
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

REPRESENTING CIRCUS OPERATIONAL

SEMANTICS IN ISABELLE/HOL

FELIACHI A

Unité Mixte de Recherche 8623
CNRS-Université Paris Sud – LRI

08/2011

Rapport de Recherche N° 1544

Representing Circus Operational Semantics in
Isabelle/HOL

Abderrahmane FELIACHI
Abderrahmane.Feliachi@lri.fr

Univ Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France

Résumé Circus est un langage de spécification qui permet de spéci-
fier des structures de données et des comportements complexes. La sé-
mantique dénotationnelle et opérationnelle de Circus ont été définies
précédemment, et une théorie de test a été proposée sur la base de ces sé-
mantiques. Nous avons proposé, dans un travail précédent, une représen-
tation cohérente et logique de la sémantique dénotationnelle dans le prou-
veur de théorèmes Isabelle/HOL [5]. Dans ce rapport, nous décrivons
notre représentation des règles de la sémantique opérationnelle de Cir-
cus dans Isabelle/HOL. Nous discutons également de problèmes et de
décisions relatifs à cette représentation. Nous proposons une formalisa-
tion de l’essentiel de la théorie de test de Circus, avec pour objectif le
développement d’un outil de génération de tests.

Abstract Circus is a specification language that allows to specify com-
plex data and complex behaviour. The denotational and operational se-
mantics of Circus were previously defined, and a testing theory was pro-
posed using these semantics. We proposed, in a previous work, a consis-
tent and logically safe representation of the denotational semantics in the
Isabelle/HOL theorem prover [5]. In this report, we describe our repre-
sentation of the Circus operational semantics rules in Isabelle/HOL. We
also discuss some problems and decisions related to this representation.
We propose a formalisation of the main part of the Circus testing theory,
in the perspective of a test generation framework.

Keywords: Circus operational semantics, Specification-based testing, Theorem
prover-based testing, Isabelle/HOL.

1 Introduction

Circus is a formal specification language developed in the university of York [10],
which integrates the notions of states and complex data types (in a Z-like style)
and communicating parallel processes inspired from CSP. Moreover, the lan-
guage comes with a formal notion of refinement and allows to take into account
abstract specifications and their transitions to models of programs. Circus has a
denotational semantics [9], which is based on UTP [7].

This report describes the advancement of the definition of testing strategies
based on Circus and their implementation with the HOL-TestGen system [2],
which is developed as an extension of the Isabelle/HOL theorem prover [8].

A testing theory of Circus has been given in [4]. It is built essentially on three
sets called cstraces, csinitials and csinitials and on an operational semantics
of Circus . The tests are defined using these three notions. The cstraces is the
set of all constrained symbolic traces (event lists) a process may perform. The
csinitials is the set of all constrained symbolic events the process may perform
after performing a given trace. The csinitials is the set of constrained symbolic
events the process should not perform after performing a given trace. Each ele-
ment of these three sets is defined over a set of symbolic variables (values), and
is associated with a constraint defined over these symbolic variables.

The definition of the cstraces, csinitials and csinitials is based on the op-
erational (and denotational) semantics of Circus. We already have developed a
representation of the denotational semantics of Circus in the Isabelle theorem
prover. In order to represent the three sets above, we had then to represent the
operational semantics of Circus. The operational semantics is defined with a set
of rules over Circus processes given in [4].

The main results in this report are: the description of the transposition in
Isabelle/HOL of the operational semantics of Circus with some related problems
and decisions; the presentation of a test generation process for the tests defined
in [4], which will serve as a basis for the development of various testing strategies
from Circus specifications.

The report is organised as follows: in Section 2 we explain how a theorem
prover can be used for test generation, and the principles of the HOL-TestGen
system. Section 3 briefly recalls some technicalities on the UTP theories in Is-
abelle/HOL (the complete presentation can be found in [5]). Section 4 is the
core of the report. In this Section we introduce our representation of the Circus
operational semantics rules, including the definition of the notion of configura-
tions: this notion captures in a unified logical way, abstract states, constraints
and continuations. In Section 5 we describe our cstraces generation technique
with a small example. Finally, Section 6 explains how csinitials and csinitials
are generated.

2 Theorem prover based test generation

Test generation is subject of many research projects, and several approaches
have been proposed. One important approach is the use of theorem provers for

2

test generation. The use of theorem provers is motivated by the fact that such
kind of systems is verified and logically safe. In addition, test generation systems
can greatly benefit from the automatic and interactive proof techniques to define
automatic and interactive test generation techniques. Our work belong to this
category of approaches. As mentioned in the introduction, we use the Isabelle
theorem prover to define our theories and our test generation approach is based
on the HOL-TestGen system.

HOL-TestGen [2] is a test generation system based on the Isabelle theorem
prover. The main goal of this system is to use the facilities offered by Isabelle to
help test generation. The principle is rather simple: the prover can be seen as a
transition system. The states of the system corresponds to some formula. The
transitions correspond to formula transformation. The initial state (formula) is
called test specification. It is introduced into the system as a proof goal. The
system will try to prove this theorem using different techniques and should fail.
The system will then stay in an intermediate state (normal form) containing all
the test cases.

The way of writing the test theorem is very important. For example if we want
to generate tests for a program P , one test theorem will be: ∀ t ∈ Tests(P) →
prog(t) where Tests is the test generation method, t is a test and prog is a free
variable that makes the system fail to prove the theorem. The system will try to
solve this problem by simplifying the definition of Tests, and the resulting cases
are given to prog . The premises will contains the test conditions, and the con-
clusion will contain the actual tests (protected by prog). The non-feasible cases
are automatically removed, since they have a false premise and the system can
prove it and remove these cases. The premises are simplified using case splitting
and elimination rules defined for that purpose. The normal form that defines the
tests contains a set of (sub-)theorems: the premises describe a constraint over
the free variables used in the conclusion, i. e. some test case.

In our case, the test theorems will be written in the same way and the
operational semantics rules will be used to generates the tests.

3 Isabelle/HOL and UTP

3.1 HOL Records

A HOL record can be functionally seen as a binding "name 7→ value" character-
ized by two functions "select" and "update". The "select" function returns the
value of a given variable name, and the "update" functions updates the value of
this variable. Since we may have different HOL types for different variables, a
unique definition for select and update cannot be provided. An instance of these
functions is defined for each variable in the record. The name of the variable is
used to distinguish the different instances: for the select function the name is
used directly and for the update function the name is used as a prefix e.g. for a
variable named "x" the names of the select and update functions are respectively
x and x update.

3

3.2 Predicates

An HOL predicate is a boolean function over some HOL free variables e.g.
P =def λ x y . x = y and the type of P is "α → α → bool". It corresponds
also to a set of possible values for the free variables.

A HOL relation is a predicate over some pair "α× β → bool".
We define a UTP predicate as a set of record instances (bindings) of type

"α set", which is equivalent in HOL to "α→ bool". The variable values are given
by the select function e.g. for a record type A that contains the variables x and
y , the expression P =def x = y of type "A→ bool" is a UTP predicate.

A UTP relation is a pair (αP ,P), with a predicate P and its alphabet αP . In
our representation, the alphabet is encoded internally with the record definition,
and the predicate is a UTP predicate. The homogeneous relations (with the same
input and output alphabet) are defined by a HOL relation over two instances of
the same record type e.g. the relation x ′ = x + 1 is encoded by λ(A,A′).x A′ =
(x A) + 1 of type T × T → bool (T is a record type).

A UTP condition is a relation that contains only input (or only output)
variables. As we represent relations by a set of pairs of bindings, a condition is
represented by a set of bindings. In our theory, the conditions and the relations
have different types, consequently the operators defined for relations cannot be
applied for conditions (new operators may be defined in this case).

Hereafter, the UTP theory will refer to our representation of the UTP con-
structs defined in [5]. This theory contains definitions for predicates, relations,
designs, reactive processes and CSP processes.

3.3 Alphabets

The main concern of our UTP theory is to represent "built-in" bindings for
alphabets in a typed way. As a consequence, alphabets can be represented as
records (in the sense of SML or Isabelle). The advantage of this representation
is that any element of the alphabet is associated with a general HOL type. The
inconvenience of this representations is that variables cannot be introduced "on
the fly", they must be known statically i.e. at type inference time.

For certain constructs appearing in UTP and Circus this might appear as a
restriction, since it is a common exercise in the UTP community to introduce
"on the fly" (fresh) variables in logical or operational rules.

Our approach to represent "on the fly" variables is motivated by the classical
and in compiler construction well-known distinction of the set of statically known
variables names (with a given type) and the actual variables, whose number is
unknown statically. This means that a variable x of type τ in the UTP is repre-
sented in the Circus operational semantics by a binding of the form (x τ list).
Of course, since variables underly a scoping discipline, the latter is represented
by a stack discipline on variable instances (see 4.4).

4

4 Circus Operational Semantics

The configurations of the transition system for the semantics of Circus actions are
triples (c | s |= A) where c is a constraint (a UTP condition) over the symbolic
variables in use, s an assignment of values to all Circus variables in scope (a UTP
condition over output variables), and A a Circus action. The transition rules over
configurations have the form: (c0 | s0 |= A0)

e−→ (c1 | s1 |= A1), where e is a
label i.e. a pair (channel × symbolic variable) or ε.

The representation of constraints, state, actions and labels is given below as
well as the corresponding transition rules.

4.1 Constraints

As mentioned in the last section (3.3), our UTP theory does not allow dy-
namic variable introduction. However, this feature is important for constraints
since symbolic variables are introduced dynamically in the Circus operational
semantics rules. One possible solution is to introduce symbolic variables as HOL
variables; this will also allow simplifications when solving the constraints. Con-
straints are represented by HOL predicates over these symbolic variables. A
syntactic type called "Constraint" is defined to avoid the simplification of the
constraints and to allow transformations on constraints (DNF for example). Two
functions are defined: "freeze" that transforms predicates to "Constraints" and
"eval" that transforms the "Constraint" to a predicate.

The constraints are built in the operational semantics rules in two ways,
either implicitly or explicitly. By explicit I mean the conjunction of equalities
or type restrictions. In this case every equality is transformed (protected) to
the syntactic type and a syntactic conjunction is used to keep trace of the con-
junction. The type restrictions are not considered because type conformity is
enforced internally by the system. The implicit (and more interesting) way is to
build constraints from predicates that come from some Circus constructs such
as specification statements, Schema expressions or Guards. To deal with those
cases, a syntactically equivalent definition of these constructs should be provided.

Since we are using HOL predicates and not UTP conditions to represent the
constraints, expressions like "(s; v = e)" cannot be expressed directly, we should
define a semantically equivalent expressions according to our representation of
the state; this point is discussed in section 4.4.

4.2 Actions

In our UTP theory [5] we provide a definition of the Circus action type as the set
of reactive CSP processes (CSP-healthy reactive designs). Our theories contains
also definitions for basic Circus actions (e.g. Skip) and Circus operators over
actions (e.g. ;). The Circus action type is given by "(Θ, σ) action" where "Θ"
and "σ" are polymorphic type parameters for "channels" and "alphabet"; these
type parameters are instantiated for concrete processes.

5

In the configurations, the third component corresponds to a Circus action
of type "(Θ, σ) action" as described above. The denotational semantics of the
actions is not used by the rule inference system, so they will be seen as syntactic
entities. When the operational semantics rules are applied, the system matches
syntactically the concrete actions with the actions of the rules to find which rules
are applicable. The rules contain also some special actions that are not part of
the Circus language, but are introduced by the operational semantics (e.g. �).
These actions are considered here as syntactic entities since it turns out that
their denotational semantics is not used in the operational semantics rules.

To represent the recursion operator "µ" over actions, we use the univer-
sal "µ" defined in HOLCF (the extension of Church’s Higher-Order Logic with
Scott’s Logic for Computable Functions). This operator is inherited from the
"pcpo class" under some conditions, and all theorems defined over this operator
can be reused as well (e.g. the unfolding theorem, see 4.5).

4.3 Labels

All the transitions over configurations are decorated with labels to keep a trace of
the events that the system may perform. A label may refer to a communication
with an input or output value, a synchronization (without communication) or
an internal (silent) transition. In Circus an input communication is represented
by "chan?var" and an output communication by "chan!val" where chan is a
channel, var is a variable and val is a value. A synchronization is represented
by "chan" where chan is a channel. The labels keep track of these events as
"chan?symbvar" for inputs, "chan!symbvar" for outputs and "chan" for syn-
chronizations (symbvar is a symbolic variable). Silent transitions are labeled by
a special label "ε", that corresponds to an internal evolution of the system.

The channels type is represented in our theory as a datatype called "Channels";
every channel is a function defined from the channel type to the type Channels.
For example, if we have two channels in our process chan1 (that communicates
natural values) and chan2 (without communication), the Channels type will be
defined by datatype Channels = chan1nat | chan2.

Labels are also defined as a datatype as follow:
datatype TransitionLabels = Inp Channels | Out Channels | Sync Channels |
ε. The transitions are labeled by one of these labels, the pair (channel , symbvar)
is represented by the function application channel(symbvar). For example, the
label chan1!w0 is represented by out(chan1(w0)) where w0 is a symbolic variable.

4.4 State

The state records, after each rule transition, the mapping between the vari-
able names and their current symbolic values. This notion is usually used and
well-know in compilation as a stack mechanism. We present, in the following,
our representation of the stack, with variable introduction, removal and nested
scopes.

6

The representation In the operational semantics the symbolic state is repre-
sented by a UTP condition over output (dashed) variables. Concretely, it consists
of an assignment of values to all Circus variables. The state is updated in the
operational semantics rules by composing one of the three relations: var x , end x
or x := e, that corresponds to variable scope delimiters and variable value up-
date. The state is also used to build the constraints, but there it is used only in
expressions of the form "s; v = expr" that corresponds to an evaluation of the
expression expr in the context (binding) of s.

The symbolic state is conceptually the set of all the bindings (concrete states)
of (Circus) variables of the form (variable 7→ symbolic variable). In our repre-
sentation, symbolic variables corresponds to some HOL variables bounded by a
meta universal quantifier "Λ". The (Circus) actions variables are the only free
variables in the state; the binding is then concrete. The set of mappings is rep-
resented by the meta quantification over symbolic variables.

As a consequence, instead of using the set of all bindings (variable 7→ symbolic
variable) we use a function (symbolic variables → binding). Since the symbolic
variables are HOL variables, the state corresponds to a single symbolic binding
(variable 7→ symbolic variable). The state can be updated by usual bindings
update functions and the evaluation of expressions (in the constraints part) is
done using select functions over this binding. This new representation will avoid
to the automatic simplifier a lot of superfluous simplifications.

Variable scopes We explained in the introduction that the main idea of rep-
resenting alphabets as records raises the limitation that alphabets cannot be
modified. Consequently, introducing, removing or renaming variables cannot be
expressed. This limitation forced us to find a new representation of variables
in the state that preserves the semantic of variable scopes and assignments in
Circus.

Since the state is a mapping between variables and symbolic values, a nested
scope of a variable should not affect this mapping, and the value of a global vari-
able should be the same before var and after end of a local variable. The solution
is to use a stack, in this case the state is no more a mapping variable/value but
rather variable/(vector of values), which keeps track of nested statements. For
example, if we have a Circus action containing var x ; x := 1; var x ; x := 2,
the state must contain the mapping between x and the vector [1,2]. To imple-
ment the vector of values we used lists, the first element of the list is the value
of the variable in the current scope, var and end correspond to adding and
removing the first item of this list. The following example lists the mappings
variable/values in different states.

7

var x x Z⇒ [?]
var x ; x := 1 x Z⇒ [1]
var x ; x := 1; var x x Z⇒ [?, 1]
var x ; x := 1; var x ; x := 2 x Z⇒ [2, 1]
var x ; x := 1; var x ; x := 2; end x x Z⇒ [1]
var x ; x := 1; var x ; x := 2; end x ; end x x Z⇒ []

This representation affects slightly the semantics of assignments and evalu-
ations over the state in our encoding. The value of a variable is no more the
corresponding value in the mapping but the first element of it. The select and
update functions are modified to preserve their original semantics. The defini-
tions of var , end , select and update are given as follow:

– var x e ≡ x := e# x
– end x ≡ x := tl x
– x update ′ e ≡ (hd x) := e
– x select ′ ≡ (hd x)

Where # is the list constructor, tl gives the tail of a list and hd gives the head of a
list. These operators are only defined and used in our encoding of the operational
semantics; their semantics differ from the usual UTP operators.

This modification will affect also the actions because the state uses the same
alphabet as the actions. The problem is not related to the alphabet itself, but
to the bindings, since our representation does not make a difference between
alphabets and bindings (names and values). Since the binding is now referring
to a list of values, we cannot anymore use the same binding for the actions. To
deal with this problem we can either change the way we use our variables in
the actions or use two different alphabets (bindings) for state and actions and
introduce transformations between them.

In the first solution we can use the same alphabet (binding) in the sate and
the actions, but we should use the new definitions of select and update functions
(select ′ and update ′) in the actions (including schema expressions). This solution
is simple and easy to implement and the modifications are transparent.

The second solution is to use different mappings in the state and the actions,
by keeping the binding (variable 7→ value) for the actions. The alphabets of ac-
tions and state are then different because in our UTP theory names and binding
are correlated. We can define a new alphabet based on the first one but with a
binding (variable 7→ list of values). In this case the select and update functions
are used in the actions while select ′ and update ′ functions are used for the state.
Transformations between these functions should be defined and used in the rules
that manipulate variables (e.g. the assignment rule).

4.5 Operational Semantics rules

The operational semantics is defined by a set of (inductive) inference rules of
the form:

8

A

(c0 | s0 |= A0)
e−→ (c1 | s1 |= A1)

Where (c0 | s0 |= A0) and (c1 | s1 |= A1) are configurations, e is a label.

The soundness of these rules w.r.t the denotational semantics has to be
proved: it is the subject of another on-going work in the Circus group. In our
work, we assume the soundness of these rules, we can then introduce them as
axioms in our theories.

In Section 2 we explained that the theorem prover based test generation relies
essentially on elimination rules, these rules should be introduced in our theories.
It is not safe to introduce elimination rules as axioms: we should be able to infer
them form introduction rules. The inductive set definition is a convenient way
to represent the operational semantics. The introduction rules are used to define
the inductive set, and the system will automatically generate and induction rule
over these rules. The system offers also the possibility to generate elimination
rules using this induction rule. Thus, we only need to provide some knowledge
on the processes from the denotational semantics.

In the definition of inductive sets, types have to be explicitly specified. This
could be problematic in our case, since the variable types are not known a-priori.
This problem can be avoided by adding some parameters to our inductive set.
We have explored two different solutions depending on these parameters. The
first solution is to give as parameters the variable select and update functions,
this functions will be instantiated for each variable in the concrete alphabet. This
solution requires many changes on the rules, so it may make rules unreadable or
introduce inconsistence.

We opted for a second solution, that consists of passing variable types as
parameters. This solution is more transparent, the rules are not changed and
type inference is done automatically for each concrete variable type. Once the
introduction and elimination rules are defined, we can introduce the definitions
of cstraces, csinitials and csinitials.

4.6 Representing the rules

In this section we consider all the rules of the operational semantics given in [4]
and we present their corresponding representation in our theory. The rules are
written as introduction rules but, as seen above, the test generation uses elimi-
nation rules to simplify the premises. As a consequence, elimination rules should
be derived from the introduction rules of the operational semantics. We describe
here our representation of the operational semantics rules as introduction rules
and sketch some elimination rules in the next subsection.

We provide a representation for the main operational semantics rules. How-
ever, some rule are not represented in our theory because they are irrelevant for
our work or they are not covered yet at this stage of work. The irrelevant rules
concerns essentially divergent behavior, which is not considered in the testing
theory. The represented rules are labeled by (+).

9

Rules (1) and (2) of [4] are not represented because they are defined on
processes, in our work we define only rules for actions.

The assignment rule (3) is very tricky because both the state and the con-
straint are updated. If we are using the same alphabet (binding) for the state
and the actions, the expression e contains only select ′ functions and can be eval-
uated directly in the state (binding). If the alphabet is different, we need to
transform every x select function in e to the corresponding x select ′ function;
after that the evaluation can be made in the current state. In both cases the
state is updated by a v update ′ function. Note that w0 is the HOL free variable
that corresponds to the symbolic variable. The application of the expression e
to the current state s replaces in e the variables by their corresponding symbolic
variables in the state s.

c

(c | s |= v := e) ε−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)
(3)

c

(c | s |= v := e) ε−→ (c ∧ freeze (w0 = e s) | v update ′ w0 s |= Skip)
(+)

For schema expressions we need to evaluate the Pre operator in the current
state, then the new constraint is built by evaluating the schema operation in the
updated state. Note the we do not need any substitution because the variables
are already bound to fresh symbolic variables in the new state.

c ∧ (s; pre Op)

(c | s |= Op) ε−→ (c ∧ (s; Op[w0/v ′]) | s; v := w0 |= Skip)
v = outαs (4)

c ∧ (pre Op(s))

(c | s |= Op) ε−→ (c ∧ freeze(Op(v update ′ w0 s)) | v update ′ w0 s |= Skip)
(+)

For outputs the state is not changed, only the constraint is updated in the
same way as for assignment. The transition is labeled by the corresponding label
"Out (d w0)".

c

(c | s |= d !e → A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(5)

c

(c | s |= d !e → A)
Out (d w0)−→ (c ∧ freeze(w0 = e s) | s |= A)

(+)

10

The input communication rule introduces a variable to the state with the
assumption that this variable is not already in the state. With our representation
of the state, we don’t need to express this assumption because our definition of
var takes into account this kind of nested scope (by using a stack). As mentioned
in the introduction, type checking constraints are also removed, the type checking
is done statically by the system. The transition is labeled by "Inp (d w0)".

c ∧ T 6= ∅ x /∈ αs

(c | s |= d?x : T → A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x •A)

(6)

c

(c | s |= d?x → A)
Inp (d w0)−→ (c | var x w0 s |= let x •A)

(+)

The variable introduction rule is similar to inputs rule. It defines a variable
scope. Similarly, we do not need any dynamic type checking for the symbolic
variable, its type is statically instantiated from the context (same type as x).

c ∧ T 6= ∅ x /∈ αs

(c | s |= var x : T •A)
ε−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x •A)

(7)

c

(c | s |= var x •A)
ε−→ (c | var x w0 s |= let x •A)

(+)

The first rule for variable scopes (8) is kept unchanged.

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x •A1)
l−→ (c2 | s2 |= let x •A2)

(8)

For the second rule (9), our end function (see section 4.4) is used to close the
scope of the variable x .

c

(c | s |= let x • Skip) ε−→ (c | s; end x |= Skip)
(9)

c

(c | s |= let x • Skip) ε−→ (c | end x s |= Skip)
(+)

11

The sequence rules (10 and 11) and the internal choice rules (12) are un-
changed since they don’t explicitly contain any variables manipulation as in rule
(8).

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1 ;B)
l−→ (c2 | s2 |= A2 ;B)

(10)

c

(c | s |= Skip ;A)
ε−→ (c | s |= A)

(11)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A1)

c

(c | s |= A1 u A2)
ε−→ (c | s |= A2)

(12)

The external choice rule (13) and local blocks rules (14, 15 and 16) are not
changed.

c

(c | s |= A1 2 A2)
ε−→ (c | s |= (loc c | s •A1)� (loc c | s •A2))

(13)

c1

(c | s |= (loc c1 | s1 • Skip)� (loc c2 | s2 •A))
ε−→ (c1 | s1 |= Skip)

c2

(c | s |= (loc c1 | s1 •A)� (loc c2 | s2 • Skip)) ε−→ (c2 | s2 |= Skip)
(14)

(c1 | s1 |= A1)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 •A1)

�
(loc c2 | s2 •A2)

 ε−→

c | s
|= (loc c3 | s3 •A3)

�
(loc c2 | s2 •A2)

12

(c2 | s2 |= A2)
ε−→ (c3 | s3 |= A3)

c | s
|= (loc c1 | s1 •A1)

�
(loc c2 | s2 •A2)

 ε−→

c | s
|= (loc c1 | s1 •A1)

�
(loc c3 | s3 •A3)

(15)

(c1 | s1 |= A1)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 •A1)� (loc c2 | s2 •A2))
l−→ (c3 | s3 |= A3)

(c2 | s2 |= A2)
l−→ (c3 | s3 |= A3) l 6= ε

(c | s |= (loc c1 | s1 •A1)� (loc c2 | s2 •A2))
l−→ (c3 | s3 |= A3)

(16)

The rules of parallelism (17, 18, 19, 20, 21 and 22) are not integrated in
theory yet. The state merge operation ((∃ x ′

2 • s1) ∧ (∃ x ′
1 • s2)) should be defined

first.

c

(c | s |= A1 |[x1 | cs | x2]|A2)
ε−→

c | s
|= (par c | s | x1 •A1)

|[cs]|
(par c | s | x2 •A2)

 (17)

c1 ∧ c2
c1 ∧ c2 | s
|= (par c1 | s1 | x1 • Skip)

|[cs]|
(par c2 | s2 | x2 • Skip)

 ε−→

 c1 ∧ c2 | (∃ x ′
2 • s1) ∧ (∃ x ′

1 • s2)
|=

Skip

 (18)

(c1 | s1 |= A1)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l /∈ cs c1 ∧ c2 c3 ∧ c2

c1 ∧ c2 | s
|= (par c1 | s1 | x1 •A1)

|[cs]|
(par c2 | s2 | x2 •A2)

 l−→

c3 ∧ c2 | s
|= (par c3 | s3 | x1 •A3)

|[cs]|
(par c2 | s2 | x2 •A2)

(19)

13

(c2 | s2 |= A2)
l−→ (c3 | s3 |= A3) l = ε ∨ chan l /∈ cs c1 ∧ c2 c3 ∧ c1

c1 ∧ c2 | s
|= (par c1 | s1 | x1 •A1)

|[cs]|
(par c2 | s2 | x2 •A2)

 l−→

c3 ∧ c1 | s
|= (par c1 | s1 | x1 •A1)

|[cs]|
(par c3 | s3 | x2 •A3)

(20)

(c1 | s1 |= A1)

d?w1−→ (c3 | s3 |= A3) ∧ (c2 | s2 |= A2)
d!w2−→ (c4 | s4 |= A4)

∨
(c1 | s1 |= A1)

d!w1−→ (c3 | s3 |= A3) ∧ (c2 | s2 |= A2)
d?w2−→ (c4 | s4 |= A4)

∨
(c1 | s1 |= A1)

d!w1−→ (c3 | s3 |= A3) ∧ (c2 | s2 |= A2)
d!w2−→ (c4 | s4 |= A4)

d ∈ cs c1 ∧ c2 c3 ∧ c4 ∧ w1 = w2

c1 ∧ c2 | s
|= (par c1 | s1 | x1 •A1)

|[cs]|
(par c2 | s2 | x2 •A2)

 d!w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|= (par c3 ∧ w1 = w2 | s3 | x1 •A3)

|[cs]|
(par c4 ∧ w1 = w2 | s4 | x2 •A4)

(21)

(c1 | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c2 | s2 |= A2)

d?w2−→ (c4 | s4 |= A4)
d ∈ cs c1 ∧ c2 c3 ∧ c4 ∧ w1 = w2

c1 ∧ c2 | s
|= (par c1 | s1 | x1 •A1)

|[cs]|
(par c2 | s2 | x2 •A2)

 d?w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|= (par c3 ∧ w1 = w2 | s3 | x1 •A3)

|[cs]|
(par c4 ∧ w1 = w2 | s4 | x2 •A4)

(22)

In guarded actions the guard g is evaluated in the current state, then "frozen"
and added to the constraint. The expression (g s) evaluates the guard g in the
current state s, it replaces the variables with their corresponding symbolic vari-
ables.

c ∧ (s; g)

(c | s |= g &A)
ε−→ (c ∧ (s; g) | s |= A)

(23)

14

c ∧ (g s)

(c | s |= g &A)
ε−→ (c ∧ freeze(g s) | s |= A)

(+)

The hiding rules are not changed, the definition for chan is given as partial
function from Labels to Channels as follow:

if (label = ε)

then undefined
elseif (label = Inp channel ∨ label = Inp channel ∨ label = Inp channel)
then channel

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l 6= ε chan l /∈ cs

(c1 | s1 |= A1 \ cs) l−→ (c2 | s2 |= A2 \ cs)
(24)

(c1 | s1 |= A1)
l−→ (c2 | s2 |= A2) l = ε ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs) ε−→ (c2 | s2 |= A2 \ cs)
(25)

c

(c | s |= Skip \ cs) ε−→ (c | s |= Skip)
(26)

The recursion rules are removed, a new rule is introduced to express the
HOL µ unfolding. No process environment is needed and the variables renaming
is avoided with the new state representation. The soundness is justified by the
denotational semantics: µ is the least fixed point operator (see section 4.2).

c

(c | s |= µ X •A, δ) ε−→ (c | s |= A, δ ⊕ {X 7→ A})
(27)

c

(c | s |= X , δ) ε−→ (c | s |= δ X , δ)
(28)

(c | s |= µ X •A(X))
l−→ (c1 | s1 |= A1)

(c | s |= A(µ X •A(X)))
l−→ (c1 | s1 |= A1)

(+)

15

4.7 Elimination rules

For each operator, at least one elimination rule is introduced. These rules are
essentially extracted from the introduction rules. An example of the elimination
rules for Skip and non-deterministic choice are given below:

(c | s |= Skip) l−→ c1

[False]
···
Q

SkipE
Q

(c | s |= A u B)
l−→ c1

[c1 = (c | s |= A) l = ε]
···
Q

[c1 = (c | s |= B) l = ε]
···
Q

NdetE
Q

The first rule eliminates the transitions of Skip to False, because there is no
introduction rules for Skip. This rule allows to stop the application of the rules
since this subgoal will be removed. The second rule eliminates the transitions
for A u B and produces two continuations (subgoals). With a silent transitions,
the process may perform A or B , corresponding to the introduction rules.

5 Generating cstraces

The cstraces is the set of all constrained symbolic traces a process may perform.
A cstrace is a list of events associated to a constraint. Events are given by the
labels of the operational semantics transitions. Some additional rules are defined
in order to build those lists from the operational semantics rules. We introduce
a relation noted "=⇒" and defined by :

c1
[]

=⇒ c2

c1
ε−→ c2 c2

st
=⇒ c3

c1
st
=⇒ c3

c1
e−→ c2 c2

st
=⇒ c3 e 6= ε

c1
e#st
=⇒ c3

(*)

Given # is the list construction operation, and [] the empty list.
The cstraces set is then defined using this relation by:

cstraces(c1, s1,A1) ={
st , c2 | (c1 | s1 |= A1)

st
=⇒ (c2 | s2 |= A2)

• (st , (∃αc2 \ αst) • c2)

}
We introduced in our theories the introduction rules corresponding to (*)

in the same way as for the operational semantics rules (using an inductive set
definition). The cstraces definition is introduced using these rules. Starting from
our rules, a trace generation tactic is defined to allow automatic trace generation.

16

5.1 Trace generation tactic

As explained in the first section, a test theorem is written for trace generation.
This test theorem is given below:

∀ tr ∈ cstraces(c1, s1,A1)

Prog(tr)
The premise is simplified using a trace generation tactic and resulting traces

are stored by Prog . The trace generation tactic is described by the following
algorithm:

Data: k : the maximum length of traces

Simplify cstraces by its definition;

while length ≤ k ∧ more traces can be generated do

Apply the elimination rules of the "=⇒" relation on the current goal;

Apply the elimination rules of the operational semantics on the resulting
subgoals;

end
Algorithm 1: Trace generation tactic

The premise is first simplified using the definition of cstraces, the resulting
premise contain only predicates over the "=⇒" relation. The application of the
rules (*) on these predicates generates three possible continuations:
– The empty trace,
– A trace preceded by an ε,
– An event followed by a trace.

The first resulting subgoal allows the building of partial traces by giving
empty continuations. The other two cases allow to build the traces element by
element using the transition rule of the operational semantics for the first element
and the "=⇒" relation for the continuation.

The elimination rules of the operational semantics are applied to the two last
subgoals in order to instantiate the first element. The system will try to match
the transition of the subgoal with the transitions of the operational semantics.
If a matching is found, the transition is replaced by an instantiation of the
configurations. If at least two matchings are found (e.g. internal choice), the
system introduces a new subgoal for each possible matching. If no matching is
found, the subgoal is removed because the system can prove it (False premise).

The rules are applied repeatedly until a given depth, or if there is no possible
continuation. The list of subgoals corresponds to the list of all possible traces of
a given depth. To see in details how the trace generation tactic works, we give
the following example:

17

5.2 Example

If we want to generate the cstraces of the action "sync → Skip", the test theorem
is written:

∀ tr ∈ cstraces(true, s0, sync → Skip)

Prog tr

This theorems is simplified with the definition of cstraces and the result is:

∀ st c2 • ∃ s2 A2 • (true | s0 |= sync → Skip) st
=⇒ (c2 | s2 |= A2)

Prog (st , c2)

The application of the elimination rules of the relation "=⇒" gives three
subgoals:

∀ st c2 • ∃ s2 A2 • (true | s0 |= sync → Skip)
[]

=⇒ (true | s0 |= sync → Skip)

Prog ([], true)

∀ st c2 • ∃ s2... • (true | s0 |= sync → Skip) ε−→ (c1 | s1 |= A1)

(c1 | s1 |= A1) st
=⇒ (c2 | s2 |= A2)

Prog (st , c2)

∀ st c2 • ∃ e s2... • (true | s0 |= sync → Skip) e−→ (c1 | s1 |= A1)

(c1 | s1 |= A1) st
=⇒ (c2 | s2 |= A2)

Prog (e#st , c2)

The first case gives the empty trace, the last two cases introduces a predicate
with the transition relation of the operational semantics. The application of the
elimination rules of the operational semantics on the second rule will attempt
to find an applicable transition rule with a label ε. The system will fail to find
any applicable rule and the subgoal is removed (false premise). For the third
subgoal, the system will find a rule that matches the premise and instantiate
the unknown variables by their corresponding values. The result of this iteration
contains two subgoals:

Prog ([], true)

∀ st c2 • (true | s0 |= sync → Skip) sync−→ (true | s0 |= Skip)
(true | s0 |= Skip) st

=⇒ (c2 | s2 |= A2)

Prog ((sync)#st , c2)

The second iteration concerns only the second case, after applying the first
elimination rules, this case is replaced by the three possible cases. The application
of the operational semantics elimination rule will fail to find any rule for Skip.

18

The two last cases will be removed and the final result will contain only two
cases:

Prog ([], true)

Prog ([sync], true)

This proof state represents all the cstraces this system can perform.

6 Generating csinitials and csinitials

The csinitials set is the set of all constrained symbolic events the system may
perform after a given trace. The definition of csinitials is based on the cstraces:

csinitials(P , (st , c)) =
{se, c1 | (st a 〈se〉, c1) ∈ cstraces(P) ∧ (c ∧ c1) • (se, c ∧ c1) }

given (st , c) ∈ cstraces(P).
The generation of csinitials is done using the same tactic as for cstraces. The

resulting subgoal gives a list of possible csinitials after a given cstrace. In order
to generate tests for traces refinement relation, we need to introduce another
set : csinitials [3,?]. This set contains all the constrained symbolic events the
system should refuse to perform after a given trace. This set is defined using the
cstraces and csinitials:

csinitials(P , (st , c)) =
{e, c1 | (c1 = c ∧ ¬

∨
{c2 | (e, c2) ∈ csinitials(P , (st , c)) }) • (e, c1)}

provided (st , c) ∈ cstraces(P)
The generation of csinitials raises an important problem. The constraints of

the elements are built from a set of csinitials, which is not easy to obtain since
our tactic generates an enumeration of cases and not a set of elements. To solve
this problem two directions were explored.

The source of our problem is the case splitting that results from our elimi-
nation rules. In order to obtain a set of elements, we need to avoid this splitting
by merging the cases that can result to multiple subgoals (e.g. internal choice
rules). As a consequence, many modifications should be done on the rules to cor-
respond to the new representation. This solution is very complicated and may
make the rules inconsistent. The automation of elimination and simplification
rules becomes very hard with this solution.

The second direction we explored do not affect the rules and the generation
tactic. A post-processing is applied to the results of the generation phase. We
can gather in one subgoal a set of subgoals by applying a meta-tactic. The
result of this meta-tactic is a conjunction of subgoals. For example, if we have
two subgoals : "x ∈ Prog" and "y ∈ Prog", these subgoals are merged in on

19

subgoal :"x ∈ Prog ∧ y ∈ Prog". This subgoal can be simplified to give the
set form: "{x , y} ⊆ Prog". This solution is very promising, it allows us to do
some processing over the resulting set also. The csinitials will be generated by
applying a transformation function over the set of resulting csinitials.

7 Conclusion

In this report we have described a representation of the Circus operational seman-
tics in Isabelle/HOL. This representation is a continuation of our work on the
formalisation of Circus and UTP [5]. We presented some problems related to the
representation of configurations (states, actions, ...) and proposed well-founded
solutions for them. The most important problem was the variable introduction
in the state. As a solution, we defined a complete stack mechanism for the state
variables, dealing with variable introduction, removal and nested scopes.

This report contains also the representation of the main part of the opera-
tional semantics rules. Those rules are slightly changed to fit the state represen-
tation. Another set of rules is introduced to allow the test generation automation.
This set contains the elimination rules that match the introduction rules of the
operational semantics.

In the last part of the report, we have explained with a simple example, our
test generation tactics. We also provided some definitions used for this purpose.

In order to obtain a complete and consistent testing framework, our priority
is to complete the remaining part of the operational (and denotational) seman-
tics to cover the set of all the Circus constructs. The remaining rules concerns
essentially those dealing with the parallel composition operator. Another impor-
tant and urgent task is to complete the proof of some theorems, essentially those
that allow us to use the fix-point operator in a safe way.

We can benefit from our formal representation of the Circus denotational
semantics to complete the testing framework by proving the soundness of the
elimination rules w.r.t the operational semantics introduction rules.

At this stage, we introduce tactics to generate symbolic tests for trace re-
finement in a consistent way (w.r.t the semantics of Circus). The continuation
of this work will be to introduce new tactics for the other conformance relation
based on acceptances defined in [4].

We usually obtain an infinite set of symbolic tests, some selection hypotheses
should be defined to extract a finite subset of symbolic tests. This corresponds
to the test criteria defined in [6].

Moreover, Symbolic tests generally corresponds to an infinity of concrete
tests, where the symbolic values are instantiated according to the constraints.
This will be done via the use of o constraint solver as done for instance in [1].
The choice of one ore more instantiations is another step in the testing strategy.

20

Acknowledgements

I would like to express my thanks to my supervisor Marie-Claude Gaudel for the
valuable help in my work and in writing this report. I am also very grateful to
Burkhart Wolff and Ana Cavalcanti for discussions which helped me develop the
ideas put forward here.

References

1. Bentakouk, L., Poizat, P., Zaidi, F.: Checking the behavioral conformance of web
services with symbolic testing and an smt solver. In: Springer (ed.) Tests & Proofs,
TAP. LNCS, vol. 6706, pp. 33–50 (July 2011)

2. Brucker, A.D., Wolff, B.: Test-sequence generation with HOL-TestGen – with an
application to firewall testing. In: Meyer, B., Gurevich, Y. (eds.) TAP 2007: Tests
And Proofs, pp. 149–168. No. 4454 in Lecture Notes in Computer Science, Springer-
Verlag, Zurich (2007)

3. Cavalcanti, A., Gaudel, M.C.: Testing for refinement in CSP. In: Formal Methods
and Software Engineering, ICFEM 2007. Lecture Notes in Computer Science, vol.
4789, pp. 151–170. Springer Verlag (2007)

4. Cavalcanti, A., Gaudel, M.C.: Testing for refinement in Circus. Acta Informatica
48(2), 97–147 (2011)

5. Feliachi, A., Gaudel, M.C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Unify-
ing Theories of Programming 2010. Lecture Notes in Computer Science, vol. 6445,
pp. 188–206. Springer Verlag, Shanghai, China (November 2010)

6. Gaudel, M.C.: Testing can be formal, too. In: TAPSOFT’95, International Joint
Conference, Theory And Practice of Software Development. Lecture Notes in Com-
puter Science, vol. 915, pp. 82–96. Springer Verlag, Aarhus, Denmark (1995)

7. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Inter-
national Series in Computer Science (1998)

8. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer-Verlag (2002)

9. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus.
Electron. Notes Theor. Comput. Sci. 187, 107–123 (2007)

10. Woodcock, J.C.P., Cavalcanti, A.L.C.: The semantics of circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002: Formal Specification and Devel-
opment in Z and B. Lecture Notes in Computer Science, vol. 2272, pp. 184—203.
Springer-Verlag (2002)

21

	RR1544entete
	RR1544rapp
	Representing Circus Operational Semantics in Isabelle/HOL

