
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

SWITCHED CODE

KADI N / AL AGHA K

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

09/2009

Rapport de Recherche N° 1527

Switched Code

Nour KADI & Khaldoun Al AGHA
LRI, Université Paris-Sud 11

1 Abstract

We present and analyze a novel degree distribution that outperform Robust
Soliton distribution, used in LT code [1], when the source symbols are dis-
tributed over the network.

2 Binary Exponential Distribution

Definition 1. (codeword and degree): A codeword is the result of XORing
multiple source symbols. These source symbols are called the coding candidi-
dates. The number of coding candidates is called the degree of a codeword.

Definition 2. The Binary Exponential Distribution BEDk is given by

• ϕ(d) = 1
2d , For all d = 1, 2 . . . , k − 1

• ϕ(k) = 1
2k−1

where k represent the total number of source symbols.

Lemma 1. For any k > 0, BEDk is a probability distribution

Proof.

k∑

d=1

ϕ(d) =
k−1∑

1

1

2d
+

1

2k−1
= 2 ∗ (1− 1

2k
)− 1 +

1

2k−1
= 1

1

Definition 3. (decoding probability): Let D(r|d) be the probability to recover
the (r)th source symbol when decoding a codeword of degree d.Or, in other
words, it is the probability to decode a codeword of degree d when r− 1 of the
source symbols has been recovered.

Proposition 1.

D(r|d) =

(k − r + 1)/k for d = 1
d.(k−r+1).

∏d−2

i=0
(r−1−i)∏d−1

i=0
(k−i)

for d = 2, 3, . . . , r

0 if d > r

Proof. The destination, which has recovered r− 1 symbols, is able to decode
a received codeword of degree d if (d−1) of the coding candidates are among
the r− 1 recovered symbols and only one candidate is among the (k− r + 1)
uncovered symbol. So the decoding probability is

D(r|d) =
(k − r + 1)

(
r−1
d−1

)
(

k
d

) =
(k − r + 1).

∏d−2

i=0
(r−1−i)

(d−1)!∏d−1

i=0
(k−i)

d!

=
d.(k − r + 1).

∏d−2
i=0 (r − 1− i)

∏d−1
i=0 (k − i)

In the case where d > r , certainly more than one coding candidates are
among the uncovered symbols and hence it couldn’t be decoded.

Definition 4. (symbol recover probability): Let Rr be the probability to re-
cover the rth source symbol. So Rr =

∑k
i=1 p(i).D(r|i).

Definition 5. Let Ey be The ecpected number of recovered symbols after
sending y codewords. And the overhead Θ = Y − k where EY = k

Our interest is to maximize Ey, ∀y ≤ k and at the same time to minimize
Θ as possible. Or in other word, we want to maximize the symbol recover
probability Rr, ∀r ≤ k.

Lemma 2. To recover the first symbol, it is more useful to use binary expo-
nential distribution (BED) than using robust soliton distribution.

Proof. Before sending any codeword, the number of recovered symbols r −
1 = 0. So only a codeword of degree 1 could be decoded at this stage.
The expected number of recovered symbols after sending the first codeword
E1 = p(d = 1) ∗D(1|1) = p(d = 1) ∗ 1. Let p(d = 1) = 1

2
is the probability to

2

get an encoded symbol of degree 1 when using enxponential distribution and
p′(d = 1) = (1

k
+ R

k
)/β represents the same probability but when using robust

soliton distribution where β =
∑ k

R
−1

i=1
R
i
+R.ln(R

δ
) ≤ 1+ R

k
(H(k

R
)+ 1

k
ln(R

δ
) and

R = c.ln(k
δ
)
√

k . We will prove that p(d = 1) > p′(d = 1) by contradiction.
Let’s assume that

(
1

k
+

R

k
)/β >

1

2
1 + R

k + R(H(k
R
) + ln((R

δ
)

>
1

2

k + R[H(
k

R
) + ln(

R

δ
)− 2] < 2

But this is impossible ∀k > 1. Therefore using BED increases the expected
number of recovered symbol when sending the first encoded symbol.

Lemma 3. To recover the last symbol, it is more useful to use soliton dis-
tribution.

Proof. We will prove the lemma for ideal soliton distribution and the results
follows for robust distribution by using the result in [1] which finds that the
release probability for robust solition is superior to the release probability
for ideal soliton.

In this case r = k. From proposition 1, D(k|d) = d
k
. Lets compare between

the symbol recover probability for both distribution. When using binary
exponential distribution

Rk =
1

k

k∑

d=1

d

2d
=

2

k
.[1− (

1

2
)k+1 − k + 1

2k
]

and when using Soliton Distribution

R′
k =

1

k
[
1

k
+

k∑

d=2

1

d− 1
] =

1

k
[
1

k
+ H(k − 1)]

R′
k−Rk =

1

k
.[

1

k
+H(k−1)−2+

1

2k
+

2k + 2

2k
] =

1

k
.[

1

k
+H(k−1)+

2k + 3

2k
−2]

We will prove that R′
k −Rk > 0 by contradiction.

Lets assume that R′
k −Rk < 0. Which means

1

k
+ H(k − 1) +

2k + 3

2k
− 2 < 0

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

R
(r

/k
)

r/k %

R’ (Exp)
 R (Robust Soliton)

 R (Ideal Soliton)

Figure 1: Symbol Recover Probability for Soliton distribution and binary
exponential distribution

1

k
+ H(k − 1) +

2k + 3

2k
< 2

However H(k − 1) > 2 for k ≥ 5 and also for 1 ≤ k ≤ 4 this formula gives
a result greater than 2. Hense our assumption was false which means that
R′

k > Rk.

Lemma 4. Soliton distribution outperform binary exponential distribution
only after recovering 68% of the overall source packets.

Proof. If Rr, R′
r and R′′

r be the symbol recover probability when using Ideal
Soliton distribution, Robust Soliton distribution and binary exponential dis-
tribution respectively. Then we have

Rr =
k − r + 1

k2
+

r∑

d=2

1

(d− 1)

(k − r + 1).
∏d−2

i=0 (r − 1− i)
∏d−1

i=0 (k − i)

= (k − r + 1)[
1

k2
+

r∑

d=2

1

(d− 1)

∏d−2
i=0 (r − 1− i)
∏d−1

i=0 (k − i)
]

R′
r =

k − r + 1

β

[
R + 1

K2
+

k
R
−1∑

d=2

(
1

d− 1
+

R

k
).

∏d−2
i=0 (r − 1− i)
∏d−1

i=0 (k − i)

4

+(
R2

k(k −R)
+

Rln(R
δ
)

k
).

d.
∏d−2

i=0 (r − 1− i)
∏d−1

i=0 (k − i)

+
k∑

k
R

+1

1

(d− 1)

∏d−2
i=0 (r − 1− i)
∏d−1

i=0 (k − i)

]

R′′
r = (k − r + 1).

r∑

d=1

d

2d

∏d−2
i=0 (r − 1− i)
∏d−1

i=0 (k − i)

If we plot these three functions, we get the curves shown in fig 1. From this
figure we see that when the number of recovered symbol is inferior to 68% of
k then the recover probability of binary exponential distribution is superior
to that of Soliton distribution and this is reversed as the number of recovered
symbols increases.

Now we have to know how many encoded packets should we use in order
to recover 68% of the source packets using binary exponential distribution.

Definition 6. Lets consider a new decoder S. If the decoder S receives r
codewords then it decoeds them in assending order of their degree. a codeword
which is considered by S for the first time will be droped and it will not be
considered for later decoding. It is clear that the number of recovered symbols
using our normal decoder, which keeps the codewords for later decoding, will
be greater than if we use the decoder S.

Proposition 2. When using the decoder S with binary exponential distribu-
tion, The expected number of recovered symbols after sending k codewords is
at least 0.70 ∗ k

Proof. As mentioned earlier that decoder S decode the codewords sequen-
tially depending on their degree. Assume that S receives Y codewords

• Step 1: For d = 1, all codewords of degree 1 are decoded and so their
coding candidates are recovered. So the expected number of degree 1
codewords that could be decoded are EY [1] = Y × ϕ(d = 1)× 1 = Y

2

• Step 2: For d = 2, the expected number of degree 2 codewords that
could be decoded are EY [2] = Y

4
∗D((EY [1]+1)|2)

• Step 3: For d = 3, the expected number of degree 3 codewords that
could be decoded are EY [3] = Y

8
∗D((EY [1]+EY [2]+1)|3)

5

0.60*k

0.68*k
0.70*k

k/2 k 3/2 k

nb
_r

ec
ov

er
ed

_s
ym

bo
ls

/k
 %

nb_trans/k

 Exp Release pratique
theorique

Figure 2: Number of released symbols at the destination in fnction of the
number of the received codewords where k = 1000 for the pratique curve.
The axis x represents Y which is the number of transmited codewords and
the axis y represents the number of recovered symbol or Ey

• Step i: For d = i, ,the expected number of degree i codewords that
could be decoded are EY [i] = Y

2i ∗D
((
∑i−1

j=1
EY [j]+1)|i)

Then the total expected number of recovered symbol after sending Y
codewords are EY =

∑k
i=1 EY [i]

EY =
Y

2
+

k∑

i=2

Y × ϕ(d = i)×D
((
∑i−1

j=1
EY [j]+1)|i)

=
Y

2
+

k∑

i=2

Y

2i

i.(k −∑i−1
j=1 EY [j]).

∏i−2
q=0(

∑i−1
j=1 EY [j]− q)

∏i−1
q=0(k − q)

We plot this function in figure 2 and we see that when Y > k then
the number of recovered symbols are superior to 0.70k. Also to confirm
this formula we plot the simulation result. In this simulation we propose
that there is one source which has k symbols and which send codewords to
a distination. The destination receives each codeword sent by the source.
The destination decodes the codewords in the fly. So we plot each time the

6

relation between the number of sent codeword and the number of recovered
symbol. We see that the simulation curve is very close from the theorique
result.

3 Shifted Robust Soliton Distribution

This is a novel distribution which was proposed in [2] in order to adapt LT
code to the case where some input symbols are already known at the receiver.
In this case it is more useful to send encoding symbols with higher degree
as the input symbols which are available at the receiver play the role of
singletons and insure the existence of the ripple. This distribution is given
by

γk,n(d) = 0 + µk−n(d′) for round
(

d′

1− n
k

)
= d

where k represents the total number of input symbols and n represents the
number of input symbols already know at the decoder. The authors define

the overhead of this distribution by
[
n + O

(√
k − n ln2

(
k−n

δ

))
]

4 Switched Code

As mentioned earlier that our goal is to find a distribution which increases the
symbol recovery probability at any time during the decoding process while
keeping the overhead as small as possible. This characteristic is important
when an itermediate node should decode the source symbols in order to
reforward them after re-encoding. The new distribution could release enough
symbols to be re-encoded even when small number of encoded symbols have
been received.

In order to acheive this goal, we propose the switched distribution. The
idea of this distribution is to switch from one distribution to another in
function to the number of encoded symbols which have been sent. Following
our previous analysis we see that the new distribution should start with the
binary exponential distribution and then switch to robust soliton distribution
after sending 5

4
k encoded symbols where k is the total number of source

symbols. In order to evaluate this distribution, we simulate a basic scenario
that consists of one source and one distination and an ideal communication
environment without any loss. Figure 3 shows that integrating ExpD with

7

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

nu
m

be
r

of
 s

ym
bo

ls
 r

el
ea

se
d

number of packets received

I Soliton Distribution
R Soliton Distribution

Exp+Soliton
Growth Distributions

Figure 3: Number of recovered symbols at the destination in fnction of the
number of the received codewords where N=1000

RSD improves the possibility of decoding even when few encoded packets
are sent. Howevere, figure 4 shows that even this new proposed distribution
decreases the overhead in comparing with growth code [3] but it is still a
little bit higher than RS. In order to overcome this drawback we take into
acount the folwoing remark. After sending k encoded symbol using BED, we
are pretty sure that the destination has recovered at least 60% of the source
symbols. So, as mentioned in [2], if we use shifted distribution instead of
robust soliton distribution we can reduce the overhead.

Switched distribution could be defined as follow:

$i,k(d) =

{
ϕk(d) for i < k
γk,0.6k(d) for i ≥ k

Where

ϕ(d) =

{
1
2d for d = 1, 2 . . . , k − 1

1
2k−1 for d = k

γk,n(d) = 0 + µk−n(d′) for round
(

d′

1− n
k

)
= d

and µk(d) is the robust soliton distribution.

8

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700 800 900 1000

ov
er

he
ad

total number of packets

R Soliton Distribution
Exp+Soliton Distribution

I Soliton Distribution
Growth Distributions

Figure 4: Overhead from different value of k

So the source node generates the ith encoded symbols according to the
distribution $i,k(d) where k is the number of source symbols available at the
node and this number could vary with time.

Lemma 5. A decoder needs

K ′ = 1.4k + O(
√

0.4k ln2(
0.4k

δ
)

encoding symbols under switched code to decode all k input symbols with prob-
ability at least 1− δ.

5 simulation

we use the simulation and compare our distribution with RSD, ISD [1] and
growth code [3]. We simulate the case of one source S which has k packets
that want to send to a destination D. We don’t consider the packet loss and
we assume that each transmitted packet is received by the destination. For
a fair comparaison we choose the parameters of Robust Soliton c and δ to be
0.2 and 0.1 respectivelty in order to give a small overhead as suggested in [4].
Figure 5 shows that switched code acheives the decoding progressively which

9

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

nu
m

be
r

of
 r

ec
ov

er
ed

 s
ym

bo
ls

number of received encoded symbols

R Soliton Distribution
Growth Distributions

Switching Distribution

Figure 5: Number of recovered symbols at the destination in fnction of the
number of the received codewords where k = 1000

means that even with small number of encoded symbols, switched code can
recover a relatively high number of source symbols while we see that RSD
recover a very few symbols at the begining and then it has a big jump when
the decoding process approaches to the end. if we compare switched code
with growth code, we see that the last recovers a little bit more symbols
at the begining which is logical as growth code sends a large number of
singleton at the begining but this is reversed quickly as we exceed a certain
number of transmissions. More over it is clear from Figure 5 that switched
code retrives all source symbols using fewer number of encoded symbols than
other distribution. Figure 6 shows that the overhead acheived by switched
code is about 60% lower than growth code. Moreover switched code reduces
the overhead of RSD by nearly 32%

In fig7 we show the changing in the size of the encoded buffer during
the simulation. The encoded buffer is used at the destination to keep the
encoded packets that could not be decoded immediately. It is clear that our
distribution decreases about 70% of the buffer size in comparing with Soliton
distribution. This is because Soliton distributions give higher degree than
ExpD but at the begining of the simulation the destination doesn’t have too
many native packets to use them on the decoding process. So the destination
has to keep so much encoded packet in its buffer. Growth code reduces the

10

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700 800 900 1000

ov
er

he
ad

total number of packets

R Soliton Distribution
Growth Distributions

Switched Distribution

Figure 6: Overhead from different value of k

buffer size as thay send alot of native packets at the begining but this can
increase the overhead as we have seen before.

References

[1] M. Luby. LT codes. Proceedings of The 43rd Annual IEEE Symposium
on Foundations of Computer Science, November 16-19 2002, pp.271-282,
2002.

[2] S. Agarwal, A. Hagedorn and A. Trachtenberg, Adaptive rateless coding
under partial information, Information Theory and Applications Work-
shop, UCSD, San Diego, USA, 2008

[3] Abhinav Kamra, Jon Feldman, Vishal Misra and Dan Rubenstein,
Growth Codes: Maximizing Sensor Network Data Persistence, Proceed-
ings of ACM Sigcomm, Pisa, Italy, September, 2006

[4] Information Theory, Inference, and Learning Algorithms: Published by
Cambridge University Press (2003). Chapter 50.

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000

E
nc

od
ed

 b
uf

fe
r

si
ze

number of packets received

I Soliton Distribution
R Soliton Distribution

Switched Code
Growth Distributions

Figure 7: Size of the Encoded-buffer during the simulation

12

	RR1527entete
	RR1527rapp

