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Abstract

This paper deal with a special case of Linear programs with joint probabilistic
constraints (LPPC), where the left-hand side of probabilistic constraints is nor-
mally distributed stochastic coefficients and the rows of the matrix are assumed
independent to each other. Through the piecewise linear approximation and the
piecewise tangent approximation, we approximate the stochastic linear programs
with two second-order cone programming (SOCP) problems. Furthermore, under
weak assumptions, the optimums of the two SOCPs problems are a lower bound
and an upper bound of the original problem respectively.

Keywords: Stochastic programming, Joint probabilistic constraints,
Second-order cone programming, Piecewise linear approximation

1. Introductions

In this paper, we focus on the following linear program with joint probabilistic
or chance constraints:

min cT x
(LPPC) s.t. Pr{T x ≤ D} ≥ 1 − α (1)

x ∈ X

where X ⊂ Rn
+ is a polyhedron, c ∈ Rn, D = (D1, . . . ,Dk) ∈ RK , T = [T1, . . . ,TK]T

is a K × n random matrix, where Tk, k = 1, . . . ,K, is a random vector in Rn,
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and α is a confidence parameter chosen by decision maker, typically near zero,
e.g., α = 0.05. Note that in (1), we only use a single probability constraint on
all the rows rather than requiring each row to be satisfied with high probability
individually [6]. Such a constraint is known as a joint probability constraint [7].

Chance-constrained programming has been studied for a long time and plays
an important role in engineering, telecommunication, finance, etc. Charnes, Cooper
and Symonds in [4] dealt with individual probabilistic constraints, while joint
probabilistic constraints were first consider by Miller and Wager in [8]. A gen-
eral theory of chance-constrained programming was studied by Prékopa in [10].
In chance-constrained programming, linear programs with joint probabilistic con-
straints (LPPC) are one of main challenges of stochastic programming because
the feasible region generally is not convex [7].

In this paper, we assume that the coefficient matrix T is normally distributed
and the rows of T are independent to each other. In [5], Henrion and Strugarek had
derived its convexity and proved that there exists an upper bound α∗, for which
the linear program is a convex problem. However the α∗ is very close to zero.
So for most cases, the linear program with normally distributed coefficients is not
convex. In [1], they provide a fully explicit way to calculate the gradient of the
constraint function and employed other existing algorithms to solve the problem.
In this paper, we approximate the stochastic linear programming with normally
distributed coefficients with two second-order cone programming (SOCP) prob-
lems, which are convex problems. Furthermore, under weak assumptions, the
optimums of the two SOCPs problems are a lower bound and an upper bound of
the original problem respectively.

2. Normally distributed LPPC

Here, we study a special class of LLPC whereTk is multivariate normally dis-
tributed with mean µk = (µk1, . . . , µkn) and covariance matrix Σk. Moreover, Tki

and Tk j are independent of each other when ki , k j.
Since multivariate normally distributed vectors Tk, k = 1, . . . ,K, are indepen-

dent of each other, we have a deterministic reformulation of the special case of
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LPPC as follows:

min cT x
s.t. µT

k x + F−1(pyk)||Σ1/2
k x|| ≤ Dk, k = 1, ...,K

(NLPPC)
K∑

k=1

yk = 1 (2)

yk ≥ 0
x ∈ X

where p = 1 − α and F−1(·) is the inverse of the standard normal cumulative
distribution function, and yk is an intermediate variable.

In [5], they have given some results about the convexity of the feasible set of
NLPPC as follows.

Theorem 2.0.1. The feasible set of NLPPC is convex when p > F(max{
√

3, u∗}),
where u∗ = max

i=1,...,K
4λ(k)

max[λ
(k)
max]−

3
2 ||µk||. Correspondingly, NLPPC is a convex prob-

lem.
Remark if the value u∗ is smaller than

√
3 in Theorem 2.0.1, then NLPPC is

convex when p > F(
√

3) ≈ 0.958.

3. Approximation of NLPPC

The idea to approximate the problem (2) is the following: firstly, we approxi-
mate F−1(pyk) with a piecewise tangent function and piecewise linear approxima-
tion of yk respectively. Afterwards, we get two approximations of NLPPC, which
are SOCP problems. Secondly, we solve the SOCP problems, whose optimal so-
lutions are the approximated solutions of NLPPC.

3.1. Piecewise tangent approximation of F−1(pz)
We choose N tangent points z j, j = 1, . . . ,N from interval (0, 1] and denote

F−1(pz j) by F j. Without loss of generality, we assume that z1 < z2 <, . . . , < zN .
F−1(pz) is approximated by using first-order Taylor series expansion around z =

z j, j = 1, . . .N as follows:

F̂2 j = F−1(pz j) + (F−1)′(pz j)pz j ln p(z − z j)

where (F−1)′(pz j) = 1
F′(F−1(pz j )) = 1

f (F−1(pz j )) , b̂ j = (F−1)′(pz j)pz j ln p and â j =

F−1(pz j) − b̂ j · z j.
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Then we obtain approximation of F−1(pz), which is piecewise tangent line
approximation of F−1(pz), and we denote it by F̂2

F̂2 = max
j=1,...,N

{F̂2 j}, z ∈ (0, 1]

Theorem 3.1.1. Let yki = ykxi, k = 1, . . . ,K, i = 1, . . . , n and z̃k = (z̃k1, . . . , z̃kn).
Together with the approximation of F−1(pyk), we have the approximation of NLPPC,
correspondingly:

min cT x
s.t. µT

k x + ||Σ
1/2
k z̃k|| ≤ Dk, k = 1, . . . ,K

z̃ki ≥ â jxi + b̂ jyki, j = 0, 1, . . . ,N − 1, i = 1, . . . , n
K∑

k=1

yki = xi, i = 1, . . . , n (3)

yki ≥ 0,
x ∈ X

where a0 = 0, b0 = 0. Moreover, the optimum of the approximation is an lower
bound of NLPPC.

Proof. In this proof, we do not prove how we obtain (3), but only the optimum of
(3) is an upper bound. First we prove that the function F−1(pz) is convex. Since
function pz is convex and F−1(·) is non-decreasing, F−1(pz) is convex. So for any
tangent point z j, j ∈ {1, . . . ,N}

F−1(pz) ≥ F̂2 j = F−1(pz j) + F
′−1(pz j)pz j ln p(z − z j), z ∈ [0, 1]

Thus,
F−1(pz) ≥ F̂2 =

N
max

j=1
{F̂2 j}, z ∈ (0, 1]

. Together with Correspondingly ||Σ1/2
k x|| ≥ 0, we have

{x : µT
k x + F−1(pyk)||Σ1/2

k x|| ≤ Dk, k = 1, ...,K}

⊂ {x : µT
k x + F̂2||Σ

1/2
k x|| ≤ Dk, k = 1, ...,K}

�
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3.2. Piecewise linear approximation of F−1(pz)
We choose N interpolation points z j, j = 1, . . . ,N from interval (0, 1] and

denote F−1(pz j) by F j. Without loss of generality, we assume that z1 < z2 <, . . . , <
zN . Let F̂1 be the corresponding piecewise linear approximation of F−1(pz). We
have:

F̂1 j = F j +
z − z j

z j+1 − z j
(F j+1 − F j) = a j + b j · z, z ∈ [z j, z j+1], j = 1, . . . ,N − 1

Where a j =
z j+1F j−z jF j+1

z j+1−z j and b j =
F j+1−F j

z j+1−z j
.

Lemma 3.1.
F̂1 = max

j=1,...,N−1
{a j + b j · z}, z ∈ (0, 1]

Proof. It is easy to prove, as F−1(pz) is convex. �

Theorem 3.2.1. Let yki = ykxi, k = 1, . . . ,K, i = 1, . . . , n and z̃k = (z̃k1, . . . , z̃kn).
Together with the approximation of F−1(pyk), we have the approximation of NLPPC,
correspondingly:

min cT x
s.t. µT

k x + ||Σ
1/2
k z̃k|| ≤ Dk, k = 1, . . . ,K

z̃ki ≥ a jxi + b jyki, j = 0, 1, . . . ,N − 1, i = 1, . . . , n
K∑

k=1

yki = xi, i = 1, . . . , n (4)

yki ≥ 0,
x ∈ X

where a0 = 0, b0 = 0. Moreover, if zN = 1 and the feasible set of yk, k = 1, . . . ,K
of NLPPC is bounded by [z1, 1]K , then the optimum of the approximation is an
upper bound of NLPPC.

Proof. As in Theorem 3.1.1, we do not prove how we obtain (4), but only the
optimum of (4) is a lower bound. In the proof of Theorem 3.1.1, we proved that
the function F−1(pz) is convex. So for any interval [z j, z j+1], j ∈ {1, . . . ,N − 1},

F−1(pz) ≤ F̂1 j = F j +
z − z j

z j+1 − z j
(F j+1 − F j), z ∈ [z j, z j+1]
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Thus,
F−1(pz) ≤ F̂1 =

N
max

j=1
{F̂1 j}, z ∈ [z1, zN]

Together with ||Σ1/2
k x|| ≥ 0, when yk ∈ [z1, zN], k = 1, . . . ,K, we have:

{x : µT
k x + F̂1||Σ

1/2
k x|| ≤ Dk, k = 1, ...,K}

⊂ {x : µT
k x + F−1(pyk)||Σ1/2

k x|| ≤ Dk, k = 1, ...,K}

Under the assumption that the feasible set of yk, k = 1, . . . ,K, is bounded by
[z1, 1]K and zN = 1, the feasible set of the approximation is a subset of the feasible
set of NLPPC. So the optimum of is an upper bound of NLPPC. �

4. Numerical study

NLPPC can be used widely in stochastic combinatorial optimization where
Branch and Bound (B&B) is a general algorithm for finding optimal solutions. As
we know, bounding plays a very important role in the B&B. For many stochastic
combinatorial optimization problems with joint probabilistic constraints, their lin-
ear relaxation are LPPC problems, such as the resource constrained shortest path
problem (RCSP), knapsack problem etc.

We performed computational tests on a stochastic version of the resource con-
strained shortest path problem (RCSP). When the resources consumed by travers-
ing the arc are random and independently normally distributed each other, the
relaxation of the RCSP is a NLPPC problem. The RCSP consists of finding the
shortest path between two nodes s and t in a network, with the constraint that
traversing an arc of the network implies the consumption of certain limited re-
sources [3]. The RCSP can be mathematically formulated as below;

min cT x
s.t. T x ≤ D

Mx = b
x ∈ {0, 1}n (5)

where c ∈ Rn, M ∈ Rm×n, which is the node-arc incidence matrix [2] and b ∈
Rm, where all elements are 0 except the s-th and the t-th which are 1 and -1
respectively. T is a non negative K×n matrix, D is a positive vector of K elements.
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4.1. Relaxation of the stochastic RCSP
Here, we assume that, for each arc of the network, the resources consumed by

traversing the arc are random and independently normally distributed each other.
So the corresponding linear relaxation of the stochastic RCSP is as follows:

min cT x
s.t. Pr{T x ≤ D} ≥ 1 − α

Mx = b
x ≥ 0

which is a NLPPC problem.

4.2. Computational results
The algorithm was implemented in Matlab and all tests ran on a Pentium(R)D

@ 3.00 GHz with 2.0 GB RAM. The tests consisted of 5 instances drawn from
the OR-library [9], which are deterministic RCSPs and all of which have 10 dif-
ferent deterministic resources consumed for each arch. In the network instances
considered, the graph sizes are (100, 990), (100, 990), (100, 999), (200, 1960) and
(200, 1960), respectively. The costs of all the arcs are set to the same as the de-
terministic RCSPs. For k-th resource, we choose the fixed resources consumed as
their means and their variance are generated on the interval [0, σ2(k)], whereσ2(k)
is the variance of all the k-th resources. For the networks with 100 nodes, the
recource threshold D is set to the same as the threshold of the deterministic RCSP,
while for the networks with 200 nodes, D is 1.5 times of the one of the determin-
istic RCSP. For the piecewise linear approximation, we choose three interpolation
points and z1 = e−6, z2 = 0.15 and z3 = 1, while we choose two tangent points
z1 = 0.15 and z2 = 0.45 for the piecewise tangent approximation. Here, we set
the confidence parameter α = 0.1. The results are shown in Table 1, where we
list the upper bound and the lower bound of the relaxed stochastic RCSP together
with their CPU time. We also give the gap between the upper bounds and the low
bounds computed by

Gap =
UB − LB

LB
where UB denotes the upper bound of the relaxed problem while the LB denotes
the lower bound.
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Instances (Nodes, Arcs) Lower CPU Upper CPU Gap(%)
bound time (s) bound time (s)

RCSP1 (100,990) 100.20 18.72 104.20 15.74 3.84

RCSP2 (100,990) 97.45 17.35 105.44 16.98 7.58

RCSP3 (100,999) 6.16 17.54 6.61 17.91 6.81

RCSP4 (200,1960) 5.00 24.84 5.00 28.36 0.00

RCSP5 (200,1960) 5.40 39.79 5.65 35.95 4.42

Table 1: Computational results

From Table 1, on the one hand, we observe that for all instances, the CPU
time is less than 70 seconds and there is not significant difference between the
piecewise tangent approximation and the piecewise linear approximation from
CPU time point of view. On the other hand, the gap between the upper bound and
the lower bound doesn’t exceed 8%, which shows that both two approximated
optimum values are not far from the optimum value.
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