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Résumé : Le problème de l’arbre couvrant de poids minimum avec con-
traintes de degré (DCMST) dans un graphe non orienté G = (V,E) ayant
pour ensemble de noeuds V et pour ensemble d’arêtes pondérés E, avec le
poids d’une arête e ∈ E étant donné par ce ≥ 0, consiste en trouver un
arbre couvrant de poids minimum de G soumis à des contraintes de degré
maximal dv ∈ N sur le nombre d’arêtes connectées à chaque noeud v ∈ V .
Nous proposons une heuristique VNS-Lagrangienne plus performante que
les heuristiques les plus connues dans la littérature pour ce problème ainsi
qu’un algorithme exact en arbre de sous-gradient (SGT) afin de prouver
l’optimalité des solutions trouvées. L’algorithme SGT utilise une relaxation
combinatoire pour évaluer des bornes inférieures pour chaque solution re-
laxée des nœuds dans l’arbre SGT. En outre, nous proposons un nouveau
schéma de branchement qui sépare une solution relaxée entière (i.e. un ar-
bre couvrant) du domaine de arbres couvrants faisables tout en générant
des nouvelles partitions disjointes. Nous montrons l’optimalité pour des
nombreuses instances de la littérature et améliorons la valeur des limites
inférieures et supérieures pour d’autres instances dont leur solution opti-
male reste inconnue.
Mots-clés: arbre de sous-gradient, DCMST, heuristique VNS-Lagrangienne.



Disjunctive combinatorial branch
in a subgradient tree algorithm for the DCMST
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Abstract

The degree constrained minimum spanning tree (DCMST) problem in an undirected
graphG = (V,E) of set of nodes V and set of weighted edges E, with the weight of an
edge e ∈ E being denoted by ce ≥ 0, consists in finding a minimum spanning tree of
G subject to maximum degree constraints dv ∈ N on the number of edges connected
to each node v ∈ V . We propose a VNS-Lagrangian heuristic that outperforms the
best known heuristics in the literature for this problem and an exact subgradient
tree (SGT) algorithm in order to prove solution optimality. The SGT algorithm uses
a combinatorial relaxation to evaluate lower bounds on each relaxed solution. Thus,
we propose a new branching scheme that separates an integral relaxed solution from
the domain of spanning trees while generating new disjoint SGT-node partitions.
We prove optimality for many benchmark instances and improve lower and upper
bounds for the instances whose optimal solution remain unknown.

Keywords: subgradient tree, DCMST, VNS-Lagrangian heuristic.



1 Introduction

The degree constrained minimum spanning tree (DCMST) problem in an undi-
rected graph G = (V,E), V is the set of nodes and E is the set of weighted
edges, with the weight of an edge e ∈ E being denoted by ce ≥ 0, consists
in finding a minimum spanning tree of G subject to a maximum degree con-
straint dv ∈ N on the number of edges connected to each node v ∈ V . We
know that when dv = 2, for all v ∈ V , this problem is equivalent to find a
Hamiltonian path of minimum weight in G, which is NP-hard [5].

The reader is referred to [7], [2], [8], [1], [3] and [4] for a selective literature
review on applications and solution approaches for this problem.

The contribution of this work is twofold. First, we develop a VNS-Lagran-
gian heuristic based on a dynamic variable neighborhood descent (VND)
method. The core of our algorithm is the Lagrangian heuristic in [1] where we
introduce new dynamic local search techniques to overcome local optima solu-
tions, adapted from the VNS/VND techniques from [9]. Second, we propose
an exact subgradient tree (SGT) method that uses a combinatorial relaxation
of the problem obtained by dropping the degree constraints and incorporating
them into the objective function of the relaxed problem by means of Lagrange
multipliers. The relaxed subproblems in the SGT are solved by using a sub-
gradient optimization algorithm [6]. As the solution of a given subproblem
is integral (a spanning tree possibly violating the degree constraints of the
original problem), we propose a new and novel branching technique for parti-
tioning the space of feasible (for the subproblem) solutions in disjoint regions
of spanning trees while separating any relaxed node solution. The reader
should notice that a classic branching by dichotomy for this problem means
fixing some edge of the relaxed solution (a spanning tree) in zero or in one
to create two new partitions, which is known to be very inefficient. The idea
we use here is quite general and can be extended to any divide-and-conquer
approach that uses a combinatorial relaxation.

We show that the exact SGT approach is competitive with the one in
[4] and that the VNS-Lagrangian heuristic outperforms all the best known
heuristics for the DCMST problem.

1 Email: rca@lia.ufc.br
2 Email: adrianoblue@gmail.com



2 Problem formulation

In model (P ) below let E(S) ⊆ E, for S ⊆ V , represent the set of edges with
both extremities in S and δ(v) ⊆ E, for v ∈ V , represent the set of nodes
adjacent to v in G. Let xe, for all e ∈ E, be binary variables representing if
an edge e belongs (xe = 1) or not (xe = 0) to a minimum degree constrained
spanning tree of G. The problem formulation [1] is

(P ) min
∑
e∈E

cexe(1)

s.t.
∑
e∈E

xe = |V | − 1,(2) ∑
e∈E(S)

xe ≤ |S| − 1, S ⊂ V,(3)

∑
e∈δ(i)

xe ≤ di, ∀ i ∈ V.(4)

xe ∈ {0, 1} ∀ e ∈ E.(5)

Associating Lagrange multipliers λ ∈ R|V |
+ with (4) we obtain the relaxed

problem

(R) min
∑

e=(i,j)∈E

(ce + λi + λj)xe −
∑
i∈V

λidi(6)

s.t. (2), (3), (5).

Problem (R) gives lower bounds on the solution of (P ) for a given λ ≥ 0. In
[1] the reader can find a subgradient optimization procedure to obtain lower
bounds on the solution of (P ).

Now consider the Lagrangian relaxation (RF ) of a non empty restriction
(PF ) of (P ) below, where we fix some variables xe = 1 for e ∈ F1 and xe = 0 for
e ∈ F0, with F1 ∩ F0 =, F1, F0 ⊂ E, |F1| < |V | − 1. Define primal multipliers
βv = 0 if

∑
u∈δ(v)∩F1

xuv < dv and βv = ∞, otherwise.

(RF ) min
∑

e=(i,j)∈E

(ce + λi + λj + βi + βj)xe −
∑
i∈V

λidi(7)

s.t. xe = 1, ∀ e ∈ F1, xe = 0, ∀ e ∈ F0

(2), (3), (5),

Proposition 2.1 For a given fixing of variables as above, the solution value
of (RF ) is a lower bound for the restricted version (PF ) of (P ). Moreover, it
is at least equal to the value obtained by solving (RF ) without considering the



primal multipliers β.

We explore this proposition, whose proof is omitted here, in the exact
SGT scheme presented hereafter to avoid allocating an excessive quantity of
memory to represent the list of prohibited edges in any solution associated
to a given partition of the space of feasible spanning trees associated to the
sets F0 and F1. Note that exploring this proposition does not mean that
some node u ∈ V , not saturated by the edges in F1, could not violate its
degree constraint. In fact, edges adjacent to u with perturbed Lagrangian
costs presenting smaller costs among all the other non fixed edges, can belong
to the Lagrangian relaxed solution and they can occur in larger number than
the upper limit du. In such situations, we can divide the partition represented
by F0 and F1 into smaller ones in an exact algorithm.

Proposition 2.2 Let v be a node violating the degree constraint dv in a La-
grangian relaxed solution (a tree TP) related to a given partition P associated
to F0 and F1. Consider the p edges incident to v in TP in the order they appear
in the list Lv = 〈e1, e2, ..., ep〉. The partitions P ∩ {x | xe1 = 0} and P ∩ Pj,
for each j ∈ {2, ..., p}, with Pj = {x | xei = 1, i = 1, ..., j − 1, xej = 0}, are
disjoint. Moreover, the partitions P ∩Pj, for j ≥ dv + 1 are infeasible for the
original problem and can be discarded by an exact algorithm for the DCMST
problem.

Figure 1 illustrates the partitioning process of Proposition 2.2. Dotted
lines represent that an edge is fixed at zero. Dashed lines represent that an
edge is fixed at one. In this figure we assume initially F0 = F1 = ∅ for the
father partition (F0 and F1, for each child partition, are represented by the
lists out and in of edges fixed at zero and one, respectively). All possible
partitions n1, · · · , np are represented and some of them can be infeasible for
the original problem (the ones with |in| > dv).

Note that this partitioning scheme is quite general and can be applied to
exact algorithms where the employed relaxation is a combinatorial problem
(i.e. always has an integer relaxed solution).

3 VNS-Lagrangian heuristic

The idea of our heuristic approach is as usual. In the VNS-Lagrangian heuris-
tic, that is an improved version of the heuristic in [1] to overcome local optima
solutions, first we relax the degree constraints of the problem and incorporate
them to the objective function by using Lagrange multipliers. A subgradient



Fig. 1. Disjunctive combinatorial branch: the new disjoint partitions are the leaves
in this tree representation.

optimization procedure is used to obtain lower bounds on the problem solu-
tion. The Lagrange multipliers are used to perturb the original edge costs
in order to obtain feasible degree constrained trees in the graph with modi-
fied edge costs. We use an adapted version of the Kruskal algorithm to deal
with the degree constraints and a dynamic VNS-VND procedure based on
[9] to improve feasible solutions. The VNS has a shaking phase, where a
solution T ′ is obtained from the incumbent solution T from a neighborhood
structure NV NS

1 , ..., NV NS
kmax

, where NV NS
k (T ) is the set of feasible trees which

are neighbors to T having exactly k ≤ kmax different edges, with kmax given.
In a second phase, we try to improve T ′ with a Dynamic VND procedure
based on three neighborhood structures N

(1)
V ND, N

(2)
V ND and N

(3)
V ND of a feasi-

ble solution T . For this, we classify the edges which are not in T into three
groups: E0 of edges with no saturated extremity; E1 of edges with exactly
one saturated extremity and E2 of edges with both saturated extremities, with
E(G) = E(T )∪E0 ∪E1 ∪E2. An edge exchange is defined by a pair of edges
(e, ē), where e ∈ E(T ) and ē ∈ E(G) \ E(T ).

Neighborhood N
(1)
V ND(T ) is the set of feasible trees which can be obtained

from T by applying one edge exchange (e, ē). Basically, an edge ē ∈ (E0∪E1)
is inserted in T and a cycle C is generated. We remove and edge e ∈ E(T )
from C in order to reestablish feasibility of the degree constraints.

In neighborhood N
(2)
V ND(T ) we use two edge exchanges: (e1, ē1) and (e2, ē2).

The insertion of an edge ē1 ∈ (E1∪E2) generates a cycle. We remove the edge
e1 ∈ E(T ) from this cycle. The second exchange is used if we need to arrange
the degree of a node v which remains violated after the first edge exchange.

Neighborhood N
(3)
V ND(T ) uses three edge exchanges: (e1, ē1), (e2, ē2) and

(e3, ē3). First, we insert an edge ē1 ∈ E2 and a cycle is generated. An edge
e1 ∈ E(T ) is removed from this cycle. After the edge exchange (e1, ē1), two
nodes v1 and v2 may remain violated. The remaining two edge exchanges are



used to arrange the degrees of v1 and v2.

Note that for DCMST instances with degree constraints dv = 2, for all
v ∈ V , the three neighborhoods above have no effect for improving feasible
solutions. To overcome such situations, we propose redefining the sets E0, E1
and E2 dynamically based on the current tree after each edge exchange.

Finally, if a better feasible solution is found then we actualize the incum-
bent solution for the problem and use it as a cut-off value in the SGT exact
method.

4 SGT scheme

The SGT is a branch-and-bound search tree algorithm composed of three
operations: evaluation, pruning and branching of SGT nodes. In the eval-
uation process we have two types of lower bounds on each node solution -
one given by the value of the Lagrangian relaxed solution (with edge costs
perturbed by Lagrange multipliers) and the other by the original edge costs
associated to that solution. We determine sequences of Lagrange multipliers
in a tree structure following the generation of SGT nodes. These sequences
are updated from a father to a child node by taking into account the fixing
of the edges and the direction of the gradient obtained at the node relaxed
solution. Internal to each SGT subproblem, we iterate the subgradient proce-
dure a certain number of iterations to improve its relaxed bound. SGT nodes
are organized in the search tree according to the best bound strategy. The
pruning operation allows deleting SGT nodes from the search tree when the
bound on the node solution is greater than the value of the best incumbent
solution for the problem. In the branching process a given partition (father
node) is divided into new smaller and disjointed ones (children nodes). The
node we choose to perform the branch is the one with smaller violation of its
degree constraint. The novelty here is how we separate a feasible tree from
the domain of spanning trees to obtain new disjoint subproblems partitions
according to the Proposition 2.2. Observe that we do not use linear relaxation
in our work (a combinatorial one is used instead). Moreover, when some edges
are fixed at one (thus they must be in the node solution), it is possible that
some node v becomes saturated (the number of edges connected to v is equal
to dv). In this case, all remaining unfixed edges incident to v can be fixed
at zero. However, saving the information of the edges fixed at zero for each
SGT node is not practical since the required memory increases very fast. To
overcome this problem, we introduce the concept of primal multipliers in the
Proposition 2.1 that are also used to perturb the Lagrange edge costs in order



to prevent a known saturated node of having additional edges being incident
to it in the relaxed SGT node solution.

5 Computational Results

The C++ algorithms are linked with g++-4.4.3 for Linux Ubuntu in a Core 2
Duo PC with 2.4 GHz / 3GB RAM. In this short paper we report only results
for two classes of benchmark instances and compare our results with the ones
in [9] and [4]. A more extensive set of experiments including Hamiltonian [1],
DE and DR [4] instances will be reported in a complete version of this paper
to show the efficiency of our solution approach. The legend in the next tables
is self-explained. CPU is in (min : sec) and gap = 100(UB − LB)/LB.

Table 1
Computational results for Euclidean instances from [1]

Instance Results from [9] VNS-Lagr-Heur +SGT for gap > 0 Results from [4]

|V | (id) UB cpu LB UB cpu gap LB UB cpu gap LB UB cpu gap

100 1 3790 0:00 3790 3790 0:00 0.000 3790 3790 0:00 0.000

100 2 3829 0:00 3829 3829 0:00 0.000 3829 3829 0:00 0.000

100 3 3916 0:00 3916 3916 0:01 0.000 3916 3916 0:00 0.000

200 1 5316 0:06 5316 5316 0:00 0.000 5316 5316 0:00 0.000

200 2 5651 0:08 5647 5647 0:01 0.000 5647 5647 0:02 0.000

200 3 5699 0:06 5698 5698 0:01 0.000 5698 5698 0:01 0.000

300 1 6477 0:50 6475 6477 0:11 0.030 6477 6477 0:12 0.000 6477 6477 0:02 0.000

300 2 6807 0:55 6803 6809 0:48 0.088 6807 6807 20:49 0.000 6805 6807 0:31 0.029

300 3 6430 0:40 6430 6430 0:01 0.000 6430 6430 0:04 0.000

400 1 7414 3:01 7414 7414 0:01 0.000 7414 7414 0:02 0.000

400 2 7783 2:33 7776 7783 1:43 0.090 7782 7782 26:55 0.000 7779 7782 0:32 0.038

400 3 7604 3:19 7602 7604 1:24 0.026 7604 7604 1:33 0.000 7603 7604 0:38 0.013

500 1 8272 9:12 8272 8272 0:03 0.000 8272 8272 0:06 0.000

500 2 8396 10:56 8392 8392 2:01 0.000 8392 8392 0:18 0.000

500 3 8502 8:24 8502 8502 2:07 0.000 8502 8502 0:26 0.000

600 1 9037 10:19 9037 9037 0:01 0.000 9037 9037 0:09 0.000

700 1 9786 16:37 9786 9786 0:02 0.000 9786 9786 0:13 0.000

800 1 10333 29:21 10333 10333 0:07 0.000 10333 10333 0:25 0.000

900 1 10918 36:00 10918 10918 0:07 0.000 10918 10918 0:29 0.000

1000 1 11408 36:05 11407 11408 2:58 0.008 11407 11408 * 0.008 11407 11408 2:48 0.008

2000 1 15670 180:50 15670 15670 12:23 0.000 15670 15670 4:32 0.000

2000 2 16255 208:06 16239 16243 59:03 0.024 16239 16242 * 0.018 16242 16242 45:12 0.000

2000 3 16687 225:29 16668 16670 54:18 0.011 16668 16670 * 0.011 16669 16670 68:56 0.005

2000 4 16445 34:36 16368 16370 64:12 0.012 16368 16370 * 0.012 16369 16370 70:32 0.006

2000 5 16532 193:27 16520 16523 37:54 0.018 16520 16521 220:12 0.006 16520 16521 47:57 0.006

(*) Time limit exceeded (1 day) .

In Table 1 we see that the VNS-Lagrangian Heuristic module outperforms
the one in [9]. The SGT module acts when our heuristic gap is not null. It
obtains the same upper bounds of [4] and proves optimality for three new
instances. The SGT lower bounds are competitive with the ones of the non
delayed relax and cut exact algorithm of [4].



6 Conclusions

We propose a new VNS-Lagrangian Heuristic and an exact SGT algorithm for
the DCMST problem that are competitive with the best known algorithms
for this problem. The SGT uses a novel partitioning technique that can be
extended to other exact methods exploring combinatorial relaxations for the
subproblems. We show how to strength the subproblem relaxed solution with
the use of the primal multipliers. On the best of our knowledge, it is the first
time these techniques are proposed for solving a NP-hard problem and they
showed to be very efficient.
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