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Abstract

This paper proposes two binary quadratic formulations for minimizing power subject to bit rate
and sub-carrier allocation constraints over wireless downlink (DL) Orthogonal Frequency Division
Multiple Access (OFDMA). The first model represents a restricted case in which users are allowed to
use only one modulation size in each sub-carrier while the second, a more flexible real case in which
they can use any size. We propose two semidefinite programming relaxations (SDP) and compare
with the linear programs (LP) obtained by applying Fortet linearization method to the quadratic
models. Numerical results show a total average tightness gain of 42.78 % and 97.17 % in the first and
second case, respectively. Moreover we get near optimal bounds, in average, of 1 % for the second
model over realistic data.

Keywords: Orthogonal Division Multiple Access, downlink allocation, adaptive modulation, semidef-
inite programming.

1 Introduction

When several users are connected to a Base Station (BS) a large number of signals use the wireless
channel, therefore greater complexity is generated by the negative phenomena of Multiple Access Inter-
ference (MAI) and Multi-path distortions. OFDMA is a suitable technology for combating these negative
phenomena and it is currently the type of modulation used in wireless multi-user systems such as IEEE
802.11a/g WLAN, in networks of fixed access such as IEEE 802.16a and also for mobile WiMax deploy-
ments networks ensuring high quality of service (QoS) requirements [1]. OFDMA divides the channel into
several orthogonal narrow band frequencies forming sub-carriers (sub-channels) giving access to several
users simultaneously. In order to solve the resource allocation problem of DL sub-carrier and power over
OFDMA systems, several schemes and algorithms have been proposed [2]. In [3] for example, the prob-
lem of minimizing total power consumption with constraints on bit error rate (BER) for users requiring
different services is formulated while in [4], a sub-carrier allocation algorithm is proposed to increase the
total user data rates subject to BER, total transmission power and proportional rate constraints. In this
work we deal with the problem of minimizing power subject to assignment sub-carrier constraints using
adaptive modulation, which means varying the number of bits to be sent in the different sub-carriers.
We state two quadratic formulations for this problem. A restricted one in which users are allowed to use
one modulation size in its allotted sub-carriers and a more real flexible formulation in which they can use
any modulation size in each sub-carrier. We derive two Semidefinite programming (SDP) relaxations to
compare with the equivalent linear programs obtained by linearizing the quadratic models using Fortet
linearization method [5].

1



SDP is a subfield of convex optimization concerned with the optimization of a linear objective function
subject to the intersection between an affine set and the conic space generated by positive semidefinite
matrices. SDP arises as a generalization of linear programming by replacing the vector of variables with a
symmetric matrix and replacing the nonnegativity constraints with a positive semidefinite constraint. As
in linear programming, SDP has also several important properties: convexity, it has a rich duality theory
(although not as strong as linear programming), and admits theoretically efficient solution procedures
based on iterating interior point methods. A strong link between SDP and combinatorial optimization
has been established in last decades. We mention for example the work of Grötschel, Lovász and Schrijver
[15] who investigated in detail both LP and SDP relaxations to combinatorial optimization problems.
Later, Lovász and Schrijver [16] showed that SDP problems could provide tighter relaxations for binary
programming problems. Other important works are the contributions of Nesterov and Nemirovski [17, 18]
and Alizadeh [19] who have shown that interior point methods, pioneered by Karmarkar [20] for LP could
be extended to SDP. Another recent and important work is due to Goemans and Williamson [6] who
showed that SDP could be highly effective when finding good approximations to the maxcut problem,
hence we use SDP to get tighter bounds due to its proven efficiency in combinatorial optimization.
Moreover, actual SDP solvers use interior point algorithms with polynomial time complexity exploiting
matrix sparsity [7, 11]. The contribution of this paper is mainly focused in the quality of the lower
bounds obtained from a combinatorial optimization point of view rather than from a practical real
implementation. The paper is organized as follows: Section 2 provides the general system description of
the OFDMA allocation problem. Section 3 states the two new quadratic formulations for this problem and
the equivalent linear formulations. Section 4 presents and explains the proposed SDP relaxations. Section
5 presents numerical results for the proposed SDP relaxations and those obtained by the equivalent linear
models. Finally Section 6 provides some conclusions of this work.

2 System Description

We consider a single cell OFDMA wireless system composed by a base station (BS) and several users.
The BS consists of a set of N sub-carriers that have to be assigned to a set of K users using a modulation
size of c ∈ {1, . . . ,M} bits in each sub-carrier. The BS must perform this allocation process over time in
order to exploit the so-called multi-user diversity and hence increasing capacity of the system, although
under the assumption of slow time varying channels [21]. The multi-user diversity occurs since sub-
carriers perceive a large variation in channel gain which is different for each user, then each sub-carrier
can vary its own transmission rate depending on the quality of the channel. The better the quality of
the sub-channel is, the higher the throughput of bits that can be sent and the worse the less rate can
be achieved. Therefore, for each user k ∈ {1, . . . ,K} and each sub-carrier n ∈ {1, . . . , N}, we may have
a function f(ck,n, BERk) depending on the amount of bits to be transmitted by the channel pair (k, n)
taking into account the BERk performance for each user. We can use the following formula for user k
using subcarrier n with c bits.

P ck,n =
f(c,BERk)
|αk,n|2

(1)

where αk,n represents the time varying channel gain which can be modeled, for example as [8]:

αk,n =
L∑
i=1

wi expj(2πfi+Φi) (2)

with L, wi, fi and Φi being the total number of incident waves, the amplitude, the doppler frequency
and the initial phase of the incident wave, respectively. The main idea is to distribute efficiently and
dynamically sub-carriers of the BS using adaptive modulation while minimizing total power in the system,
but also having in mind the Rk bits requirement that each user has. The BS is faced with this NP-hard
problem and once the decision is taken, the bits of each user are modulated into an adaptive M-PSK
or M-QAM symbol to be subsequently combined using the inverse fast fourier transform (IFFT) into an
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OFDMA symbol which is assumed to be transmitted through a slowly time-varying frequency-selective
Rayleigh channel over a bandwidth B.

3 The Quadratic Allocation Schemes

We formulate the above problem as a quadratic integer programming problem for the two cases de-
pending on the adaptive modulation condition.

3.1 A Restrictive Modulation Case: QIP1

In order to state a restrictive quadratic OFDMA model under the condition that each user must use
only one size of modulation in its allotted sub-carriers we define the binary variables xk,n for user k using
sub-carrier n and the binary variables yk,c for user k using a modulation size of c bits. Using the above
power formula (1), the quadratic model we propose for this restrictive case can be stated as:

QIP1 : min
xk,n,yk,c

K∑
k=1

N∑
n=1

M∑
c=1

P ck,nxk,nyk,c (3)

st:
N∑
n=1

[
xk,n

M∑
c=1

c · yk,c

]
= Rk ∀k (4)

K∑
k=1

[
xk,n

M∑
c=1

yk,c

]
≤ 1 ∀n (5)

xk,n, yk,c ∈ {0, 1} (6)

In QIP1, (3) is the objective function meaning that if a sub-carrier n is assigned to user k using a
modulation size of c bits, then P ck,n has to be minimized. Constraint (4) is the bit rate constraint which
uses index c as an integer adaptive modulation parameter to reach the Rk bits needed by each user.
Constraint (5) ensures that each sub-carrier must be used by only one user at a time. Notice from this
last constraint that the

∑M
c=1 yk,c should always be equal to one, otherwise a user would not be receiving

any bits from the BS. This observation together with the binary definition of variables yk,c force the
restrictive modulation condition to be satisfied. Besides, we also ensure that

∑K
k=1 xk,n is between zero

and one which is equivalent to say that each sub-carrier must be used by at most one user at a time.

3.2 A Flexible Modulation Case: QIP2

Another quadratic model can also be stated for a more realistic flexible case in which each user might
use any bit size of modulation in its allotted sub-carriers. To do this, we redefine variables yk,c of QIP1
changing the index set k by the index set n to get the binary variables yn,c which means now that each
sub-carrier may use a different modulation size of c bits. The quadratic model QIP2 we propose for this
second flexible case can be stated as follows:

QIP2 : min
xk,n,yn,c

K∑
k=1

N∑
n=1

M∑
c=1

P ck,nxk,nyn,c (7)

st:
N∑
n=1

[
xk,n

M∑
c=1

c · yn,c

]
= Rk ∀k (8)

0 ≤
K∑
k=1

xk,n ≤ 1 ∀n (9)
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0 ≤
M∑
c=1

yn,c ≤ 1 ∀n (10)

xk,n, yn,c ∈ {0, 1} (11)

where constraint (8) represents the bit rate constraint to reach the Rk bits needed by each user, constraint
(9) ensures that each sub-carrier must be used by only one user at a time while constraint (10) represents
a linear modulation constraint ensuring that a sub-carrier must not use more than one modulation size.

3.3 Integer Linear Formulations for QIP1 and QIP2

In order to compare QIP1 and QIP2 with an SDP relaxation, we get the optimal solutions of QIP1
and QIP2 by transforming them into equivalent Integer Linear Programming models we call hereby by
IP1 and IP2, respectively. We introduce linearization variables ϕck,n = xk,nyk,c in QIP1 to get [5]:

IP1 : min
xk,n,yk,c,ϕc

k,n

K∑
k=1

N∑
n=1

M∑
c=1

P ck,nϕ
c
k,n (12)

st:
N∑
n=1

M∑
c=1

cϕck,n = Rk ∀k (13)

0 ≤
K∑
k=1

M∑
c=1

ϕck,n ≤ 1 ∀n (14)

xk,n ≥ ϕck,n ∀k, n, c (15)
yk,c ≥ ϕck,n ∀k, n, c (16)
ϕck,n ≥ xk,n + yk,c − 1 ∀k, n, c (17)
xk,n, yk,c, ϕ

c
k,n ∈ {0, 1} (18)

and linearization variables ϕck,n = xk,nyn,c in QIP2 to get:

IP2 : min
xk,n,yn,c,ϕc

k,n

K∑
k=1

N∑
n=1

M∑
c=1

P ck,nϕ
c
k,n (19)

st:
N∑
n=1

M∑
c=1

cϕck,n = Rk ∀k (20)

0 ≤
K∑
k=1

xk,n ≤ 1 ∀n (21)

0 ≤
M∑
c=1

yn,c ≤ 1 ∀n (22)

xk,n ≥ ϕck,n ∀k, n, c (23)
yn,c ≥ ϕck,n ∀k, n, c (24)
ϕck,n ≥ xk,n + yn,c − 1 ∀k, n, c (25)
xk,n, yn,c, ϕ

c
k,n ∈ {0, 1} (26)

In IP1 and IP2, constraints (15)-(17) and constraints (23)-(25) are the linearization Fortet constraints.
With these linear IP models, now we derive two SDP relaxations for each quadratic model QIP1 and
QIP2.
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4 The Semidefinite Relaxations

In this section we derive two SDP relaxations, one for QIP1 and one for QIP2. To do that, we define
the set Sn = {Z ∈ Mn, Z = ZT } as the set of n square symmetric matrices and S+

n = {Z ∈ Sn, a ∈
Rn, aTZa ≥ 0} as the set of symmetric matrices satisfying the condition of positive semidefiniteness [9].
We also recall that a set C is an affine space if the line through any two distinct points in C lies in C, i.e.
if for any two points p1, p2 ∈ C and θ ∈ R, we have θp1 + (1− θ)p2 ∈ C [10].

4.1 A Semidefinite Relaxation for QIP1

In order to derive an SDP relaxation for QIP1, we define the following vector z as:

zT =
(
x1,1 · · · x1,N · · · xK,N y1,1 · · · y1,M · · · yK,1 · · · yK,M

)
Then, let matrix Z be a symmetric positive semidefinite matrix defined by:

Z =
(
W z
zT 1

)
� 0

where W = zzT . The first SDP relaxation can be written as follows:

SDP1 : min
Z

Trace(PZ) (27)

st: Trace(UkZ) = Rk ∀k (28)
Trace(VnZ) ≤ 1 ∀n (29)
Trace(Γi,jZ) ≥ 0 ∀i < j (30)
diag(W ) = z (31)
Z � 0 (32)

where the Trace operator represents the usual inner product for matrices; ie, for matrices P and Z, we
have

Trace(PZ) =
∑
i

∑
j

Pi,jZi,j

Matrices P,Uk, Vn are symmetric matrices with entries equal to half the coefficients taken from (3), (4)
and (5), respectively. Constraint (31) is a relaxation constraint for the condition of z2

i = zi for all i.
The symmetric matrix Γi,j in constraint (30) is used to have positive values in matrix Z and finally
constraint (32) imposes the condition of matrix Z to be positive semidefinite. In SDP1, the objective
function and constraints (28)-(31) are affine spaces and constraint (32) represents the conic space of
positive semidefinite matrices.

4.2 A Tighter Semidefinite Relaxation for QIP2

In order to derive an SDP relaxation for QIP2, we simply redefine vector z as:

zT =
(
x1,1 · · · x1,N · · · xK,N y1,1 · · · y1,M · · · yN,1 · · · yN,M

)
We can construct a similar matrix Z as in SDP1, but now according to the new vector z. Similarly we
can reconstruct new symmetric matrices P,Uk, Vn, Gn and Γi,j for all i < j to state:
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SDP2 : min
Z

Trace(PZ) (33)

st: Trace(UkZ) = Rk, ∀k (34)
Trace(VnZ) ≤ 1, ∀n (35)
Trace(GnZ) ≤ 1, ∀n (36)
Trace(Γi,jZ) ≥ 0 ∀i < j (37)
diag(W ) = z (38)
Z � 0 (39)

Unfortunately, the results for this new SDP2 formulation are not better than LP2, however it is possible
to find a tighter SDP relaxation. Let’s define for each n constraint in QIP2, the coefficient vectors exn,
eyn with each element representing the coefficient of each variable in vector z, then using the fact that
diag(W ) = z we can write these constraints as Tr(Diag(exn)W ) ≤ 1 and Tr(Diag(eyn)W ) ≤ 1 where we
use the following proposition in order to strength SDP2.

Proposition 1. For each n, Trace([exn][exn]TW ) ≤ 1 is tighter than Trace(Diag(exn)W ) ≤ 1.
Proof: (See lemma 2.1 in [9]). To see this, we just focus in one variable, say xk,n.

We write:
∑K
k=1 xk,n ≤ 1 as [exn]T z ≤ 1, then ([exn]T z)(zT [exn]) ≤ 12 and Trace([exn][exn]TW ) ≤ 1

(W = zzT ) since [exn]T z ≥ −1. Now, for any matrix Q = W − zzT � 0, we have Trace([exn][exn]T [Q+
zzT ]) ≤ 1 wich is equivalent to [exn]TQ[exn]+([exn]T z)2 ≤ 1 where the proof follows since [exn]TQ[exn] ≥
0 due to the positive semidefiniteness of Q. �

In order to use proposition 1, we add one zero row-column vector to the rank 1 positive semidefinite
matrices [exn][exn]T and [eyn][eyn]T to state a tighter SDP relaxation we call hereby TSDP2:

TSDP2 : min
Z

Trace(PZ) (40)

st: Trace(UkZ) = Rk, ∀k (41)
Trace([exn][exn]TZ) ≤ 1, ∀n (42)
Trace([eyn][eyn]TZ) ≤ 1, ∀n (43)
Trace(Γi,jZ) ≥ 0 ∀i < j (44)
diag(W ) = z (45)
Z � 0 (46)

The only difference of TSDP2 compare to SDP2 are constraints (42)-(43).

5 Simulation Results

We solve IP1, LP1 and SDP1 first and then IP2, LP2 and TSDP2. Here LP1, LP2 are the relaxations
of IP1 and IP2 respectively, and SDP1, TSDP2 are the proposed semidefinite relaxations for QIP1 and
QIP2. For the numerical experiments we simulate one random power sample varying the number of users
for different fixed number of sub-carriers. This is a realistic assumption in OFDMA systems since the
bandwidth of a single channel can span from 1.25MHz to 20MHz and is closely linked to the number
of sub-carriers to be used in the Discrete Fast Fourier Transform (DFFT) which can take values of 32,
64, 128, 512, 1024 [2]. Besides, the relation between the number of users and sub-carriers usually satisfy
K << N [13]. The maximum number of bits to be transmitted in each sub-carrier is set to M = 4.
These are also very common modulation sizes when using M-PSK or M-QAM modulations in OFDMA
systems [12]. We use only one power sample due to the high computational effort when computing
integer solutions, however some results for small and medium size instances averaged over 50 power
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Table 1: Instances for the Restricted Modulation Case
Size LP1 Relaxation SDP1 Relaxation

# n k # Constraints # Variables # Constraints # Variables
1 32 4 2884 656 693 10585
2 32 6 4310 984 1023 23653
3 32 8 5736 1312 1353 41905
4 32 10 7162 1640 1683 65341
5 32 12 8588 1968 2013 93961
6 32 14 10014 2296 2343 127765
7 64 4 5732 1296 1365 37401
8 64 6 8566 1944 2015 83845
9 64 8 11400 2592 2665 148785
10 64 10 14234 3240 3315 232221
11 64 12 17068 3888 3965 334153
12 64 14 19902 4536 4615 454581
13 128 4 11428 2576 2709 140185
14 128 6 17078 3864 3999 314821
15 128 8 22728 5152 5289 559153
16 128 10 28378 6440 6579 873181
17 128 12 34028 7728 7869 1256905
18 128 14 39678 9016 9159 1710325

Table 2: Instances for the Flexible Modulation Case
Size LP2 Relaxation TSDP2 Relaxation

# n k # Constraints # Variables # Constraints # Variables
1 32 4 3140 768 837 33153
2 32 6 4550 1088 1159 51681
3 32 8 5960 1408 1481 74305
4 32 10 7370 1728 1803 101025
5 32 12 8780 2048 2125 131841
6 32 14 10190 2368 2447 166753
7 64 4 6276 1536 1669 131841
8 64 6 9094 2176 2311 205761
9 64 8 11912 2816 2953 296065
10 64 10 14730 3456 3595 402753
11 64 12 17548 4096 4237 525825
12 64 14 20366 4736 4879 665281
13 128 4 12548 3072 3333 525825
14 128 6 18182 4352 4615 821121
15 128 8 23816 5632 5897 1181953
16 128 10 29450 6912 7179 1608321
17 128 12 35084 8192 8461 2100225
18 128 14 40718 9472 9743 2657665
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Figure 1: Greedy Heuristic for the Restricted Modulation Case
Input: xSdp1, xLp1, Rk Output: Feasible Solutions for QIP1

for each sub-carrier
Pick a uniform Random number r ∈ [0, 1)
if (xSdp1, xLp1 ≥ r) then

xSdp1, xLp1 ← 1
else

xSdp1, xLp1 ← 0
end if

end for
if(Not Feasible xSdp1, xLp1 due to (4),(5) or Not reached Nk)

Randomly add or erase subcarriers
end if
for each user k of ySdp1, yLp1

Determine the modulation size as: Rk/Nk

ySdp1, yLp1 ← 1
end for

channel samples are also provided. The sizes of the instances we simulate and the number of constraints
as well as the number of variables for LP1, SDP1, LP2 and TSDP2 relaxations are shown in tables 1 and
2 respectively. The number of variables in SDP1 is calculated according to the size of matrix Z, so if the
order of this matrix is F , then the number of variables is F (F + 1)/2 [7]. From a theoretically point of
view, this is the correct number of variables in an SDP formulation, although only the non-zero entries
are used and solvers usually exploit sparsity structure of the matrix. As an observation from these tables
we can say that LP1 and LP2 have more constraints than SDP1 and TSDP2, but we have the opposite
for the number of variables. On the other hand the number of variables and constraints for LP2 and
TSDP2 are larger than for LP1 and SDP1. We simulate up to these number of SDP constraints since
current solvers can not solve larger instances [11].

The numerical experiments for these instances are first run using random data for powers which we
generate as

P ck,n =
c ·Rand(k, n)

M
c ∈ {1, . . . ,M} (47)

and second; we simulate using more realistic data by means of equation (48) to compute the power matrix
in (1) since it is the required transmission power for c bits/sub-carrier at a given BER with unity channel
gain [14].

f(ck,n, BERk) =
N0

3

[
Q−1

(
BERk

4

)]2

(2c − 1) (48)

where Q−1(x) is the inverse function of

Q(x) =
1√
2π

∫ ∞
x

e−
t2
2 dt (49)

The main difference of random and realistic data is that it is spread linearly and exponentially respectively.
We use channel model (2) and without loss of generality, we set parameter values according to [13] as
follows. The total number of incident waves is set to L = 200, doppler frequency is assumed to be
fi = 30Hz, for all i and the BERk is set to 10−3 for each user. Finally, we set the power spectral density
to N0 = 1/N dBW in each sub-carrier. The amplitude vector (w1, . . . , wL) is assumed to be identically
and Normally distributed in each component like wi ∼ N(µ = 0, σ2 = 1). The initial phase Φi of the ith

incident wave is calculated as Φi = 2πλ(i)/max{i}{λ(i)}, for all i where λ is a vector also assumed to
be identically and Normally distributed N(0, 1). The assumption of these power matrices is also realistic
since higher values are common when using higher modulations. A Matlab program is developed using
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Table 3: Results for the Restricted Modulation Case over Random Data
Instance LP1 SDP1 Gaps

Opt Feas Lb Time Feas Lb Time OPSDP1 OPLP1 GHSDP1 GHLP1

1 1.66 6.21 0.97 1.30 3.33 1.27 7.9 0.23 0.42 1.63 5.38
2 0.75 6.74 0.43 0.33 4.83 0.45 22.1 0.40 0.42 9.70 14.55
3 0.82 7.03 0.46 0.38 4.01 0.58 52.7 0.29 0.45 5.87 14.41
4 0.64 5.58 0.36 0.42 5.50 0.37 94.8 0.42 0.43 13.85 14.31
5 0.22 2.44 0.20 0.45 2.34 0.21 149.7 0.04 0.09 10.14 11.2
6 0.20 3.25 0.08 0.53 3.05 0.09 306.4 0.55 0.60 32.88 39.62

Average 0.71 5.20 0.41 0.56 3.84 0.49 105.60 0.32 0.40 12.34 16.57
7 0.40 4.79 0.28 0.38 2.84 0.40 43.3 0 0.30 5.93 15.80
8 1.33 7.77 0.92 0.47 6.13 1.06 119.7 0.20 0.30 4.81 7.41
9 1.78 11.62 1.08 0.95 8.64 1.27 299.7 0.29 0.39 5.82 9.80
10 1.12 11.53 0.44 0.75 5.33 0.55 735.2 0.50 0.60 8.69 25.20
11 0.83 7.22 0.31 0.80 6.50 0.36 1443.4 0.56 0.62 17.05 22.29
12 0.48 5.94 0.38 0.77 4.53 0.41 1440.6 0.14 0.20 10.04 14.63

Average 0.99 8.14 0.56 0.68 5.66 0.67 680.31 0.28 0.40 8.72 15.85
13 0.71 7.58 0.52 0.59 2.25 0.56 162.8 0.21 0.26 3.05 13.54
14 2.77 11.67 2.25 0.83 4.19 2.39 711.8 0.14 0.19 0.75 4.18
15 1.27 9.14 0.89 0.86 3.37 1.17 1757.9 0.08 0.30 1.88 9.25
16 1.14 12.53 0.85 1.06 7.50 0.87 4356.4 0.24 0.26 7.62 13.81
17 0.78 6.75 0.58 1.23 6.45 0.61 8330.1 0.21 0.25 9.57 10.63
18 0.75 14.29 0.46 2.33 4.55 0.62 14325 0.17 0.38 6.33 30.06

Average 1.23 10.32 0.92 1.15 4.71 1.03 4940.70 0.17 0.27 4.86 13.57
Tot. Average 0.98 7.89 0.63 0.80 4.74 0.73 1908.90 0.25 0.35 8.64 15.33

Cplex 9.1 and Csdp [11] software for solving the IP’s, LP’s and SDP’s models. We use a Pentium IV,
1.9GHz with 2 GBytes of RAM under windows. Result tables for the restricted and flexible modulation
case show the optimum solutions for IP, feasible integer solutions obtained with a simple greedy heuristic,
lower bounds for LP as for SDP and the cpu time in seconds for both relaxations. The gaps are calculated
as

OPSDP =
[
Opt−SDP

Opt

]
, OPLP =

[
Opt−LP
Opt

]
, GHSDP =

[
Feas−SDP

SDP

]
, GHLP =

[
Feas−LP

LP

]
.

5.1 Results for the Restricted Modulation Case: IP1, LP1 and SDP1

We generate feasible integer solutions, for QIP1 from LP1 and SDP1 using a simple greedy heuristic
just to confirm the tightness of SDP over LP. The greedy heuristic is only intended to find a feasible
solution in a fair manner rather than to find the optimal solution of QIP1. The algorithm for this heuristic
is shown in Figure 1. It simply takes as input the Rk bits needed by each user, the relaxed sub-carrier
allocation matrices xSdp1, xLp1 from SDP1 and LP1, then it does a one randomized rounding iteration
on its elements and corrects if there is no feasible solution. To generate these feasible solutions we put
the values of Rk = NkT where 1 ≤ T ≤ M . Nk is a random number of sub-carriers for each user in
1 ≤ Nk ≤ bN/Kc. Notice from this algorithm that the modulation used by a particular user can be
easily determined as Rk/Nk since each user uses a unique modulation size.

In the case of random data, from table 3 we see that the average gaps for OPSDP1 and OPLP1 are
25% and 35 %, respectively. This means that we have a tightness gain of 28.57 % of SDP1 over LP1. This
is somehow confirmed with the gain of 43.6 % obtained by using the greedy heuristic of Figure 1. We
also see this gain from table 5 in which each instance has been averaged over 50 sample power matrices.
Here OPSDP1 and OPLP1 are equal to 27% and 36%. This gives a tightness gain of 25 % of SDP1 over
LP1. However, even when SDP1 is tighter than LP1, we are still far from the optimal solution. On the
opposite, we have nearer optimal solutions when using realistic data. The average results of OPSDP1 and
OPLP1 in table 4 are 6% and 14 % which gives a tightness gain of 57% of SDP1 over LP1. The greedy
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Table 4: Results for the Restricted Modulation Case over Realistic Data
Instance LP1 SDP1 Gaps

Opt Feas Lb Time Feas Lb Time OPSDP1 OPLP1 GHSDP1 GHLP1

1 0.08 1.04 0.06 0.31 0.08 0.08 6.6 0 0.25 0 16.33
2 0.33 1.38 0.29 0.33 0.61 0.32 18.6 0.03 0.12 0.90 3.75
3 0.34 8.97 0.28 0.42 8.10 0.29 47.0 0.15 0.18 26.68 30.61
4 0.30 7.38 0.26 0.45 7.58 0.27 105.7 0.10 0.13 27.07 27.38
5 0.15 1.78 0.13 0.45 1.72 0.14 166.7 0.06 0.13 11.28 12.69
6 0.25 11.06 0.20 0.58 2.47 0.22 260.7 0.12 0.20 10.22 54.3

Average 0.24 5.26 0.20 0.42 3.42 0.22 100.88 0.07 0.16 12.69 24.17
7 0.88 9.87 0.68 0.41 5.59 0.79 39.9 0.11 0.23 6.09 13.47
8 0.30 10.95 0.27 0.50 5.28 0.29 128.0 0.04 0.10 17.14 39.30
9 0.37 5.92 0.35 0.61 5.54 0.36 349.2 0.02 0.05 14.38 15.91
10 0.69 6.68 0.59 0.80 4.94 0.63 658.0 0.08 0.14 6.84 10.32
11 0.31 9.93 0.28 0.78 4.16 0.29 1706.3 0.09 0.10 13.49 34.27
12 0.21 11.43 0.19 0.84 9.79 0.20 2421.5 0.08 0.10 48.91 58.92

Average 0.46 9.13 0.39 0.65 5.88 0.42 883.81 0.07 0.12 17.80 28.69
13 0.56 11.93 0.46 0.61 6.43 0.52 260.7 0.07 0.17 11.36 24.93
14 0.92 21.96 0.79 0.94 3.70 0.90 651.7 0.02 0.14 3.11 26.79
15 1.03 18.61 0.88 1.19 13.08 0.97 1695.7 0.06 0.15 12.49 20.26
16 0.83 19.88 0.71 1.63 17.98 0.79 3917.4 0.05 0.14 21.83 26.84
17 0.47 42.68 0.40 1.34 23.70 0.43 9105.1 0.08 0.14 54.11 105.70
18 0.55 18.54 0.48 2.52 11.00 0.51 17647 0.07 0.12 20.56 37.62

Average 0.72 22.26 0.62 1.37 12.64 0.68 5546.3 0.05 0.14 20.57 40.35
Tot. Average 0.47 12.22 0.40 0.81 7.31 0.44 2177 0.06 0.14 17.02 31.07

Table 5: Average Results for the Restricted Modulation Case over Random Data

Instance LP1 SDP1 Gaps
Opt Feas Lb Time Feas Lb Time OPSDP1 OPLP1 GHSDP1 GHLP1

1 1.03 4.56 0.65 0.39 4.30 0.78 6.21 0.25 0.36 6.63 7.87
2 0.75 4.28 0.48 0.44 3.87 0.56 18.54 0.23 0.33 7.56 9.62
3 0.67 4.96 0.44 0.40 4.44 0.50 39.62 0.25 0.34 9.80 12.48
4 0.56 4.47 0.34 0.46 4.18 0.38 76.23 0.32 0.39 10.82 13.21
5 0.39 3.99 0.22 0.46 3.65 0.24 135.75 0.37 0.42 15.32 17.95
6 0.46 4.90 0.27 0.48 4.47 0.30 220.49 0.35 0.40 15.88 18.43
7 1.78 8.26 1.24 0.42 6.83 1.47 41.01 0.18 0.31 5.28 7.06
8 1.17 7.62 0.76 0.49 6.56 0.90 125.08 0.24 0.35 9.33 11.74
9 0.99 8.17 0.64 0.62 7.14 0.76 301.15 0.24 0.35 10.27 13.36
10 0.84 8.37 0.52 0.65 7.31 0.62 585.17 0.27 0.37 12.35 16.76

Tot. Average 0.86 5.96 0.56 0.48 5.28 0.65 154.93 0.27 0.36 10.32 12.85

Table 6: Average Results for the Restricted Modulation Case over Realistic Data

Instance LP1 SDP1 Gaps
Opt Feas Lb time Feas Lb time OPSDP1 OPLP1 GHSDP1 GHLP1

1 0.34 6.34 0.27 0.32 4.42 0.29 5.71 0.10 0.17 14.10 25.51
2 0.27 13.27 0.22 0.36 5.34 0.23 17.12 0.12 0.17 23.60 47.70
3 0.27 14.48 0.23 0.42 6.92 0.24 39.07 0.09 0.12 26.68 66.17
4 0.23 6.29 0.20 0.46 6.56 0.21 74.87 0.08 0.13 30.23 30.45
5 0.18 4.37 0.16 0.49 4.26 0.17 136.42 0.05 0.11 24.05 26.31
6 0.24 5.02 0.21 0.59 4.78 0.22 222.18 0.08 0.12 20.72 22.90
7 0.74 21.64 0.47 0.44 9.62 0.53 38.81 0.11 0.19 19.46 37.14
8 0.51 18.80 0.43 0.57 15.65 0.47 112.21 0.07 0.15 32.88 43.15
9 0.46 15.66 0.39 0.64 11.23 0.42 265.94 0.08 0.14 26.03 40.95
10 0.37 28.85 0.33 0.71 20.45 0.34 536.49 0.07 0.11 57.86 84.81

Tot. Average 0.36 13.47 0.29 0.50 8.92 0.31 144.88 0.08 0.14 27.56 42.50
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Figure 2: Greedy Heuristic for the Flexible Modulation Case
Input: xTsdp2, xLp2, yTsdp2, yLp2, Rk Output: Feasible Solutions for QIP2

for each sub-carrier
Pick a uniform Random number r ∈ [0, 1)
if (xTsdp2, xLp2, yTsdp2, yLp2 ≥ r) then

xTsdp2, xLp2 ← 1
yTsdp2, yLp2 ← 1

else
xTsdp2, xLp2 ← 0
yTsdp2, yLp2 ← 0

end if
end for
if(Not Feasible solutions due to (8),(9),(10))

Randomly

{
add or erase sub-carriers
adjust yTsdp2, yLp2 for each user to reach Rk

end if

heuristic again confirms it with a gain of 45.22 %. In order to have a more global idea of the average
about the improvement achieved by SDP1 over LP1, from table 6 we see that the tightness gain is 42.85%
and 35.15 % when using the greedy heuristic.

On the other hand, even when CSDP solver uses interior point algorithms with polynomial time
complexity [11], cpu times are still larger for SDP1 than for LP1, although they are no to so big for small
and medium size instances.

5.2 Results for the Flexible Modulation Case: IP2, LP2 and TSDP2

For the second flexible modulation case, we generate feasible integer solutions for QIP2 from LP2 and
TSDP2 relaxations using a similar greedy heuristic as in the above case. Again, this heuristic is intended
only to find a feasible solution in a fair manner rather than to find the optimal solution of QIP2. The
algorithm takes as input the Rk bits needed by each user, the relaxed sub-carrier allocation matrices
xTsdp2, xLp2 and the relaxed modulation matrices yTsdp2, yLp2 from TSDP2 and LP2, then it does a one
randomized rounding iteration on their elements and corrects not only by randomly adding or erasing
sub-carriers but also adjusting the values of matrices yTsdp2, yLp2 until a solution is feasible. The main
difference of the greedy algorithm shown in Figure 2 compared to the above shown in Figure 1 is in
matrices yTsdp2 and yLp2 which now are more flexible because they change in each sub-carrier (yn,c)
instead of changing in each user (yk,c).

For random data, results of table 7 show that the average gaps for OPTSDP and OPLP2 are 5e-3%
and 17 %, which is a high tightness gain of 98.23 % for TSDP2 over LP2. A gain of 98.05 % is achieved
using now the greedy heuristic of Figure 2. Similarly, table 9 gives a tighteness gain of 99.95% for TSDP2
over LP2, hence we say that solutions are almost optimal when using random data. Fortunately, we have
also excelent results when using realistic data. The average results of OPSDP1 and OPLP1 in table 8 are
1% and 37 % respectively, so the tightness gain achieved is 97.29 % for TSDP2 over LP2. The greedy
heuristic gives a gain of 94.05 %. The average improvement from table 10 gives a tightness of 97.14%
and 83.88 % using the greedy heuristic. Finally we have the same situation for the cpu times. Here we
recall that the main purpose of this paper is to find lower bounds rather than to solve the problem for
a real application. Certainly, future research should be devoted in finding faster algorithms with lower
complexity than interior point methods such as those proposed, for example, in [22] and in the references
therein.
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Table 7: Results for Flexible Modulation Case over Random Data
Instance LP2 TSDP2 Gaps

Opt Feas Lb time Feas Lb time OPTSDP2 OPLP2 GHTSDP2 GHLP2

1 2.37 3.72 1.90 0.31 2.39 2.29 12.05 0.03 0.20 0.04 0.95
2 1.97 3.56 1.63 0.36 1.97 1.97 30 0 0.17 0 1.18
3 2.64 5.06 2.18 0.41 2.64 2.64 75.81 0 0.17 0 1.32
4 1.92 3.84 1.56 0.41 2.29 1.91 121.55 1e-3 0.19 0.20 1.46
5 1.88 5.45 1.36 0.45 1.90 1.80 151.94 0.04 0.28 0.05 3.00
6 2.61 5.36 2.17 0.50 2.61 2.61 258.14 0 0.17 0 1.46

Average 2.23 4.49 1.80 0.40 2.30 2.20 108.24 0.01 0.19 0.04 1.56
7 8.58 11.70 7.39 0.39 8.58 8.58 99.11 0 0.14 0 0.58
8 5.60 8.94 4.60 0.48 5.60 5.60 261.88 0 0.18 0 0.94
9 5.33 11.50 4.36 0.67 5.38 5.32 608.27 1e-3 0.18 9e-3 1.64
10 4.31 10.75 3.42 0.66 4.31 4.31 1109.3 0 0.21 0 2.14
11 3.41 9.35 2.53 0.75 3.59 3.35 1228.7 0.01 0.26 0.07 2.70
12 2.63 5.11 2.32 3.72 2.72 2.61 1816.7 6e-3 0.12 0.04 1.20

Average 4.97 9.55 4.10 1.11 5.03 4.96 853.99 2e-3 0.18 0.01 1.53
13 8.70 12.91 8.05 0.59 8.70 8.70 593.97 0 0.08 0 0.60
14 8.28 15.94 7.02 0.80 8.51 8.23 1685.3 5e-3 0.15 0.03 1.27
15 5.90 13.77 4.80 0.94 5.97 5.89 3259 1e-3 0.19 0.01 1.87
16 5.40 15.10 4.64 2.44 5.77 5.39 7579.5 1e-3 0.14 0.07 2.25
17 9.38 19.16 7.67 1.38 9.38 9.38 7298.8 0 0.18 0 1.50
18 5.67 13.93 4.94 1.47 6.15 5.66 8842.7 1e-3 0.13 0.08 1.82

Average 7.22 15.13 6.18 1.27 7.41 7.20 4876.5 1e-3 0.14 0.03 1.55
Tot. Average 4.81 9.73 4.03 0.92 4.91 4.79 1946.3 5e-3 0.17 0.03 1.54

Table 8: Results for Flexible Modulation Case over Realistic Data
Instance LP2 TSDP2 Gaps

Opt Feas Lb time Feas Lb time OPTSDP2 OPLP2 GHTSDP2 GHLP2

1 0.61 0.98 0.38 0.36 0.61 0.61 19.70 0 0.37 0 1.56
2 0.39 0.70 0.26 0.36 0.55 0.38 41.47 0.01 0.34 0.46 1.72
3 0.68 1.48 0.32 0.45 0.70 0.66 93.53 0.02 0.53 0.06 19.38
4 0.43 0.87 0.24 0.52 0.53 0.42 167.14 0.02 0.45 0.27 2.66
5 0.28 0.45 0.16 0.52 0.37 0.26 173.38 0.04 0.42 0.42 1.82
6 0.22 0.44 0.14 0.55 0.33 0.21 258.38 0.04 0.38 0.55 2.22

Average 0.43 0.82 0.25 0.46 0.51 0.42 125.60 0.02 0.41 0.29 4.8933
7 0.79 1.63 0.61 0.44 0.79 0.79 112.67 0 0.22 0 1.66
8 1.26 1.92 0.68 5.77 1.40 1.25 415.36 0.01 0.47 0.12 1.84
9 0.57 1.19 0.41 0.66 0.57 0.57 633.56 0 0.29 0 1.95
10 0.51 1.00 0.33 0.77 0.51 0.51 1102.2 0 0.35 0 2.02
11 0.74 1.11 0.40 1.20 0.74 0.74 1544.2 0 0.46 0 1.76
12 0.56 0.95 0.34 1.14 0.78 0.54 1864.9 0.02 0.39 0.44 1.81

Average 0.73 1.30 0.46 1.66 0.79 0.73 945.48 5e-3 0.36 0.09 1.84
13 1.92 3.17 1.18 0.86 2.64 1.83 859.59 0.04 0.39 0.44 1.69
14 1.20 2.26 0.82 1.14 1.20 1.20 2051.9 0 0.32 0 1.76
15 0.78 1.82 0.60 1.64 0.78 0.78 3888.8 0 0.24 0 2.04
16 1.44 2.19 0.82 1.92 1.44 1.44 11928 0 0.43 0 1.68
17 0.75 1.70 0.53 1.83 0.75 0.75 7193.9 0 0.30 0 2.20
18 0.98 1.70 0.62 2.45 1.41 0.97 14363 4e-3 0.36 0.45 1.73

Average 1.17 2.14 0.76 1.64 1.37 1.16 6714.2 7e-3 0.34 0.14 1.85
Tot. Average 0.78 1.42 0.49 1.25 0.89 0.77 2595.1 0.01 0.37 0.17 2.86
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Table 9: Average Results for Flexible Modulation Case over Random Data

Instance LP2 TSDP2 Gaps
Opt Feas Lb time Feas Lb time OPTSDP2 OPLP2 GHTSDP2 GHLP2

1 3.30 4.80 2.84 0.44 3.32 3.28 13.96 5e-3 0.13 0.01 0.70
2 2.54 4.28 2.15 0.35 2.62 2.51 30.97 0.01 0.15 0.04 1.02
3 2.57 4.79 2.08 0.41 2.65 2.55 70.86 0.01 0.19 0.04 1.34
4 2.24 4.69 1.80 0.41 2.42 2.21 128.82 0.01 0.20 0.10 1.66
5 2.02 4.32 1.65 0.73 2.20 1.98 164.90 0.02 0.18 0.12 1.70
6 2.11 5.79 1.69 0.61 2.44 2.06 237.17 0.02 0.20 0.21 2.53
7 8.85 12.39 7.69 0.39 8.85 8.85 99.77 0 0.12 0 0.62
8 5.74 10.20 4.66 0.49 5.96 5.72 264.48 2e-3 0.18 0.04 1.19
9 4.57 9.16 3.88 1.51 4.67 4.56 556.13 3e-3 0.15 0.02 1.41
10 3.92 8.76 3.16 0.70 4.04 3.90 1049.4 4e-3 0.19 0.03 1.79

Tot. Average 3.78 6.91 3.16 0.60 3.91 3.76 261.64 8e-3 0.16 0.06 1.39

Table 10: Average Results for Flexible Modulation Case over Realistic Data

Instance LP2 TSDP2 Gaps
Opt Feas Lb time Feas Lb time OPTSDP2 OPLP2 GHTSDP2 GHLP2

1 0.41 0.75 0.28 0.38 0.59 0.40 18.02 4e-3 0.29 0.56 1.79
2 0.35 0.66 0.23 0.36 0.35 0.35 39.55 0 0.33 0 1.89
3 0.34 0.60 0.21 0.49 0.47 0.33 85.71 0.01 0.38 0.45 1.87
4 0.30 0.56 0.18 0.48 0.41 0.29 153.53 0.02 0.37 0.45 2.00
5 0.29 0.49 0.17 0.74 0.40 0.27 189.65 0.05 0.40 0.47 1.95
6 0.28 0.56 0.16 0.73 0.39 0.26 274.43 0.04 0.41 0.50 2.51
7 0.80 1.56 0.55 0.59 0.80 0.80 116.05 0 0.28 0 1.88
8 0.71 2.04 0.46 0.76 0.71 0.71 316.89 0 0.34 0 3.21
9 0.55 1.04 0.35 0.72 0.83 0.54 645.56 4e-3 0.34 0.59 1.98
10 0.57 1.10 0.35 0.91 0.81 0.56 1233 7e-3 0.36 0.47 2.11

Tot. Average 0.46 0.93 0.29 0.61 0.57 0.45 307.23 0.01 0.35 0.34 2.11
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6 Conclusions

In this paper, we proposed two binary quadratic and two SDP formulations for minimizing power
subject to bit rate and sub-carrier allocation constraints over wireless DL OFDMA using adaptive modu-
lation. Two linear relaxations were derived applying Fortet linearization method to the quadratic models.
Numerical results showed a total average tightness gain of 42.78 % and 97.17 % of SDP over LP. We also
achieved near optimal bounds, in average of 1 % for the second quadratic model when using SDP over
realistic data. The Best results are achieved for this last case which is better since it highly approaches
the conditions of real systems. Future research should be devoted to find lower complexity algorithms
such as those proposed in [22].
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