4.3.1 two methods to compute the function Φ which, in addition to an
expected smoothness of the function Φ, allows us to foresee an efficient optimization
approach for the inversion of Φ. More specifically, we want to find a weight vector
π = (πi)i∈[1,k] that achieves targeted frequencies µ = (µi)i∈[1,k]. To that purpose
we reformulate our problem as an optimization problem by defining an objective
function F : R

k × N → R such that

F (π1, . . . , πk, n) =

√√√√ k∑
i=1

(
f∗i − µi

f∗i

)2

.

We point out the fact that

(F (π∗1 , . . . , π∗k, n) = 0) ⇒ (Φ(π∗1 , . . . , π∗k, n) = (µ1, . . . , µk))

so that solving the former yields a solution for the latter. Furthermore, F can be
computed in polynomial time.

CONDOR is a continuous optimization algorithm, developed and implemented
by Vanden Berghen et al [25]. It attempts at finding the values for a set of param-
eters that minimizes an objective function. It proceeds by building a local approx-
imation of F around a given point, as a polynomial of degree two. It then defines

20



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80  90  100

P
ro

po
rti

on

Sequence length n

Unary internal nodes
Binary internal nodes

Ternary internal nodes
Quaternary internal nodes

Empty internal node

Figure 6: Evolution of the node degree distribution for trees of increasing size in the uniform
model.

a trust region, that is a region where the minimal value is likely to be found. A
sequence of extensions, translations and contractions is then performed in order to
get to a local minimum while limiting the number of evaluations of the objective
function.

We used a C++ implementation of the CONDOR algorithm, downloaded from F.
Vanden Berghen’s website. We implemented our own partial pointing algorithm de-
scribed in Section 4.3.1 for the computation of Φ, using the C++ arbitrary precision
library apfloat created by M. Tommila. This allowed us to compute the value of F
for each proposed set of weights. We combined the three into a software GRGFreqs,
which takes as input a grammar formatted as a GenRGenS [26] description file with
additional target frequencies for the terminal symbols, and iteratively finds a set of
weights that achieves such frequencies.

By contrast to the analytic approach, which relies on the assumption that the
asymptotic regime has been reached, this approach works for fixed, potentially
small, values of n. It is also possible to use sophisticated methods inspired from [16]
to achieve exact values for F , or just to take advantage of the numerical stability
of our algorithm and set the precision of the mantissa to a large fixed value. Since
the CONDOR algorithm uses real numbers internally, this allows for a reasonably
accurate computation of suitable weights, as illustrated by the following application.

4.3.3. Application: Altering the node degree distribution for quadtrees

Quadtrees are data structures, mostly used in computer graphics to partition
the view plane, thus helping in determining which parts are obfuscated, or which ge-
ometrical objects are in collision. Considered as a combinatorial object, a quadtree
can be recursively defined as either an empty tree, or a tree having four children, de-
noted by their orientations (Northern-eastern, southern-eastern, southern-western
and northern-western). This definition gives rise to the following context-free gram-
mar

S → aSbScSdS | ε
which generates all quadtrees through an encoding similar to that of Dyck words
for binary trees. More specifically, it can be shown that the number of words of
length 4n generated by this grammar is exactly the number of quadtrees having n
internal nodes.
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Figure 7: Left: Weight optimization for weighted quadtrees of size 201. The targeted proportions
are 127/201 (resp. 21/201) for nodes of degree 0 (resp. 1, 2, 3 and 4).
Right: Node degree distributions for weighted quad trees of increasing size in our weighted model.
Although formally the computed weights only work for size 201 structures, a good approximation
of the targeted distribution is already observed for smaller sizes.

Now, we defines the degree of a node to be the number of its non-empty children.
The grammar above can then be altered in such a way that each production will
create a node of known degree i, marked by an occurrence of a distinctive letter ai:

S → T | ε
T → a4TbT cTdT

| a3bT cTdT | a3TbcTdT | a3TbT cdT | a3TbT cTd

| a2bcTdT | a2bT cdT | a2bT cTd | a2TbcdT | a2TbcTd | a2TbT cd

| a1Tbcd | a1bT cd | a1bcTd | a1bcdT

| a0bcd

Computing the proportions of symbols {a0, . . . , a4}, which can be done for instance
by one of the algorithms from Subsection 4.3.1), yields the distribution of node
degrees for increasing lengths plotted in Figure 6. This distribution shows uneven
proportions of each types of nodes.

Assume we want to draw quadtrees at random in a weighted model, chosen
such that the proportions of nodes of degree 1, 2, 3 and 4 are equal, while leaving
out nodes of degree 0 as a necessary degree of freedom. Furthermore, we want to
make sure that there exists a quadtree that achieves the target frequencies. Let
{n0, . . . , n4} be the numbers of nodes of respective degrees {0, . . . , 4} in a quadtree,
then an achievable quadtree must obey the following constraints:

1. The number of nodes n in any tree is related to the sum of degrees.

2. The numbers ni of nodes of different degrees have to sum to n.

3. Nodes having degrees 1 to 4 have to be equally represented.

These constraints translate into the following system


0n0 + 1n1 + 2n2 + 3n3 + 4n4 = n− 1
n0 + n1 + n2 + n3 + n4 = n

n1 = n2 = n3 = n4 = k

Solving the system yields the following values in n0 and k:{
n0 = 3n+2

5
k = n−1

10

A corollary is that our set of constraints can only be fulfilled by trees of size equal
to 1 modulo 10.
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For instance, any quadtree of size 201 that meets the three conditions above
will necessarily contain 127 nodes of degree 0 and 21 nodes of each other degree.
Figure 7–Left illustrates a run of our software GrgFreqs using such proportions
as target (127/201 for nodes of degree 0 and 21/201 otherwise). After about 100
evaluation of the objective function, a set π of candidate weights for symbols ai,
giving rise to a value 3.6 10−6 for the objective function, is found:

π(a0) = 1.0

π(a1) = 0.0711964090586830050666478086895

π(a2) = 0.081989145292288068134212153381667

π(a3) = 0.212971355355023955757687303958

π(a4) = 1.47891397897895027213621688134

Using these weights, it is then possible to replot the average frequencies for these
symbols for sizes between 1 and 100 (Figure 7–Right).

5. Conclusion

In this paper, we introduced and developed a new scheme for the non-uniform,
yet controlled, generation of combinatorial structures. First, we addressed the ex-
act frequency generation and derived a recursive algorithm that generates m words
having a predefined atoms distribution (n1, . . . , nk) in O(mn log n + r2

∏k
i=1 n2

i )
arithmetic operations. Then we addressed the random generation according to ex-
pected frequencies, motivated both by bioinformatics and computer science appli-
cations. We introduced the notion of weighted standard specification, and derived
a random generation algorithm based on the so-called recursive approach taking
O(mn log n+n2) for the generation of m structures in the according to the weighted
distribution. We showed that computing asymptotic weights, i. e. weights that are
suitable for asymptotic targeted frequencies, can be reduced to solving an explicit
algebraic system. For fixed sizes, we gave two distinct algorithmic approaches for
the opposite problem, i. e. the computation of atom frequencies achieved by given
weights, without solving any functional algebraic system. The first works for ev-
ery standard specification and takes O(k · n4) arithmetic operations whereas the
second works for context-free languages and uses grammar transforms to compute
all frequencies in O(k · n2) arithmetic operations. This allowed us to reformulate
the problem of computing suitable weights as an optimization problem, which we
solved in a heuristic fashion.
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µ = 1/4 ⇔ fc = 11.11 . . .%

µ = 1 ⇔ fc = 33.33 . . .%

µ = 2 ⇔ fc = 50%

µ = 18 ⇔ fc = 90%

Figure 9: Unary-binary trees associated with weighted Motzkin words of size 500, for different
values of µ the weight of unary nodes.
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