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Abstract

The maximum weight forest problem (MWFP) in a graph is solved by the famous
greedy algorithm due to Edmonds (1971) where every edge has a known weight. In
particular, the system of constraints on the set of edges is TDI (totally dual integral),
since the set of independent edges, i.e., of acyclic subsets of edges, is a matroïd. We
extend this approach to the case of two-stage maximum weight forest problem. The
set of edges is composed of �rst stage edges with known weights and second stage
ones where the weights are known a priorily in terms of discrete random variables.
As the probability distribution is discrete, we transform the stochastic problem into
a deterministic equivalent problem. In this article, we prove TDIness for the two
stage maximum weight forest problem in the case of only two scenarios. We provide
a counter example to prove that the problem is not anymore TDI for more than two
scenarios.

1 Introduction, notation and generalities

1.1 Introduction

We consider a graph G = (V,E) where E is a set of edges of cardinality ∣E∣, and a cost
function c de�ned on edges. The edges are indexed by i ∈ [1, ∣E∣] and for any subset F
of edges, we call c(F ) the sum

∑
j∈F

cjxj where xj = 1 if j ∈ F and xj = 0 otherwise.

A subset F is said independant if there is no cycle in F . The maximization problem of
c(F ) for F independent is well known to be connected to matroïds and is e�ciently solved
in the case of a �xed cost value for every edge (7). When every edge has a �xed value,
we say that the problem is deterministic and since independent sets are a matroïd, the
greedy algorithm is e�cient to provide the maximization problem of c(F ) polynomialy.
The matroïd structure of independent sets involves the fact that the rank function r(F )
(the maximum cardinality of any independent subset included in F ) is submodular. In this
case, the polytope associated to independence constraint is Totally Dual Integral. This is
a very nice property which allows to apply algebraic methods to solve maximization. The
problem that we introduce in this paper is to understand what happens when cost function
is not deterministic but follows a discrete stochastic distribution �. In our problem, the
edges are split into two subsets E = X ∪Y . In stochastic programming, the �rst subset X
has a deterministic cost function, this set is called �rst stage, we set card(X) = n, whereas
in second subset called second stage, card(Y ) = q. We notice N = n + q the cardinal of
the whole set of edges in G.
Cost function depends on K ≥ 2 scenarios and cost values are given by a probability
distribution � = (�1, . . . , �K). The formulation of this problem is:
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zIP =

⎧⎨⎩
max

∑
j∈X

cjxj +
k=K∑
k=1

�k
∑
j∈Y

cj(k)zkj∑
j∈S∩X

xj +
∑

j∈S∩Y
zkj ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ {0, 1}n × {0, 1}q, k ∈ {1, . . . ,K}

(1)

We outline that any �rst stage edge is associated with a single binary variable xj , while a
second stage edge is associated with K binary variables zkj .
The most powerful case is when the deterministic problem is associated with a matrix
constraint which is Totally Unimodular (TU). Introducing multi stages and dubbing sub
matrices of second stage edges is studied by (6). In our case, initial properties are weaker
and are formulated in terms of TDI system. Operations that preserve TDI properties are
presented in (1) and we will outline connection with our formulation and matroïds inter-
section, the reader will refer to (4) for further details. Several works have investigated
the question of approximation of two stage stochastic versions of classical combinatorial
problems. The question of hardness and �nding approximate algorithm is studied in (8)
for general class of problems and in (5) a general method called boosted sampling turns an
approximation algorithm for a deterministic problem into an approximation algorithm for
the equivalent two stage stochastic version. Concerning more speci�caly the spanning tree
problem, (2) study the minimum stochastic spanning tree problem and give approximations
algorithm and results of log n-hardness approximation under assumptions of bounded in�a-
tion. Furthermore, (Esco�er et al.) study more speci�caly the two stage maximum weight
spanning tree problem and prove the APX-completeness. They propose an approximation

algorithm with performance guarantee or
K

2K − 1
where K is the number of scenarios at

the second stage. In section 2, we reproduce the basic results of the determinist case. The
reader will refer to (7). In the greedy algorithm, we outline the importance of the closure
of a subset and the dynamical point of view of the building scheme of the dual solution.
We analyze the solution of the greedy algorithm in terms of a continuous solution of the
weights.In 3, we present �rst general results on TDIness for the two stage stochastic prob-
lem. In section 4, we deal with the case of two scenarios only, this case is particular since
we prove that the system of constraints is TDI exactly as in the deterministic case. In
section 5, we show by an example to the contrary that the TDI properties are not preserved
in case of strictly more than two scenarios.

2 Deterministic case and threshold for the status of a given

edge in a graph

De�nitions for matroïds, independent sets and greedy algorithm are given in (7). We
outline in this paper a dynamical point of view for the construction of the greedy solution
by watching carefully how the closure of a subset of chosen edges is increasing.

2.1 Polytopes and problems associated

In the deterministic case, we have n = N = ∣E∣. We introduce the notations:

�(r) = {x ∈ {0, 1}n :
∑
j∈S

xj ≤ r(S) ∀S ⊆ E} (2)
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zIP = max{ctx : x ∈ �(r)} (3)

The polytope associated to the matroïd:

P (r) = {x ∈ (ℝ+)n :
∑
j∈S

xj ≤ r(S) ∀S ⊆ E} (4)

and the linear program associated

zLP = max{ctx : x ∈ P (r)} (5)

The dual problem associated with zIP is :

zLD = min
∑
S⊆E

r(S)yS (6)

st

{ ∑
S:j∈S

yS ≥ cj ∀j ∈ E

yS ≥ 0 ∀S ⊂ E
(7)

The problem of �nding a maximum-weight independant set in the deterministic case is
formulated by (??);
It is possible to show that zIP = zLD by exhibiting the optimal solution for zLD which is
indeed the greedy solution for zIP . The conclusion is that �(r) is TDI and the duality gap
is equal to 0.

2.2 The greedy algorithm

This algorithm is due to Edmonds (Nemhauser and Wolsey (7)).
We call F the set of independant subsets in E. Rank the elements of E so that c1 ≥ c2 ≥
. . . ≥ cn
Let begin by J0 = ∅ , t = 1.
Iteration t : If ct ≤ 0 then stop and SG = Jt−1.
If ct > 0 and Jt−1 ∪ {t} ∈ F , then set Jt = Jt−1 ∪ {t}.
If ct > 0 and St−1 ∪ {t} /∈ F then set Jt = Jt−1.
If t = N stop and SG = Jt
Set t to t+ 1
The greedy solution is {xi/i ∈ SG}.

We call p the number of chosen edges and SG = Jp.

We now present the main result connecting the greedy solution to the dual problem, and
we emphasize on the growing closure mechanism. We say that any edge chosen during the
greedy algorithm is greedy while any non chosen edge is covered .

De�nition 2.1. The closure or span of a set A is sp(A) = {i ∈ E : r(A ∪ {i}) = r(A)}.

We brie�y describe the greedy algorithm in terms of closure sets. We refer to an edge
xi ∈ E either directly as xi or only via its index i. We assume that indexation of edges is
equal to their rank. For the edges of the greedy solution for G, let {i1, . . . , it} be the set
of edges indices in decreasing order of edge weigths. Denote J� = {i1, . . . , i�}, 1 ≤ � ≤ t
and �� = sp(J� ). The �rst step of the greedy process is the choice of the heaviest weight
and we set J1 = {x1}. We call i1 = 1 the �rst chosen edge and we notice that �1 = sp(J1).
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We now choose the second edge i2 with the highest rank among all remaining edges such
that i2 /∈ �1. Up to this point of construction, obviously i2 = 2 since there is no cycle with
only two edges. We build now J�+1:

The iterative mechanism consist in the choice of i�+1 with the highest rank among all
remaining edges such as i�+1 /∈ �� and ci�+1 ≥ 0. It is important to notice that sp(J� ) =
sp(�� ).

De�nition 2.2. For a given cost c ∈ ℝN on G and b ∈ ℝ, we note U(b) = {xi/ci ≥ b}
Lemma 2.1. For any graph G of cardinal N , consider speci�cally any edge x with cost

c ∈ ℝ considered as a variable, and assume that every other edges x1, . . . , xN−1 have a

given cost (c1, . . . , cN−1), there exists a threshold b ∈ ℝ+ such that if c > b then x belongs

to the greedy solution applied to G while x is covered if c < b. The threshold b is a function

of (c1, . . . , cN−1). When c = b, the status of x can be greedy or covered according to the

choice of x or another edge of same weight during the greedy algorithm.

Proof. We still assume that indexation of edges x1, . . . , xN−1 is equal to their rank accord-
ing to a decreasing weight. We dynamically construct greedy solution on G̃ = G ∖ {x}
without taking in account the speci�c edge x. We get a �nite sequence of sets J̃1, . . . , J̃p
and of corresponding closures �̃1, . . . , �̃p of G̃.
Remark that �̃1, . . . , �̃p is a strictly growing sequence for inclusion of subsets such that
G ∖ {x} = �̃p.
We reintroduce x as a new edge in the graph G̃. In the case where x /∈ �̃p, that means that
as soon as c > 0 then x would be chosen during the greedy algorithm applied properly on
whole graph G, so that b = 0.
In the case where x ∈ �̃p that means that there exists a particular step � such that
x ∈ sp(J̃�+1) and x /∈ sp(J̃� ). The threshold b is equal to ci�+1 . In the case where c = ci�+1

occurs, then x and xi�+1 have the same cost(and perhaps several other edges) and x or
xi�+1 can be indi�erently chosen during greedy algorithm but not both together.

Theorem 2.3. b = b(c1, . . . , cN−1) is a continuous function of (c1, . . . , cN−1)

Proof. We consider the same mechanism as in lemma 2.1 to get a �rst threshold b =
b(c1, . . . , cN−1) when removing x from G. We begin to notice that during the greedy
algorithm, at every step, when choosing the � tℎ edge of the greedy solution, J� ⊆ U(ci� ) ⊆
�� .
We �x � > 0 and for c = (c1, . . . , cN−1) ∈ ℝN−1, we consider a small perturbation c′ =
(c′1, . . . , c

′
N−1) such that ∣ci − c′i∣ < � ∀i ∈ [1, . . . , N − 1]. We note U ′(b) = {xi/c′i ≥ b},

the set of edges whose slightly modi�ed weights are greater than b.
Obviously, if x is not covered by any independent subset in U ′(b), that means that b will
decrease. Conversely, if U ′(b) contains some new independent subsets that covers x, it will
possibly enforce b to increase. we begin to explain how the variation of the threshold is
lower bounded: U(b) contains a subset J� such that x ∈ sp(J� ) and U(b) ⊂ U ′(b − 2�).
Then U ′(b − 2�) contains a subset J ′� ′ , step of the greedy algorithm applied to G̃ with c′

cost and such that x ∈ sp(J ′� ′). This proves that b(c′) ≥ b− 2�.
For the upper bound of the variation, we see that since U(b + �) does not contain any
independent set covering x with cost c, and U ′(b+ 2�) ⊆ U(b+ �) then U ′(b+ 2�) does not
contain any independent set covering x in G with c′ cost. This proves that b(c′) ≤ b(c)+2�.
We conclude that ∣b(c′)− b(c)∣ ≤ 2�, and b is a continuous function of c.

We now present the connection between dual formulation and the greedy solution in the
deterministic case and we will use the same approach in the stochastic case.
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2.3 Dynamical construction of the dual solution

This section shortly presents results given in (7) in order to re use the principle of proof
in the stochastic case.

Theorem 2.4. The dual problem zLD and the greedy solution of zIP have the same objective

value. P (r) is a integral polytop, and the system de�ning P (r) is TDI.

Proof. We assume that indexation of edges is equal to their rank according to a decreasing
weight. We dynamically construct both greedy solution and dual solution equals at every
step.
According to notations used in 2.2, the optimal solution to zLD is :

y�t = cjt − cjt+1 for t = 1, . . . , p− 1
y�p = cjp
yS = 0 otℎerwise

First, we need to check that for every j ∈ N :
∑

S/j∈S
yS ≥ cj .

it is obviously the case for every ji ∈ SG since ji ∈ Jt for i ≤ t.
For any j which has not been chosen during the greedy algorithm, j belongs to some
sp(Jt) ∖ sp(Jt−1)
So

∑
S/j∈S

yS = cjt ≥ cj .

Secondly, we need to compute the sum :
∑
S⊆E

r(S)yS =
p−1∑
t=1

t(cjt − cjt+1) + pcjp

this leads by splitting in two sums and re-indexing to
∑
S⊆E

r(S)yS =
p∑
t=1

cjt .

This shows that zIP and zLD have the same objective value. More precisely, the greedy
solution to zIP and zLD have the same objective value. We conclude that the set of
inequalities de�ning P (r) is TDI, and P (r) is an integral polytop.

In the next section we introduce two stage stochastic problem, where the cost of several
edges can have stochastic values. We consider the case of discrete probabilities, where
costs belong to a �nite set of values. The values of each edges are sampled simultaneously
so that there exists a �nite number of scenarios.

3 Two stage Stochastic Problem

In this section, we consider the two stage stochastic problem with K ≥ 2 and we introduce
relaxed formulation of (1) and dual formulation. We explain the mechanism of the split of
cost for �rst stage variables and produce �rst results.

3.1 Linear relaxation and dual formulation associated with the two stage

case

The linear program associated to (1) is:

zLP =

⎧⎨⎩
max

∑
j∈X

cjxj +

k=K∑
k=1

�k
∑
j∈Y

cjkzjk :∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ [0, 1]n × [0, 1]q, k ∈ {1, . . . ,K}

(8)
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and its LP-dual is:

zLD =

⎧⎨⎩

min
K∑
k=1

∑
S⊆E

r(S)yS,k :

K∑
k=1

∑
S⊆E:i∈X∩S

yS,k ≥ ci, i ∈ X∑
S⊆E:j∈Y ∩S

yS,k ≥ �kcjk, j ∈ Y, k ∈ {1, . . . ,K}

yS,k ≥ 0, k ∈ {1, . . . ,K}, S ⊆ E

(9)

3.2 Formal split of the cost of a �rst stage edge

Since the cost of second stage edges change with scenarios, while �rst stage edges costs
remain the same, when one speci�c scenario occurs, we apply a greedy algorithm not with
the whole cost of �rst stage edge, but only with a fractional part as described below:
For E = X ∪ Y �rst and second stage edges, and for (c, ck) weights vectors with c ∈ ℝn,
ck ∈ ℝq, k = 1, . . . ,K. Consider a split of the form

ci =

K∑
k=1

cki , i ∈ X

with
cki ≥ 0, i ∈ X

or equivalent vector formulation:

c =
K∑
k=1

ck

with
ck ≥ 0

For k ∈ {1, . . . ,K} we consider the sets {ik1, . . . , iktk} of indices in the order they are picked
by the greedy algorithm applied for each (ck, ck) cost vector.
By �k� we denote the spans of the following subsets of the edge sets in the greedy sequence

{ik1, . . . , iktk}, � = 1, . . . , tk, k = 1, . . . ,K

remark
r(�k� ) = �, � = 1, . . . , tk, k = 1, . . . ,K

We introduce a speci�c condition on �rst stage edges in every scenario:

De�nition 3.1. For the individual weight vectors (ck, ck), k = 1, . . . ,K, if each �rst

stage edge is either always or never picked simultaneously in every scenario by the greedy

algorithm, we say that the status of �rst stage edges is uniform.
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Lemma 3.1. Assume there exists a split c =
K∑
k=1

ck with ck ≥ 0 ful�lling the condition of

de�nition (3.1), then the system⎧⎨⎩
(x, z1, . . . , zK) ∈ [0, 1]n × [0, 1]q × . . .× [0, 1]q :∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E (10)

is totally dual integral.

Proof. Let (c, c1, . . . , cK) be an arbitrary weight vector with c ∈ ℝn, ck ∈ ℝq, k =
1, . . . ,K. Consider the two stage stochastic maximum problem:⎧⎨⎩

max
∑
j∈X

cjxj +
k=K∑
k=1

∑
j∈Y

cjkzjk∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ {0, 1}n × {0, 1}q, k ∈ {1, . . . ,K}

(11)

Consider a split for c ful�lling condition (3.1) and for k = 1, . . . ,K, put xki = 1, zik = 1
if the greedy algorithm picks i ∈ X respectively i ∈ Y , under the vector (ck, ck), and
xki = 0, zik = 0 otherwise. We obtain :

k=K∑
k=1

∑
j∈X

ckjx
k
j+

k=K∑
k=1

∑
j∈Y

cjkzjk =
∑
j∈X

(
k=K∑
k=1

ckj )xj +
k=K∑
k=1

∑
j∈Y

cjkzjk =
∑
j∈X

cjxj +
k=K∑
k=1

∑
j∈Y

cjkzjk(12)

Feasibility of the scenario speci�c solutions∑
j∈S∩X

xkj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

implies feasibility of the two-stage model∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

Now turn to the dual of the LP relaxation aiming at the construction of an optimal solution
whose objective value coincides with (12).⎧⎨⎩

min
K∑
k=1

∑
S⊆E

r(S)yS,k :

K∑
k=1

∑
S⊆E:i∈X∩S

yS,k ≥ ci, i ∈ X∑
S⊆E:j∈Y ∩S

yS,k ≥ cjk, j ∈ Y, k ∈ {1, . . . ,K}

yS,k ≥ 0, k ∈ {1, . . . ,K}, S ⊆ E

(13)

For each k = 1, . . . ,K let, according to the choice {ik1, . . . , iktk}, � = 1, . . . , tk, k = 1, . . . ,K
and in descending order, ĉik1 ≥ . . . ≥ ĉiktk

≥ 0 be the weights of the edge picked by the greedy
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algorithm run on the instance with edge weights (ck, ck). According to the deterministic
proof of the greedy solution, for the edge sets S = �k� , � = 1, . . . , tk, k = 1, . . . ,K we put

yS,k = ĉik� − ĉik�+1
, � = 1, . . . , tk − 1 and yS,k = ĉiktk

, � = tk

For the remaining S ⊆ E and k = 1, . . . ,K we put yS,k = 0. To check feasibility, �x some
i ∈ X, then for each k = 1, . . . ,K, there exists a unique index �∗ with i ∈ �k�∗+1 ∖ �k�∗ . It
holds: ∑

S⊆E:i∈X∩S
yS,k =

tk∑
�∗

y�k� ,k =

tk∑
�∗

(ĉik� − ĉik�+1
) = ĉik

�∗
≥ cki

Summing up over k yelds

K∑
k=1

∑
S⊆E:i∈X∩S

yS,k ≥
K∑
k=1

cki = ci

For i ∈ Y and k ∈ {1, . . . ,K} again there exists a unique index �∗ with i ∈ �k�∗+1 ∖ �k�∗ ,
and we have:

∑
S⊆E:i∈Y ∩S

yS,k =

tk∑
�∗

y�k� ,k =

tk∑
�∗

(ĉik� − ĉik�+1
) = ĉik

�∗
≥ cik

Non negativity of the dual solution is immediate. If i /∈ �ktk , then its edge weight is non-
positive, and the dual constraint involving i is ful�lled. For the dual objective, it holds

K∑
k=1

∑
S⊆E

r(S)yS,k (14)

=
K∑
k=1

tk∑
�=1

r(�k� )y�k� ,k =
K∑
k=1

tk−1∑
�=1

�(ĉik� − ĉik�+1
) + tk ĉiktk

=
K∑
k=1

tk∑
�=1

ĉik� (15)

=
K∑
k=1

(
∑
i∈X

cki x
k
i +

∑
i∈Y

cikzik) =
K∑
k=1

(
∑
i∈X

cki xi +
∑
i∈Y

cikzik) (16)

=
∑
i∈X

(
K∑
k=1

cki )xi +
K∑
k=1

∑
i∈Y

cikzik (17)

=
∑
i∈X

cixi +

K∑
k=1

∑
i∈Y

cikzik (18)

which coincides with (12). Hence the system in question is totally dual integral.

4 Two stage problem with only two scenarios

The case K = 2 is very di�erent from the case K ≥ 3. We prove in this section that in
the case K = 2, the optimal value of the problem is integer. The main idea is to prove
the existence of a correct split of �rst stage edges costs according to (3.1) by induction
on the number of �rst stage edges. Yet, the case of only one �rst stage edge gives a basic
settlement for any value of K, and the case of only two �rst stage edges is a central point
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in the proof. When there exists a split c =
K∑
k=1

ck with ck ≥ 0 ful�lling the condition

of de�nition (3.1), we speak about a �rst stage edge i as 'covered' if the split turns to
xki = 0 k = 1, . . . ,K when applying greedy algorithms, and as 'chosen' if the split turns
to xki = 1 k = 1, . . . ,K.

4.1 The case of only one edge in the �rst level

We consider the case where only one edge x1 belongs to the �rst stage.

Theorem 4.1. With only one edge in the �rst stage and K = 2, the primal problem zIP
(1) and dual problem zLP (3.1) have the same integer value. This entails that the system

is TDI.

Proof. It su�ces to prove that it is possible to correctly split the cost c1 into two parts in
order to get the same status in both scenarios.
According to lemma 2.1, there exist two thresholds b11 = b11(c11, . . . , cq1) and b

2
1 = b21(c12, . . . , cq2)

that determine the status of x1 in each scenario.
In the case where b11 + b21 ≤ c1 then it is possible to split c1 with respect to b11 ≤ c11 and
b21 ≤ c21.
In the case where b11 + b21 ≥ c1 then it is possible to split c1 with respect to b11 ≥ c11 and
b21 ≥ c21.
From the point of view of a single scenario, these di�erent cases can be summarized into
one single criteria: for c11 ∈ [min(b11, c1 − b21),max(b11, c1 − b21)], the status of x1 into both
scenarios during greedy algorithm is the same.

The case of only one edge in the �rst stage with any number of scenarios can easily be
answered in the same manner:

Theorem 4.2. In the case of any number of scenarios K ≥ 2, with only one edge in the

�rst stage, the primal problem zIP (1) and dual problem zLP (3.1) have the same integer

value. This entails that the system is TDI.

Proof. It su�ces to prove that it is possible to correctly split the cost c1 into K parts in
order to get the same status in every scenario.
According to lemma 2.1, there exist K thresholds bk1 = bk1(c1k, . . . , cqk), k = 1, . . . ,K. In

the case where
K∑
k=1

bk1 ≤ c1 then it is possible to split c1 with respect to bk1 ≤ ck1, ∀k

In the case where
K∑
k=1

bk1 ≤ c1 then it is possible to split c1 with respect to bk1 ≥ ck1, ∀k

4.2 The case of two edges in the �rst stage

We consider the case where two edges x1 and x2 belong to the �rst stage with respectively
costs c1 and c2. We proceed in the same way than with one single edge by spliting �xed
costs into two parts: c1 = c11 + c21 and c2 = c12 + c22.

Theorem 4.3. With only two edges in �rst stage and K = 2, the primal problem zIP (1)
and dual problem zLP (3.1) have the same integer value. This entails that the system is

TDI.
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Proof. In the proof of theorem 4.1, we have seen that an accurate split of the cost of one
edge is given by a compact interval [min(b11, c1− b21),max(b11, c1− b21)], where b11 and b21 are
two continuous functions of the other costs of all edges -independently of their stage.
Since there are only two scenarios, any split of the cost c2 = c12 + c22 can be interpreted
as the variation of a single parameter c12. That means that b11 and b21 can be seen as two
functions depending of a simple variable c12 and several �xed parameters c2, c11, . . . , cq1 and
respectively c2, c12, . . . , cq2:

b11 = b11(c
1
2, c11, . . . , cq1)

and
b21 = b21(c2 − c12, c12, . . . , cq2)

Considering the standalone variation of the value c12 ∈ [0, c2], we get two continuous func-
tions f1(c12) = min(b11, c1 − b21) and g1(c12) = max(b11, c1 − b21), de�ning the border line of a
never empty area of the two dimensional space for variables (c11, c

1
2) ∈ [0, c1]× [0, c2] where

x1 has a common status in scenario S1 and S2 ie x11 = x21. See �gure 1

Figure 1: common status for x1 between two continuous parametric curves

Functions f1 and g1 de�ne two continuous parametric curves reaching respectively the
points (f1(0), 0) to (f1(c2), c2) and (g1(0), 0) to (g1(c2), c2) in the space (c11, c

1
2) ∈ [0, c1]×

[0, c2].
The same analysis with the second �rst stage edge leads to introduce two similar thresholds:

b12 = b12(c
1
1, c11, . . . , cq1)

and
b22 = b22(c1 − c11, c12, . . . , cq2)

A split of c2 between these two thresholds gives the same status of x2 in both scenarios.
We then consider in the same manner two continuous functions f2(c11) = min(b12, c2 − b22)
and g2(c11) = max(b12, c2− b22) de�ning the border line of a non empty area of the same two
dimensional space for variables (c11, c

1
2) ∈ [0, c1]× [0, c2] where x2 has a common status in

scenario S1 and S2.

10



Figure 2: common status for x2 between two continuous parametric curves

Functions f2 and g2 de�ne two continuous parametric curves reaching respectively the
points (0, f2(0)) to (c1, f2(c1)) and (0, g2(0)) to (c1, g2(c1), 0) in the space [0, c1] × [0, c2].
See �gure 2
According to the theorem of intermediate values for continuous functions, there exist cross-
ing values for curves (f1, f2), (g1, f1), (f1, g2) and (g1, g2) which de�ne a zone with contin-
uous parametric curves for border line and where x1 and x2 have simultaneously the same
status in S1 and S2. See �gure 3

4.3 The case of any number of �rst stage edges with only two scenarios

Theorem 4.4. With only two scenarios, the primal problem zIP and dual problem zLP
have the same integer value and the system is TDI.

Proof. We prove this theorem by induction based on the number of �rst stage edges. We
claim the following assumption:
H(n) ⇔ "with n edges in the �rst stage, there exist a correct split of the costs of every
edges of �rst stage in terms of c1 = c11 + c21, . . . , cn = c1n + c2n such that these edges get
the same respective uniform status in scenario S1 and S2 with respect to condition (3.1).
When focusing on the part of these splits concerning the �rst scenario, the correct split is
given by (c11, . . . , c

1
n) ∈ Ω(1,...,n) where Ω(1,...,n) ⊂ [0, c1]× . . .× [0, cn] is a regular compact

zone whose border is given by regular (continuous) parametric hypersurfaces.
These hypersurfaces are speci�c thresholds of the kind

fi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c11, . . . , c1q, c11, . . . , cq1, c12, . . . , cq2) = min(b1i , ci−b2i ), i ∈ {1, . . . , n}

and

gi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c11, . . . , cq1, c12, . . . , cq2) = max(b1i , ci − b2i ), i ∈ {1, . . . , n}

or intersections of such thresholds."
The case of n = 2 has been proved in section 4.2.
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Figure 3: common status for x1 and x2

Assume that H(n) is true for some value n, we consider a graph G with n + 1 �rst stage
edges and q second stage edges. We split the value cn+1 into cn+1 = c1n+1 + c2n+1. To
every value c1n+1, by application of H(n) it corresponds a regular compact zone Ω(c1n+1)
into which borders are given by speci�c thresholds of the kind :

fi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c

1
n+1, c11, . . . , cq1, c12, . . . , cq2) = min(b1i , ci − b2i )

and

gi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c

1
n+1, c11, . . . , cq1, c12, . . . , cq2) = max(b1i , ci − b2i )

or intersections of such thresholds.
Since functions involved in type f or g are min or max of continuous functions of the
kind of b1i or b

2
i de�ned in 2.3, the collection Ω(1,...,n) = {Ω(c1n+1), c

1
n+1 ∈ [0, cn+1]} de�nes

a continuous zone into which all �rst stage edges x1, . . . , xn have respectively a uniform
status in both scenarios according to condition (3.1).
Consider now the proper thresholds for xn+1 given by

fn+1(c
1
1, . . . , c

1
n, c11, . . . , cq1, c12, . . . , cq2) = min(b1n+1, cn+1 − b2n+1)

and
gn+1(c

1
1, . . . , c

1
n, c11, . . . , cq1, c21, . . . , cq2) = max(b1n+1, cn+1 − b2n+1)

These two functions de�ne respectively two regular (continuous) parametric hypersurfaces
in between which xn+1 has a common status in scenario S1 and S2. If we call Ωn+1 the
subset of [0, c1] × . . . × [0, cn+1] between these two hypersurfaces, then the crossing part
Ω(1,...,n) ∩ Ωn+1 = Ω(1,...,n+1) is a non empty zone where all n + 1 �rst stage edges have a
uniform status in both scenarios. The border line of this intersection is of the same kind
of those described in H(n) and that ends proof for H(n + 1).For illustration with n = 3,
see �gure (4).
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Figure 4: intersection of surfaces fn+1 and gn+1 and zone U(1,...,n) in the case n = 2

5 Multiple scenarios-The case of more than two scenarios

In this section, we study the case where there exist more than two scenarios in the second
stage. We will change our point of view by exhibiting an example to the contrary where a
fractional solution for (x, z) still compatible with all requirements leads to a higher value
than for all integer vectors (x, z). We present a graph where there exist 3 �rst stage edges
not directly connected, and 6 second stage edges.
For all �rst stage edges, the cost values are c1 = c2 = c3 = 5.
In scenario S1, the cost function for second stage edges is c11 = c21 = 6 and c31 = c41 =
c51 = c61 = 0.
In scenario S2, the cost function for second stage edges is c32 = c42 = 6 and c12 = c22 =
c52 = c62 = 0.
In scenario S3, the cost function for second stage edges is c53 = c63 = 6 and c13 = c23 =
c33 = c43 = 0.
There is no integer solution (x, z) where it is possible to take all second stage edges with
positive strictly cost and strictly more than only one �rst stage edge, otherwise there
would be a cycle (see �gure 5). We can a�ord that best integer value is less or equal than

6 ∗ 6 + 5 = 41. Now we propose to take x1 = x2 = x3 =
1

2
and in second stage only edges

with strictly positive cost: z11 = z21 = 1; z32 = z42 = 1; z53 = z63 = 1. This fractional

solution gives a positive value of 6 ∗ 6 + 3 ∗ 5 ∗ 1

2
= 43, 5. This clearly shows that this

13



system is not TDI. All requirements are satis�ed:

⎧⎨⎩
∑

j∈S∩X
xj +

∑
j∈S∩Y

zjk ≤ r(S), k ∈ {1, . . . , 3}, ∀S ⊆ E

(x, zk) ∈ [0, 1]n × [0, 1]q, k ∈ {1, . . . , 3}
(19)

Figure 5: Complete graph for one scenario
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Figure 6: three scenarios with cost function

6 Conclusion

In this paper, we solved TDIness problem for two-stage maximum weight forest problem
for di�erent instances with at least two scenarios.
We use an analytic approach with a variable cost split between several scenarios for general
graphs. The main di�erence between instances with two and strictly more than two sce-
narios dwells in the fact that in some cases, for a speci�c scenario, the status of a �rst stage
edge can not be chosen by balancing the cost on the other scenarios in order to �nd an
equilibrium between more than two situations. This problem is described with the generic
counter example of section 5. In further research, we will focus on approximation methods
for the maximum weight stochastic tree based on variations of weights.
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