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Abstract : In this article we study proper labelings (or valuations) of the edges of
a graph by integers, such that the sums of the values taken on the edges incident to
each vertex ( the weight of this vertex) are all distinct. We look for the minimum of
max(v) among the possible valuations v for some particular classes of graphs.
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I. INTRODUCTION.

We consider graphs G = (V, E) without loops, multiple edges or isolated vertices,
and consider valuation on the edges that allow to distinguish the vertices. There are
several variations of this problem we describe below.

Consider a valuation v on the edges of G i.e. a function (otherwise a coloring)
v : E(G) → N∗. We call |v(E)| the size of the valuation. This coloring is (or not)
proper.

It induces a valuation (or rather coloring) of the vertices of G by

- either the sums w(x) =
∑

y∈N(x)

v(xy)

- or the multisets S(x) = {v(xy), y ∈ N(x)}.
Then we add a last restraint
- either two adjacent vertices must have different colorings (local problem)
- or all the vertices must have different colorings (global problem).
This leads to eight possible notions and parameters :
(p/np, l/g, Σ/Ω) that is proper/no proper valuation of the edges in which the ver-

tices are distinguished in a local/global manner with sums/sets and then correspondant
parameters χ′

Ω/Σ(G, p/np, l/g) : minimun of the maximum value in a (p/np, l/g, Σ/Ω)-
valuation. Several authors worked on some of these parameters, for instance see [1],
[4], [3], [5].

In this article, we focus on χ′
Σ(G, p, g). Call admissible valuation on E any proper

valuation v : E → N∗ distinguishing vertices by sums, that is to say such that for any

two vertices x 6= y,
∑

xz∈E

v(xz) 6=
∑

yz∈E

v(yz). There is no such valuation for the graph

K2 so from now on, we assume that |V (H)| ≥ 3 for every connected component H of
G.

An admissible valuation of size |E| = m always exists : namely, let E =
{e1, e2, · · · , em} and v(ei) = 2i−1. Since, for x 6= y, the set of edges incident to x is

distinct from the set of edges incident to y, the binary numbers
∑

x∈ej

2j−1 and
∑

y∈ej

2j−1

are distinct. Of course, this valuation is very bad in the sense that its maximum is by
far too large, even if m values are necessary. For instance, if G = K1,n, n ≥ 2, any two
edges are adjacent so every admissible valuation is of size m = n, but the values from
1 to n are sufficient for distinguishing vertices by sums.

For v an admissible valuation, and x ∈ V , we call weight of x and note w(x) the

sum w(x) =
∑

x∈ej

v(ej).

The subset {max(v(E)) | v an admissible valuation on E} of N being nonempty
has a minimum, which we denote by χ′

w(G) for simplicity. For instance, χ′
w(K1,n) = n.

Recall that a proper vertex-distinguishing coloring (in short pvdc) of E of size q, is
a surjective application ϕ : E → {1, · · · , q} with the following properties :

• for any two adjacent edges e, e′, ϕ(e) 6= ϕ(e′)

• for any two distinct vertices x 6= y the multisets {ϕ(e) | x ∈ e} and {ϕ(e) | y ∈ e}
are distinct.
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Then we have the following :

Theorem 1 There is an admissible valuation on E of given size, if and only if there
is a pvdc of E of the same size.

Proof. For a necessary condition, if v : E → N∗ is an admissible valuation of size q,
then any bijection g : v(E) → {1, · · · , q} induces a pvdc ϕ = g ◦ v. Conversely, if ϕ
is a pvdc of size q, then v = 2ϕ−1 is an admissible valuation of the same size.

The minimum of colors used in a pvdc of E is denoted by χ′
s(G). We immediately

deduce the following :

Corollary 1 For any graph, we have χ′
s(G) ≤ χ′

w(G) ≤ 2χ′

s(G)−1.

These bounds are tight. For instance, χ′
s(K1,n) = χ′

w(K1,n) = n and χ′
w(G) = 4 =

2χ′

s(G)−1 for the “extended-3-star” G obtained by identifying the first extremities of
three copies of P3.

As an application of this corollary, if we find an admissible valuation v on E such
that max(v) = χ′

s(G) then we have χ′
w(G) = χ′

s(G).

II. SOME BOUNDS FOR χ′
w(G).

We give a lower bound for χ′
w(G) in the general case, and other bounds for regular

graphs.

Theorem 2 If G is a graph of order n, with maximum (respectively minimum) degree
∆ (respectively δ) then

χ′
w(G) ≥

⌈

n − 1

∆
+

∆ − 1

2
+

δ(δ + 1)

2∆

⌉

.

Proof. For any admissible valuation v on E(G), there are n distinct weights on the
vertices, so the minimum weight w and the maximum weight W satisfy the inequality
n−1 ≤ W −w. On one hand we have in all cases w ≥ 1+ · · ·+ δ = δ(δ +1)/2. On the
other hand, if we have max(v) = χ′

w(G), then W ≤ (χ′
w(G) − ∆ + 1) + · · ·+ χ′

w(G) =
∆(2χ′

w(G) − ∆ + 1)/2 thus n − 1 ≤ W −w ≤ ∆(χ′
w(G) − (∆ − 1)/2 − δ(δ + 1)/(2∆))

implying inequality of the theorem.

This bound is tight : for instance, we shall show that χ′
w(Kp,p−1) = p+1 if 3 ≤ p ≤ 8.

Let G be a d-regular graph, d ≥ 2, and q any integer≥ 1. A valuation v on E is
admissible if and only if the valuation v + q is admissible, since all the weights are
increased by dq. Therefore we have :

Proposition 1 If G is regular and v is an admissible valuation on E with max(v) =
χ′

w(G), then min(v) = 1.
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The following result is almost as obvious :

Proposition 2 If G is a d-regular graph χ′
w(G�K2) ≤ 2χ′

w(G) − d + 2.

Proof. Recall that the cartesian product G1�G2 of two graphs is the graph G such
that V (G) = V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2) are adjacent if and
only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).

Let v be an admissible valuation on the edges of G with maximum χ′
w(G). On one

copy of G put v + 1 so that the minimum is now 2. Since the difference between the
maximum and the minimum weights is at most d(χ′

w(G)− d), by setting v +(χ′
w(G)−

d + 2) on the edges of the second copy of G we obtain distinct weights greater than
those of the first copy. Now we give value 1 to the edges of the perfect matching
corresponding to factor K2 of the product and we are done.

We may slightly improve, for d-regular graphs, the lower bound d+(n−1)/d given
in the first theorem of this section by the following result, which is significant when d
divides n − 1 :

Theorem 3 Let G be a d-regular graph of order n. Then we have :

χ′
w(G) ≥

⌈

d +
n − 1

d
+

2ǫ

nd

⌉

with ǫ = 1 if the number n(d(d + 1) + n − 1)/2 is odd, and ǫ = 0 otherwise.

Proof. Let v be an admissible valuation on E with max(v) = χ′
w(G) = p, and size

|v(E)| = q, say v(E) = {v1, . . . , vq}. For 1 ≤ i ≤ q, let ki be the number of edges

such that v(e) = vi, so we have

q
∑

i=1

ki = |E| = nd/2. The n weights w(x), x ∈ V are

distinct numbers at least equal to D = 1 + · · · + d. So the total sum of weights is at
least D + · · · + (D + n − 1) = n(2D + n − 1)/2. In this sum, the value vi appears 2ki

times, therefore we obtain, since this sum is even (ǫ being as in the statement of the
Theorem) :

2

q
∑

i=1

kivi ≥ ǫ + n(2D + n − 1)/2.

Now, since G is regular, v′ = p + 1 − v is another admissible valuation on E and
we have also :

2

q
∑

i=1

kiv
′
i ≥ ǫ + n(2D + n − 1)/2.

Adding these two inequalities, we obtain : 2(p+1)nd/2 ≥ 2ǫ+n(2D+n−1) which
gives the result.

4



This bound is tight : for instance if G is the well-known Petersen graph, one can
easily find an admissible valuation v on its edges with max(v) = 7.

We give now an upper bound for the parameter χ′
w of two disjoint copies of a regular

graph. We use the symbol ∪ to denote the disjoint union.

Proposition 3 Let G be a d−regular graph. Then we have :
χ′

w(G ∪ G) ≤ 2χ′
w(G) − d + 1.

Proof. Note G1 the first copy and put on E(G1) an admissible valuationv1 with
max(v1) = χ′

w(G). The maximum possible weight is W1 = d(2χ′
w(G) − d + 1)/2. Now

on the edges of the second copy put v1 + χ′
w(G) − d + 1 giving as minimum weight

d(d + 1)/2 + d(χ′
w(G) − d + 1) = d(2χ′ − w(G) − d + 3)/2 > W1

We shall see that this bound is tight, for instance with G = Kn, n odd, or G =
C4k+3.

The four next sections are devoted to some families of connected graphs.

III. RESULTS FOLLOWING CONSTRUCTIONS FOR χ′
s.

The construction given in [2] for a proper vertex-distinguishing coloring of the edges
of Kn of size χ′

s(Kn) altogether gives an admissible valuation :

Theorem 4 We have :

χ′
w(Kn) = χ′

s(Kn) =

{

n if n is odd
n + 1 if n is even

Proof. Recall the construction of [2]. For k ≥ 2 arrange the vertices of K2k in the
form of a regular (2k − 1)-gon x1, . . . , x2k−1 with one vertex x2k in the center. The
radial edge (x2kxi) together with the edges perpendicular to it is a perfect matching,
to which we give the valuation i. At this step, all the vertices have the same weight.

In order to obtain a K2k−1 delete vertex x1. Since the valuation was proper, the
weights of the other vertices decrease by distinct values, which gives the result for n
odd.

Now, for k ≥ 3, delete moreover x2. It is easy to check that the sums (v(xix1) +
v(xix2))3≤i≤2k are all distinct. Therefore we obtain an admissible valuation of K2k−2

and the result for n even.

IV. SOME RESULTS ON IRREGULAR BIPARTITE COMPLETE

GRAPHS.

We already saw that for n ≥ 2, χ′
s(Kn,1) = χ′

w(Kn,1) = n with the set of values
{1, . . . , n} on the edges. So we focus on the graphs Kn,p with n > p ≥ 2.

We shall denote by xi the vertices of one class (if n 6= p, the larger one) and by x′
j

those of the other one. Following the process which leads to χ′
s(Kn,p) = n + 1 [2] , we
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may take a Kn+1,n+1 and put, for 1 ≤ i ≤ n + 1 and 0 ≤ j ≤ n on each edge xix
′
j+i (or

xix
′
j+i−n−1 if i+j > n+1) the value vj+1 in such a way that the set {vi | 1 ≤ i ≤ n+1}

equals {1, . . . , n+1}, then erase one vertex xi of the first class, and n+1−p vertices of
the other class. Unfortunately, this does not give distinct weights in general. However
we have :

Theorem 5 If p is relatively prime to n + 1, and 2 ≤ p ≤ n − 3, then χ′
w(Kn,p) =

χ′
s(Kn,p) = n + 1.

Proof. For any integer k, let k be the unique integer in the range [1, n + 1] such that
k − k is divisible by n + 1. Let q = n + 1 − p, so q is relatively prime to n + 1. Put
a = n/2 if n is even, a = (n − 1)/2 if n = 4k + 3 and a = (n − 3)/2 if n = 4k + 1. In
every case a is relatively prime to n + 1.

With the above notations, let vi = 1 + (i − 1)a. Since a is relatively prime to n+1,
the sets {vi | 1 ≤ i ≤ n + 1} and {j | 1 ≤ j ≤ n + 1} are equal, so the weights on the
edges of the Kn+1,n+1 are all equal to W = 1 + · · ·+ (n + 1) = (n + 1)(n + 2)/2. Now
we erase the vertex x1 in the first class, and vertices x′

i, p + 1 ≤ i ≤ n + 1 in the other
class.

Therefore the weights of the vertices x′
i, 1 ≤ i ≤ p decrease respectively by the

values vi, all distinct and all no greater than n + 1 and the remaining weights w′
i are

therefore all distinct. On the other hand, the weights of the xi decrease since q ≥ 4 at
least by 1 − a + 1 + (1 + a) = n + 4 and the remaining weights wi are all distinct from
the w′

i. For 1 ≤ i ≤ n + 1, let si = (1 + (i − 1)a) + (1 + ia) + · · · + (1 + (i + q − 2)a)
and s̃i = vi + · · · + vi+q−1, so for 1 ≤ i < j ≤ n + 1, sj − si − (s̃j − s̃i) is divisible
by n + 1, whereas sj − si = (j − i)qa is not, since qa is relatively prime to n + 1.
Thus the s̃i are all distinct. Now the weights wi are n distinct elements in the set
{W − s̃i | 1 ≤ i ≤ n + 1}, so we obtain an admissible valuation on the edges of Kn,p.

With other choices of the values vi, we obtain the following

Theorem 6 For any n ≥ 4, χ′
w(Kn,n−2) = χ′

s(Kn,n−2) = n + 1.

Proof. As above, let W = 1+· · ·+(n+1) and {vi | 1 ≤ i ≤ n+1} = {1, . . . , n+1}. For
any choice of the values vi, by erasing vertices xn+1, x

′
n−1, x

′
n and x′

n+1, the remaining
weights for the other x′

i are all distinct and not smaller than W − (n+1) ; those of the
vertices xi, 1 ≤ i ≤ n−1 are the elements of the set {W−(vi = vi+1+vi+2) | 1 ≤ i ≤ n−1
and that of the vertex xn is W − (vn+1 + v1 + v2). In order to obtain an admissible
valuation, it is sufficient that the n sums vi + vi+1 + vi+2, 1 ≤ i ≤ n− 1, vn + vn+1 + v1

are distinct and all greater than n + 1. We give in any case a choice satisfying these
properties, letting the checking to the reader.

• If n = 3k − 2, for 1 ≤ i ≤ k, v3i−2 = i, v3i−1 = i + k and for 1 ≤ i ≤ k − 1, v3i =
i + 2k.

• If n = 3k−1, for 1 ≤ i ≤ k, v3i−2 = i−1+2k, v3i−1 = i, for 1 ≤ i ≤ k−1, v3i = i+k
and v3k = 3k.
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• If n = 3k, for 1 ≤ i ≤ k, v3i−2 = i, v3i−1 = i + k, v3i = i + 2k and vn+1 = n + 1.

And with some slight modifications, we also obtain the following result :

Theorem 7 If p satisfies 2 ≤ p < n− (
√

8n + 25− 5)/2, then χ′
w(Kn,p) = χ′

s(Kn,p) =
n + 1.

Proof. We only need to give a proof when gcd(n+1, p) = d is at least 2 and p ≥ 3. First
begin with valuations vi = i on the edges of a Kn+1,n+1, and weight W = (n+1)(n+2)/2
for all its vertices. Then erase vertex x1 of the first class and vertices xi, p+1 ≤ i ≤ n+1
of the other one. The remaining weights of the second class are W − i, 1 ≤ i ≤ p, all
distinct. Those of the first class are the elements of the two sets W1 = {wi = i + · · ·+
(i+p−1) | 2 ≤ i ≤ n−p+2}, and W2 = {wj = j+· · ·+(n+1)+1+· · ·+(j+p−n−2) =
j + · · ·+ (j + p− 1)− (j + p− n− 2)(n + 1) | n− p + 3 ≤ j ≤ n + 1}. The elements of
each Wi are obviously distinct, but it may occur that some wi in W1 is equal to some
wj in W2, which actually is the case. Now add 1 to the valuations v(xix

′
p) for 2 ≤ i ≤ p

and substract p to the valuation v(xn+1x
′
p) (the result is 1). By this modification, the

weights of the second class become W − i, 1 ≤ i ≤ (p − 1) and W − (p + 1). those of
W1 remain unchanged except for the lesser one w2 replaced by w2−p (so these weights
remain distinct) and each weight of W2 is increased by 1, and they remain distinct.

Let define d′ by :

• d′ = d if d is odd or if d = 2 and p divisible by 4.

• d′ = d/2 otherwise.

Note that we have d′ ≥ 2 except for the case when d = 2 and p not divisible by 4,
where d′ = 1. Since each sum i+ · · ·+(i+p−1) = p(2i+p−1)/2 is divisible by p if p is
odd, and by p/2 but not by p if p is even, each weight of W1 ∪W2, before modification
is divisible by d′ when d′ ≥ 2 (respectively is odd when d′ = 1) and after modification,
this property is preserved for the weights of W1 but not for the weights of W2 therefore
these modified weights are all distinct. Now, condition p < n − (

√
8n + 25 − 5)/2

insures that they are distinct from the remaining weights of the other class, since they
are at most equal to (n − p + 2) + · · · + (n + 1) = p(2n − p + 3)/2 and the equation
p(2n− p + 3) = 2(W − (p + 1)) (that is to say p2 − (2n + 5)p + (n2 + 3n) = 0) in p has
two roots, namely p1 = n − (

√
8n + 25 − 5)/2 and p2 = n + (

√
8n + 25− 5)/2 > n.

Conjecture. For 2 ≤ p ≤ n − 2 we always have χ′
w(Kn,p) = n + 1.

On the contrary, whereas for any n ≥ 3, χ′
s(Kn,n−1) = n + 1, we have
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Theorem 8 If 3 ≤ n ≤ 8, χ′
w(Kn,n−1) = n + 1, but for n ≥ 9, χ′

w(Kn,n−1) ≥ n + 2.

Proof. We can put the values of a valuation on the edges of a Kn,p as entries of a
(n, p)− matrix V , namely v(i,j) = v(xix

′
j). The valuation is admissible if and only if

the entries in each row or column of V are all distinct and the n+p sums of entries of a
row or column are all distinct. For 3 ≤ n ≤ 8 the following matrices give an admissible
valuation with maximum value n + 1 for the edges of Kn,n−1 :





1 3
2 1
3 4













1 2 5
2 3 4
3 1 2
4 5 3





















1 2 3 4
2 3 1 5
3 4 5 6
4 1 6 3
5 6 4 2





























1 3 4 5 7
2 6 7 1 3
3 1 6 2 4
4 2 1 3 5
5 7 3 4 6
6 4 5 7 2





































1 8 3 6 4 2
2 1 8 7 5 3
3 5 1 8 6 4
4 3 2 1 7 5
5 4 7 2 8 6
6 2 4 3 1 7
7 6 5 4 3 8













































1 2 8 9 6 4 3
2 5 9 8 7 6 4
3 9 1 7 8 5 2
4 3 2 1 9 7 5
5 4 3 2 1 8 6
6 1 4 3 2 9 7
7 6 5 4 3 1 8
8 7 6 5 4 3 9

























Now if there exists an admissible valuation with maximum value n+1 on the edges
of a Kn,n−1 the sums of the rows of the associate (n, n − 1)-matrix are n distinct
elements of the set S = {w, . . . , w + 2(n − 1)} where w = 1 + · · · + (n − 1) and those
of the columns are n − 1 distinct elements of the set G = {w + n, . . . , w + 2n}, the
sum σ of the n weights taken in S being equal to the sum Σ of the n − 1 weights
taken in G. Note that we have G \ S = {w + (2n − 1), w + 2n} and that S ∩ G is
of cardinality n − 1. Let k the number of elements of the set G \ S occuring in the
sum Σ. If k were 0, the elements occuring in σ would all be in the set S \ G and
we would have σ < Σ, a contradiction. So k = 1 or k = 2. For k = 1 we have
Σ ≥ (n − 1)w + (2n − 1) + (n − 2)(3n − 3)/2 = (n − 1)w + 3n2/2 − 5n/2 + 2 and
σ ≤ nw + (2n − 2) + (n − 1)n/2 = (n − 1)w + n2 + n − 2. Equality Σ = σ implies
3n2/2 − 5n/2 + 2 ≤ n2 + n − 2 so n ≤ 5.

For k = 2 we obtain Σ ≥ (n − 1)w + 4n − 1 + (n − 3)(3n − 4)/2 = (n − 1)w +
3n2/2 − 5n/2 + 5 and σ ≤ nw + 4n − 5 + (n − 2)(n + 1)/2 = (n − 1)w + n2 + 3n − 6
and equality between the sums implies 3n2/2 − 5n/2 + 5 ≤ n2 + 3n − 6 so n ≤ 8.

The following matrix actually gives an admissible valuation on the edges of K9,8

with maximum value 11.
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4 5 6 7 8 9 10 11
5 11 9 8 10 2 1 6
6 10 7 9 1 8 11 4
7 3 8 6 11 1 2 10
8 9 10 1 2 7 4 3
9 2 1 10 4 11 3 5
10 4 11 2 3 6 5 9
11 1 4 5 7 3 6 2
3 8 5 11 9 10 7 1





























.

Conjecture. For n ≥ 9 we have χ′
w(Kn,n−1) = n + 2.

V. THE REGULAR BIPARTITE COMPLETE GRAPHS.

Theorem 9 For n ≥ 2, χ′
w(Kn,n) = χ′

s(Kn,n) = n + 2.

Proof. Let v any valuation on the edges of a Kn,n whose values are in the set En =
{1, · · ·n + 2}. As above, we set the values vi,j = v(xix

′
j) as entries of an (n, n)−matrix

V . Then v is an admissible valuation if and only if the n rows Li and the n columns Vi

are 2n subsets (necessarily distinct) of cardinality n of E with the following properties
:

• For any k ∈ E the sets {i | k ∈ Li} and {j | k ∈ Cj} have the same cardinality.

• The 2n sums of the entries of each row and each column are distinct.

Since the graph is regular, this is equivalent to the fact that the 2n complementary
subsets L′

i = Lc
i and C ′

j = Cc
j are 2n subsets of E of cardinality 2 satisfying the same

properties.
Thus we can solve the problem in two steps : first give 2n subsets of cardinality 2

in E having the required properties, then construct an (n, n)-matrix V such that the
sets L′

i (respectively C ′
j) are the sets of “missing numbers” in the rows (respectively

the columns) of V . This is done in the following for n ≥ 5 since the following matrices
are easily seen as solutions for respectively n = 2, 3 and 4 :

(

4 2
3 1

)





5 2 4
3 1 2
4 5 1













1 2 3 4
2 3 1 5
5 6 4 1
6 4 5 2









.

First step. If n is even, take as sets L′
i the n/2 sets {1, i} with 2 + n/2 ≤ i ≤ n + 1

together with the n/2 sets {j, n+2} with 2 ≤ j ≤ 1+n/2. As sets C ′
j the n/2 sets {1, i}

with 2 ≤ i ≤ 1+n/2 together with the n/2 subsets {j, n+2} with 2+n/2 ≤ j ≤ n+1.
If n is odd, for the L′

i take the sets {1, i}, (n+3)/2 ≤ i ≤ n and the sets {j, n+2}, 2 ≤
j ≤ (n − 1)/2 together with the sets {(n + 1)/2, (n + 3)/2} and {n + 1, n + 2}. For
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the C ′
j take the sets {1, i}, 2 ≤ i ≤ (n + 1)/2 and the sets {j, n + 2}, (n + 3)/2 ≤ j ≤ n

together with the set {(n + 3)/2, n + 1}.
In every case, the required properties are easy to check.

Second step. First define, for k elements (ai)1≤i≤k, a matrix C(a1, . . . , ak) by ∀(i, j) ∈
{1, . . . , k}2, c(i,j) = aj−i+1 where s is the unique integer in {1, . . . , k} such that s− s is
divisible by k.

We divide our construction into three cases.

First case : n odd. Let n = 2k + 1. Put A1 = A2 = C(1, . . . , k + 1) and
B1 = B2 = C(k + 2, . . . , 2k + 2). In A1 replace, for 1 ≤ i ≤ k + 1, a(i,i) (whose value is

1) by n + 2, call Ã1 this new matrix. In B2 interchange the rows 1 and k, we obtain a
new matrix B′

2 ; in this matrix, replace b′(k,k+1) by 1 and b′(k+1,k+1) by n+2, name B̃2 the

resultant matrix. Build with these matrices a (2k+2, 2k+2)-matrix V ′ =

(

Ã1 B1

B̃2 A2

)

.

Now erasing row k + 1 and column 2k + 1 of this matrix gives as result a matrix V
associated to an admissible valuation for the edges of a Kn,n.

For instance, if n = 7, the result is the following matrix





















9 2 3 4 5 6 8
4 9 2 3 8 5 7
3 4 9 2 7 8 6
7 8 5 6 1 2 4
8 5 6 7 4 1 3
5 6 7 1 3 4 2
6 7 8 9 2 3 1





















.

Second case : n = 4k + 2. Put A = C(1, . . . , 2k + 1), B = C(2k + 2, . . . , 4k + 2).
For 2 ≤ i ≤ 2k + 1, exchange a(i,2k+3−i) and b(i,2k+3−i) in order to obtain two new
matrices A′ and B′. Make two copies A′

1, A
′
2 of A′ and two copies B′

1, B
′
2 of B′. In A′

1

replace, for 1 ≤ i ≤ 2k + 1, a′
(i,i) (whose value is 1) by n + 2, we obtain a matrix Ã.

In B′
1, replace for 1 ≤ i ≤ k and k + 2 ≤ i ≤ 2k + 1, b′(i,2k+2−i) by n + 1, we obtain the

matrix B̃1. In B′
2 replace b′(1,1) and, for 2 ≤ i ≤ 2k +1, b′(i,2k+3−i) by n+1, we obtain a

matrix B̃2. Now the matrix V =

(

Ã B̃1

B̃2 A′
2

)

is associated to an admissible valuation

on the edges of a Kn,n.
For instance, for n = 10 the result is the following matrix

































12 2 3 4 5 6 7 8 9 11
5 12 2 3 9 10 6 7 11 4
4 5 12 7 3 9 10 6 2 8
3 4 10 12 2 8 11 5 6 7
2 8 4 5 12 11 3 9 10 6
11 7 8 9 10 1 2 3 4 5
10 6 7 8 11 5 1 2 3 9
9 10 6 11 8 4 5 1 7 3
8 9 11 6 7 3 4 10 1 2
7 11 9 10 6 2 8 4 5 1

































.
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Third case : n = 4k. Put B = C(2k + 1, . . . , 4k). Construct matrix A by
interchanging in C(1, . . . , 2k), for i = k and i = 2k the entries c(i,1) and c(i,k+1).
Exchange between A and B for 2 ≤ i ≤ k, a(i,2k+2−i) with b(i,2k+2−i), for k + 1 ≤ i ≤
2k − 1, a(i,2k+1−i) with b(i,2k+1−i), and at last a(2k,2k−1) with b(2k,2k−1), we obtain two
matrices A′ and B′ of which we make two copies A′

1, A
′
2 and B′

1, B
′
2. In A′

1, replace
for 1 ≤ i ≤ 2k, a′

(i,i) (whose value is 1) by n + 2 name this matrix Ã. In B′
1 replace

respectively, for 1 ≤ i ≤ k, b′(i,2k+1−i) and for k + 1 ≤ i ≤ 2k − 1, b′(i,2k−i) by n + 1,

we obtain B̃1. In B′
2 replace respectively for 2 ≤ i ≤ k, b′(i,2k+2−i), for k + 1 ≤

i ≤ 2k − 1, b′(i,2k+1−i) and b′(2k,2k−1) by n + 1 in order to obtain B̃2. Now matrix

V =

(

Ã B̃1

B̃2 A′
2

)

gives a solution for Kn,n.

For instance, if n = 8 we obtain :

V =

























10 2 3 4 5 6 7 9
2 10 4 7 8 5 9 3
3 8 10 2 9 4 5 6
4 3 8 10 6 7 2 5
9 6 7 8 1 2 3 4
8 5 6 9 2 1 4 7
7 9 5 6 3 8 1 2
6 7 9 5 4 3 8 1

























.

Remark
Applying Proposition 3, we get: n + 4 ≤ χ′

w(Kn,n ∪ Kn,n) ≤ n + 5.

VI. RESULTS FOR PATHS AND CYCLES.

It is not always a valuation of minimum size χ′
s(G) which gives the minimum χ′

w(G).
For instance, an admissible valuation of G = C36 of size χ′

s(G) = 9 induces as weights
all the combinations vi + vj , i 6= j, and these sums must be all distinct, implying
max(v) > 20, whereas we show in this section that χ′

w(G) = 20.

Let G be a graph whose all connected components are paths, say G = Pn1
∪· · ·∪Pnk

.

If we close each path by an extra edge, we obtain a graph Ĝ = Cn1
∪· · ·∪Cnk

. Now, let

v be an admissible valuation on E(G), put ṽ = v on the common edges E(G) ∩ E(Ĝ)
and ṽ = 0 on the extra edges. Therefore v̂ = ṽ +1 is an admissible valuation on E(Ĝ).
Thus we obtain :

Lemma 1 If G = Pn1
∪ · · · ∪Pnk

and Ĝ = Cn1
∪ · · · ∪Cnk

then χ′
w(Ĝ) ≤ χ′

w(G) + 1

Now, since Ĝ is regular, theorem 3 gives a lower bound L for χ′
w(Ĝ) and if we find

an admissible valuation v on E(G) with maximum L − 1, we obtain χ′
w(G) = L − 1

and χ′
w(Ĝ) = L by the valuation v̂.

In the case when G is connected, i.e. k = 1, theorem 3 gives (note that for n = 4k+1
we have ǫ = 1) :
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• χ′
w(Cn) ≥ (n + 4)/2, if n is even

• χ′
w(Cn) ≥ (n + 5)/2 = 2k + 3 if n = 4k + 1

• χ′
w(Cn) ≥ (n + 3)/2 = 2k + 3 if n = 4k + 3

Therefore, by the previous lemma, we obtain :

• χ′
w(Pn) ≥ (n + 2)/2 if n is even

• χ′
w(Pn) ≥ (n + 3)/2 if n = 4k + 1

• χ′
w(Pn) ≥ (n + 1)/2 if n = 4k + 3, k ≥ 2

But in the special case n = 7, we have χ′
w(P7) ≥ 5. In fact for an admissible

valuation v with max(v) = χ′
w(P7) = p, the seven weights are distinct numbers, all at

least 1. If the value vi of v is attributed to ki edges, we have 2
∑

kivi ≥ n(n+1)/2 = 28

and
∑

ki = 6. With the above notation, since ṽ0 = 0, we have also 2
∑

kiṽi ≥ 28,

now
∑

ki = 7. But v′ = p + 1 − ṽ is an admissible valuation of C7, thus 2
∑

kiv
′
i ≥

n(n + 5)/2 = 42. Adding these two inequalities gives 2 × 7 × (p + 1) ≥ 70 thus p ≥ 4.
We can have equality only if the second inequality is an equality, which implies that
the seven weights (on the vertices of C7) are in fact the numbers from 1 to 7. But
the only possible decompositions of six among them for p = 4 are : 1 = 0 + 1, 2 =
0 + 2, 3 = 1 + 2, 4 = 1 + 3, 6 = 2 + 4, 7 = 3 + 4 whereas for 5 there are two possible
decompositons. If we choose 5 = 1 + 4 (respectively 5 = 2 + 3), then the value 2 (resp.
1) would appear three times, a contradiction since there must be an even occurence of
each value in the set of weights.

Theorem 10 Previous inequalities are equalities.

Proof. As explained above, it suffices to give in each case an admissible valuation
v on E(Pn) with maximum equal to the previous lower bound given, or explicit this
valuation by the list (v) of its values taken on the edges in the natural order.

Since the line graph of a Pn is a Pn−1 we may obtain this result by constructing a
connected graph Γ with |E(Γ)| = n − 2 and V (Γ) ⊆ {1, . . . , χ′

w(Γ)}, two vertices i1, i2
being of odd degrees, the others of even degrees. Then Γ has an eulerian path with
origin i1 and extremity i2 inducing the required line graph.

• If n = 4k, k ≥ 1, E(Γ) = {(1, i)3≤i≤2k+1, (j, 2k + 2)2≤j≤2k}

• If n = 4k + 1, k ≥ 1, E(Γ) = {(1, i)3≤i≤2k+1, (j, 2k + 2)2≤j≤2k+1}

• If n = 4k + 2, k ≥ 1, E(Γ) = {(1, i)2≤i≤2k+2, (j, 2k + 2)3≤j≤2k+1}

• If n = 4k + 3, k ≥ 2, E(Γ) = {(1, i)2≤i≤k+1, (1, i)k+3≤i≤2k+1, (2, k + 1), (k + 1, k +
2), (j, 2k + 2)2≤j≤2k+1}
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• If n = 3, (v)=(1,2)

• If n = 7, (v)=(1,2,3,1,5,2)

Note that in every case, the extremities of any eulerian path of Γ are the vertices
2 and 1. Note also that in the case n = 3 where we don’t use the result of the lemma,
the list (1, 2) and its symmetric (2, 1) are the only possibilities of a proper valuation
on the edges. We exhibit now possible sequences (v) corresponding to eulerian paths
of the given graphs Γ :

• For n = 4k, k ≥ 1, (v) = (2, (2k + 1, 2i− 1, 1, 2i)2≤i≤k, 2k + 1, 1)

• For n = 4k + 1, k ≥ 1, (v) = (2, (2k + 2, 2i− 1, 1, 2i)2≤i≤k, 2k + 2, 2k + 1, 1)

• For n = 4k + 2, k ≥ 1, (v) = (2, 1, 3, (2k + 2, 2i, 1, 2i + 1)2≤i≤k, 2k + 2, 1).

• For n = 4k + 3, k even,

(v) = (1, 2i, 2k + 2, 2i + 1)1≤i≤k/2, (1, 2j + 1, 2k + 2, 2j)k≥j≥k/2+1, k + 1, 2).

• For n = 4k + 3, k odd ≥ 3,

(v) = (1, 2i, 2k + 2, 2i + 1)1≤i≤k−1/2, (1, 2j, 2k + 2, 2j + 1)k+3/2≤j≤k, (1, k + 1, 2k +
2, k + 2), k + 1, 2.

Corollary 2 • χ′
w(Cn) = (n + 4)/2, if n is even

• χ′
w(Cn) = (n + 5)/2 = 2k + 3 if n = 4k + 1

• χ′
w(Cn) = (n + 3)/2 = 2k + 3 if n = 4k + 3

Proof. According to the remark following the lemma, we use for n 6= 7 the valuation
v on the edges of Cn. In the special case n = 7 we give a valuation by its list :
(v) = (5, 1, 2, 5, 3, 1, 4).

The last sections are devoted to some families of non connected graphs, without
connected component isomorphic to K1 or K2. If G1, . . . , Gk are connected graphs, we
call G1 ∪ · · · ∪ Gk a graph having the Gi as connected components.

VII. TWO COPIES Of THE SAME COMPLETE GRAPH.

Theorem 11 We have : χ′
w(Kn ∪ Kn) = n + 2.
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Proof. According to theorem 3, n+2 is a lower bound. It remains to give an admissible
valuation with maximum n + 2, but the construction depends on the parity of n.

• First case : n odd, n = 2k − 1.
For n = 3, the two lists (v) = (1, 2, 3), v′ = (3, 4, 5) give an admissible valuation

with maximum n + 2. We assume thereafter that we have k ≥ 3.
For the first copy we use valuation given in section III. In the second copy denote x′

i

the vertex called xi in the first copy. Instead of the value 1 on the edges xjxn+2−j, 2 ≤
j ≤ k we put 2k on the edges x′

jx
′
n+2−j , and on edge x′

2x
′
2k put 2k+1 instead of the value

2 on x2x2k. Now the minimum weight in the first copy is w(x2k−2) = k(2k−1)−(2k−1)
and the maximum w(x2k) = k(2k−1)−1. Thus we have, if j 6= 2, w(x′

j) = w(xj)+2k−1
and w(x′

2) = w(x2)+4k−2. Since in the first copy the minimum and maximum weights
are respectively w(x2k−2) = S − (2k − 1) and w(x2k) = S − 1 where S = k(2k − 1),
whereas w(x2) = S−(k+1), we obtain w(x′

2k−2) = S > w(x2k) and w(x′
2) = S+3k−3 >

w(x′
2k) = S + 2k − 2.

• Second case : n even, n = 2k − 2, k ≥ 3.
For the first copy we use valuation given in section III. The weights of the vertices

are, if 3 ≤ j ≤ 2k− 2, v(xj) = S − (j + k +1) where S = k(2k− 1) as above, that is to
say the successive integers from S− (3k−1) to S− (k+4), then w(x2k−1) = S− (k+1)
and w(x2k) = S − 3.

Now in the second copy, instead of value k + 1 on the edges (xk+1−i, xk+1+i)1≤i≤k−2

and (xk+1, x2k) put value 1 on the corresponding edges. Moreover, if k ≥ 4 instead of
1 on the edges (xi, x2k+1−i)3≤i≤k−1 put value k + 1 on the corresponding edges of the
second copy. Now the weights of the vertices of this copy are, for j ∈ {k, k + 1, 2k −
1, 2k} , w(x′

j) = w(xj)+k−1 which gives the integers S−(k+3), S−(k+2), S−2, S +
k − 4, and complete an admissible valuation of maximum n + 2 for k = 3. Moreover,
for k ≥ 4 and 3 ≤ j ≤ k − 1 or k + 2 ≤ j ≤ 2k − 2, we obtain w(x′

j) = w(xj) + 2k − 1
which gives the integers from S − k ≤ m ≤ S − 4 and S − 1 ≤ m ≤ S + k − 5 and this
valuation is therefore an admissible one with maximum n + 2.

VIII. TWO COPIES OF THE SAME PATH OR CYCLE.

Lemma 2 We have the inequalities :

n + 2 ≤ χ′
w(Cn ∪ Cn) ≤ χ′

w(Pn ∪ Pn) + 1 .

Proof. The lower bound comes from Theorem 3. As explained in the proof of lemma
2, if we put on the edges of Pn ∪ Pn an admissible valuation v, close each path by an
edge labelled 0 and add 1 to v, we obtain an admissible valuation for Cn ∪ Cn, from
which results the second inequality

Theorem 12 We have : χ′
w(P3 ∪ P3) = 5 and for n ≥ 4 , χ′

w(Pn ∪ Pn) = n + 1.

Proof. According to the previous Lemma, χ′
w(P3 ∪ P3) ≥ 4. But an admissible

valuation with maximum 4 would be a bijection from E unto {1, 2, 3, 4} and the four
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numbers would be weights of the four end-vertices, which excludes the couples of values
(1, 2) and (1, 3) for the edges of any copy. Now the remaining couple (1, 4) is also
excluded since 1 + 4 = 2 + 3 and we must have χ′

w(P3 ∪ P3) ≥ 5. Since the valuation
taking the following couple of values on the two copies : (1, 3), (2, 5) is admissible, we
have equality. Note that this valuation is the first example where there is a gap in the
set v(E).

For the small values of n, we give an admissible valuation of maximum n + 1 by
two lists of values (one for each copy) :

• for n = 4 : (1, 3, 5) and (2, 4, 3)

• for n = 5 : (1, 3, 6, 5) and (3, 4, 6, 2)

• for n = 6 : (1, 3, 5, 1, 2) and (5, 7, 6, 3, 7)

• for n = 7 : (1, 5, 7, 8, 5, 4) and (3, 2, 6, 8, 3, 7)

• for n = 8 : (2, 5, 3, 9, 4, 5, 1) and (3, 8, 7, 9, 8, 6, 4).

For n ≥ 8 we use the same method as in section VI, by constructing two connected
graphs Γ, Γ′ of order n − 1 with V (Γ) ∪ V (Γ′) ⊆ {m ∈ N | 1 ≤ m ≤ n + 1} such that
only two vertices i1, i2 of Γ (respectively i′1, i

′
2 of Γ′) are of odd degrees, and the 2n

values i1, i2, i
′
1, i

′
2, (i + j)(i,j)∈E(Γ)∪E(Γ′) are all distinct, then using an eulerian path of

Γ (resp. of Γ′) as line graph of the first (resp. the second) copy of Pn. This is done
thereafter.

• First case : n = 4k, k ≥ 2. Take E(Γ) = {(1, i)3≤i≤2k+1, (i, k+1)3≤i≤2k+1}, the values
i1, i2 being 1 and 4k+1, and E(Γ′) = {(1, 2), (1, i)2k+2≤i≤4k−2, (3, 4k−1), (3, 4k) (i, 4k+
1)2k+2≤i≤4k−1}, the values i′1, i

′
2 being 2 and 4k.

• Second case : n = 4k+1, k ≥ 2. Take E(Γ) = {(1, i)3≤i≤2k+1, (i, 4k+2)2≤i≤2k+1}, the
values i1, i2 being 1 and 2, and E(Γ′) = {(3, i)2k+1≤i≤4k−1, (i, 4k +2)2k+3≤i≤4k−1, (2k +
1, 2k + 2), (2k + 3, 4k + 1), (4k + 1, 4k + 2)}, the two values i′1, i

′
2 being 3 and 2k + 3.

• Third case : n = 4k + 2, k ≥ 2. Take E(Γ) = {(1, i)2≤i≤2k, (2, 2k + 2), (i, 2k +
3)2≤i≤2k, (2k + 2, 2k + 3)}, the two values i1, i2 being 1 and 2, and E(Γ′) = {(2k +
1, 2k+3), (2k+1, i)2k+5≤i≤4k+3, (2k+2, 4k+3), (2k+4, 4k+2), (i, 4k+3)2k+4≤i≤4k+1},
the two values i′1, i

′
2 being 2k + 2 and 2k + 3.

• Last case : n = 4k + 3, k ≥ 2. Take E(Γ) = {(1, i)3≤i≤2k+3, (i, 4k + 3)4≤i≤2k+3},
the two values i1, i2 being 1 and 3, and E(Γ′) = {(2, 2k + 3), (3, i)2k+4≤i≤4k+3, (i, 4k +
4)2k+3≤i≤2k+5∪2k+7≤i≤4k+3}, the two values i′1, i

′
2 being 2 and 2k + 6.

Corollary 3 For n ≥ 3 we have χ′
w(Cn ∪ Cn) = n + 2.

Proof. The value n + 2 being the lower bound of the lemma, it suffices to give an
admissible valuation with maximum n + 2. Since C3 = K3 the result for n = 3 is
given in the previous section. For n ≥ 4 we use the valuation v given in the theorem
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on E(Pn ∪ Pn), we close each copy of Pn by an edge labelled 0 and add 1 to this
pseudo-valuation on E(Cn ∪Cn), so we obtain an admissible valuation with maximum
n + 2.

IX. SOME EXAMPLES OF UNION OF TWO PATHS OR CYCLES OF

DISTINCT ORDERS.

When χ′
w(Pn ∪ Pn+1) = n + 1 (respectively χ′

w(Cn ∪Cn+1) = n + 2) the function w
is a bijection between V and the set {m ∈ N | 1 ≤ m ≤ 2n + 1} (resp. {m ∈ N | 3 ≤
m ≤ 2n + 3}. Since the valuation of each edge occurs in exactly two weights, the sum
of the weights must be even, so we must have (2n + 1)(n + 1) (resp. (2n + 1)(n + 3))
even, which implies n odd. This implies the following :

Lemma 3 If n is even χ′
w(Cn ∪ Cn+1) ≥ χ′

w(Pn ∪ Pn+1) + 1 ≥ n + 3

Now we obtain :

Theorem 13 For n ≥ 3 : if n is odd, then χ′
w(Pn∪Pn+1) = χ′

w(Cn∪Cn+1)−1 = n+1
and if n is even χ′

w(Pn ∪ Pn+1) = χ′
w(Cn ∪ Cn+1) − 1 = n + 2.

According to the remark following lemma 1, it is sufficient to give the proof in the
case of paths.

Proof. We use two techniques, illustrating each of the following cases.

First case : n odd.

For the small values, we give one list of values of v for each component :

• For n = 3 : (1, 4), (2, 4, 3)

• For n = 5 : (1, 5, 6, 4), (2, 3, 4, 5, 3).

In the general case, we use the techniques described in section VI, but here we need
two eulerian graphs Γ and Γ′, one for each component. This case divides into two
subcases :

• First subcase : n = 4k+3 : E(Γ) = {(1, i)3≤i≤2k+3, (i, 4k+4)4≤i≤2k+3}, E(Γ′) =
{(i, 4k + 4)2k+4≤i≤4k+3, (2, 2k + 4), (4, 2k + 3), (4, 2k + 4), (2k + 3, 2k + 4), and if k ≥
2, (3, i)2k+6≤i≤4k+3}.

Thus possible lists for k ≥ 2 are :
(

(1, i + 1, 4k + 4, i)2k+2≥i≥4, 1, 3
)

and
(

2, 2k + 4, 4, 2k + 3, 2k + 4, (4k + 4, i, 3, i + 1)2k+6≤i≤4k+2, 4k + 4, 2k + 5
)

.

• Second subcase : n = 4k + 1 : E(Γ) = {(1, i)3≤i≤2k+1, (i, 4k +
2)2≤i≤2k+1}, E(Γ′) = {(1, i)2k+4≤i≤4k+1, (i, 4k+2)2k+2≤i≤4k+1, (3, 2k+1), (2k+1, 2k+2)}.
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Thus possible lists are :
(

(1, i, 4k + 2, i + 1)3≥i≥2k, 1, 2k + 1, 4k + 2, 2
)

and
(

3, 2k + 1, 2k + 2, 4k + 2, (i, 1, i + 1, 4k + 2)2k+4≤i≤4k, 2k + 3
)

.

Second case : n even.

Let n = 2k. We use another method, by cutting a labelled path of order 4k + 1
into two pieces of required orders, and correcting some values of the labelling in order
to obtain an admissible valuation. This method divides into two subcases :

• First subcase : k odd, k = 2k′ + 1. Recall that we have the following list
(v) = (2, (2k + 2, 2i− 1, 1, 2i)2≤i≤k, 2k + 2, 2k + 1, 1) for P4k+1.

We erase the edge following the median vertex, which was labelled 2k′ + 3 = k + 2
(corresponding to i = k′+2). On the last edge of the sublist corresponding to i = k′+1
replace k + 1 by k + 2 and the last edge of the path, is labelled k + 2 instead of 1. It
is easy to verify that the set of new weights is the same as this of lost weights.

• Second subcase : k even, k = 2k′. We still consider the given valuation of P4k+1.
In the sublist corresponding to i = k′+1, we erase the last edge, labelled 2k′+2 = k+2,
in the sublist corresponding to i = k′ we replace k by k + 2 and finally the last edge
of the path is labelled k + 1 instead of 1. Here also, the set of new weights is the same
as this of lost weights.

Remarks : By using the last technique, erasing one or more edges labelled 1 and
correcting some values, we can obtain :

∗χ′
w(P4k−4i+4 ∪P4i−4) = 2k +1 for i = 2, 3, · · ·, beginning with the valuation of P4k.

For example, with k = 4 and i = 2, by erasing the third of the edges labelled 1, we
get as valuations :

(2, 9, 3, 1, 4, 9, 5, 2, 7, 9, 6) and (8, 9, 1).
∗ By a similar method, we obtain :
χ′

w(P4k−4i+5∪P4i−4) = 2k+2 for i = 2, 3, · · ·, beginning with the valuation of P4k+1.
∗ By erasing more edges, we obtain:
χ′

w(P4r1
∪P4r2

· · · ∪P4rs
∪P4q+1) = 2k +2 where k = r1 + r2 + · · ·+ rs + q = 2k + 2.

For example, with r1 = 1, r2 = 2, q = 1, we get as valuations :
(2, 10, 3), (4, 10, 5, 2, 7, 10, 6) and (8, 10, 9, 1).
∗ On a cycle Cn, put the ”complementary” valuation v′ = χ′

w(Cn) + 1− v, erase all
the edges labelled 1, and then decrease by one all the valuations of the remaining edges.
We obtain an admissible valuation v′ for the remaining union G′ of paths. Actually
its maximum gives the value of χ′

w(G′), since reconnecting the paths of G′ by edges
labelled 0 in order to recover Cn and adding 1 to this pseudo-valuation, one can prove
the inequality χ′

w(Cn) ≤ χ′
w(G′) + 1.

For instance, with n = 17, we obtain χ′
w(P4 ∪ P4 ∪ P4 ∪ P5) = 10 = χ′

w(C17) − 1
with valuations (5, 9, 4), (6, 9, 5, 7), (2, 9, 3) and (8, 10, 9, 1).

Problems
- Characterize the graphs G such that χ′

w(G) = ∆(G) (Note that in this case, there
is only one vertex of maximum degree).

- Is there a connected graph G for which there is a gap in the sequence of integer
values taken by any admissible valuation giving the value of χ′

w(G).
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