
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650

91405 ORSAY Cedex (France)

T
H
E
S
E

D
’
H
A
B
I
L
I
T
A
T
I
O
N

RAPPORT SCIENTIFIQUE PRESENTE POUR

L’OBTENTION D’UNE HABILITATION A
DIRIGER DES RECHERCHES

HUOT Stéphane

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

02/2015

Rapport N° 1576

U N I V E R S I T É PA R I S - S U D

H A B I L I TAT I O N À D I R I G E R D E S R E C H E R C H E S

présentée par

Stéphane Huot

Specialité: Informatique – Interaction Homme-Machine

‘Designeering Interaction’:
A Missing Link in the Evolution
of Human-Computer Interaction

7 Mai 2013

Rapporteurs :

M. Saul Greenberg Professeur, University of Calgary

M. Robert J.K. Jacob Professeur, Tufts University

Mme Laurence Nigay Professeur, Université Joseph Fourier

& Institut Universitaire de France

Examinateurs :

M. Michel Beaudouin-Lafon Professeur, Université Paris-Sud

& Institut Universitaire de France

M. Jan Borchers Professeur, RWTH Aachen University

M. Alain Denise Professeur, Université Paris-Sud

Mme Wendy E. Mackay Directeur de Recherche, Inria

M. Ted Selker Associate Director – CyLab Mobility Research Center,

Carneggie Mellon University – Silicon Valley Campus

Habilitation à Diriger des Recherches préparée au sein du Laboratoire de Recherche en Informatique de l’Université
Paris-Sud et d’Inria Saclay–Île-de-france

DESIGNEERING
INTERACTION
A MISSING LINK IN THE EVOLUTION
OF HUMAN-COMPUTER INTERACTION

STÉPHANE HUOT
Université Paris-Sud

Laboratoire de Recherche en Informatique
Inria - in|situ| group

Dissertation submitted in fulfillment of the requirements
for the `Habilitation à Diriger des Recherches’ – May 2013

DESIGN

ENGINEERING

OF INTERACTION
TECHNIQUES

OF INTERACTIVE
SYSTEMS

To R and JJ

A B S T R A C T

Human Computer Interaction (HCI) is a fascinating research field because of its
multidisciplinary nature, combining such diverse research domains as design,
human factors and computer science as well as a variety of methods including
empirical and theoretical research. HCI is also fascinating because it is still young and
so much is left to discover, invent and understand. The evolution of computers,
and more generally of interactive systems, is not frozen, and so are the ways in
which we interact with them. From desktop computers, to mobile devices, to large
displays or multi-surface environments, technology extends the possibles, needs
initiate technologies, and HCI is thus a constantly moving field. The variety of
challenges to address, as well as their underlying combinations of sub-domains
(design, computer science, experimental psychology, sociology, etc.), imply that
we should also adapt, question and sometimes reinvent our research methods
and processes, pushing the limits of HCI research further.

Since I entered the field 12 years ago, my research activities have essentially
revolved around two main themes: the design, implementation and evaluation
of novel interaction techniques (on desktop computers, mobile devices and multi-
surface environments) and the engineering of interactive systems (models and
toolkits for advanced input and interaction). Over time, I realized that I had
entered a loop between these two concerns, going back and forth between design-
ing and evaluating new interaction techniques, and defining and implementing
new software architectures or toolkits. I observed that they strongly influence
each other: The design of interaction techniques informs on the capabilities and
limitations of the platform and the software being used, and new architectures
and software tools open the way to new designs and possibilities.

Through the discussion of several of my research contributions in these fields,
this document investigates how interaction design challenges technology, and
how technology – or engineering of interactive systems – could support and
unleash interaction design. These observations will lead to a first definition of the
“Designeering Interaction” conceptual framework that encompasses the specificities
of these two fields and builds a bridge between them, paving the way to new
research perspectives. In particular, I will discuss which types of tools, from
the system level to the end user, should be designed, implemented and studied
in order to better support interaction design along the evolution of interactive
systems. At a more general level, Designeering Interaction is also a contribution
that, I hope, will help better “understand how HCI works with technology”.

Keywords: Human-Computer Interaction, Interaction Techniques, Engineering
of Interactive Systems, Mobile Interaction, Multi-Surface Environments, Toolkits,
Designeering Interaction

vii

A C K N O W L E D G M E N T S

, and .

and also , , , and .

and .

specials: , , , and .

students: (again), , , .

and “en vrac”: , , , , , , ,

, , , , , , , , ,

, , , , , , , ,

, , , ...

ix

, , .

et

This habilitation concludes two years of leave
for research which would not have been
possible without the support of the IUT
d’Orsay and Inria Saclay–Île-de-france.

Note: this page is best viewed with Adobe Acrobat...

x

C O N T E N T S

1 introduction 1

1.1 Many Things Have Been Done 2

1.2 Many Things Remain to Be Done 2

1.3 Still Need To Make These Things Possible 4

2 from designing interaction to engineering interactive

systems 9

2.1 Interaction On the Desktop 9

2.1.1 Pointing 10

2.1.2 Advanced Input Methods for Triggering Commands 13

2.1.3 Improving Users’ Workspace 17

2.2 Interaction With Mobile Devices 19

2.2.1 Target Acquisition 20

2.2.2 Manipulating Lists and Triggering Commands 23

2.2.3 Advanced Mobile Interaction 25

2.3 Interaction Design Challenges Technology 32

2.3.1 When Interaction Design Is Driven by Technology 34

2.3.2 When Interaction Design is Constrained by Technology 36

2.3.3 When Interaction Design Improves/Extends Technology 38

2.3.4 Revisiting Interactive Technologies 39

3 from engineering interactive systems to designing inter-
action 41

3.1 Unifying Two Models for Describing and Programming Interac-
tion 42

3.2 Distributed Graphics and Interaction in Multi-Surface Environ-
ments 46

3.2.1 The WILD Project 47

3.2.2 Technical Issues of Distributed Graphics and Interaction 48

3.2.3 Engineering in the WILD 51

3.2.4 Going WILD-er 58

3.3 Engineering Unleashes Interaction Design 58

3.3.1 When Technology Defines Possible Designs 59

3.3.2 When Technology Enables The Evaluation Of Designs 61

3.3.3 When Technology Integrates Designs (Or Not) 63

3.3.4 A Missing Link Between Interaction Design and Engineer-
ing 65

4 designeering interaction 67

4.1 The Cycle of Designeering Interaction 68

4.2 Towards a Conceptual Framework 70

4.2.1 Extension and Operationalization of The Framework 72

4.3 Tools for Designeering Interaction 73

4.3.1 System & Programming Languages 73

4.3.2 Creative Prototyping: Sketching Interaction, not Interfaces 74

4.3.3 Adaptability for End-Users 76

bibliography 79

list of figures 97

acronyms 97

appendices 101

xi

xii contents

a publications 103

a.1 Full List of Publications 103

Refereed International Journals and Magazines 103

Refereed International Conferences 103

Refereed Domestic Conferences 105

Workshops 106

Thesis 106

Other Publications 107

a.2 Selected Publications (2005–2012) 108

Focus+Context Visualization Techniques for Displaying Large Lists
with Multiple Points of Interest on Small Tactile Screens 110

TapTap and MagStick: Improving One-Handed Target Acquisition
on Small Touch-screens 124

FlowStates: Prototypage d’applications interactives avec des flots de
données et des machines à états 132

TorusDesktop: Pointing via the Backdoor is Sometimes Shorter 143

Rapid Development of User Interfaces on Cluster-Driven Wall Dis-
plays with jBricks 153

Gliimpse: Animating from Markup Code to Rendered Documents
and Vice Versa 159

BiTouch and BiPad: Designing Bimanual Interaction for Hand-held
Tablets 165

Using Rhythmic Patterns as an Input Method 175

A Body-centric Design Space for Multi-surface Interaction 185

b curriculum vitae 195

C O N V E N T I O N S

References to the publications that I have co-authored are displayed in bold:
[WHM12].

Hyperlinks to content within this document (sections, pages, acronyms defini-
ÇText and pictures in
margins are to help the
reader to quickly identify
the content of the nearby
paragraph(s)

tions, etc.) are displayed in blue: see the table of contents on page xi.

Hyperlinks to external content are displayed in red: http://insitu.lri.fr/

~huot.

xiii

http://insitu.lri.fr/~huot
http://insitu.lri.fr/~huot

“A vision, Division
Revision, Recognate
An action, A reaction
Distraction, Question the fate.”

Dave Grohl – Erase/Replace (2007).

1
I N T R O D U C T I O N

Human Computer Interaction (HCI) is a fascinating research field. Fascinating
because of its multidisciplinary nature, combining such diverse research domains
as design, human factors and computer science as well as a variety of methods
including empirical (qualitative, quantitative) and theoretical research. But HCI is
also fascinating because it is still young and so much is left to discover, invent
and understand. The field emerged in the early 60’s with pioneers such as
Douglas Engelbart, whose research group invented the mouse and many other
now-standard concepts of user interfaces in NLS/Augment1 [Eng62; Eng88], and

DESIGN

HUMAN
FACTORS

COMPUTER
SCIENCE

HCI

C

ÇHCI is a multidisciplinary
field

Ivan Sutherland’s SketchPad [Sut63], which pioneered many concepts of direct
manipulation still present in today’s interfaces. HCI gained interest in the early
and mid 70’s with, for example, the first vision of a notebook computer (Alan
Kay’s Dynabook) or the first personal computer (the Alto and its Graphical User
Interface (GUI) at Xerox PARC), to eventually become a major research field with
the creation of the Association for Computing Machinery (ACM) Special Interest
Group on Computer-Human Interaction (ACM SIGCHI) together with its flagship
ACM SIGCHI Conference on Human Factors in Computing Systems (CHI) in 1982.

At that time, I was just starting to be a “passive” observer of the rapid
evolution of computer interfaces and interaction techniques, as a ten-year old
user and programmer of pocket calculators and personal computers. I was
fascinated by computer graphics and interaction programming: my addiction
to video games was undoubtedly pushing me to look under the hood and to
program my own games. I was programming in Basic on my Amstrad computer,

1 The 90 minutes live demonstration of the NLS system in 1968 is known as “the mother of all demos”.
See http://www.dougengelbart.org/firsts/dougs-1968-demo.html.

1

http://www.dougengelbart.org/firsts/dougs-1968-demo.html

2 introduction

developing interaction techniques without even knowing what “Interaction” was.
But I quickly realized how much these platforms and language were indeed
limiting my creative possibilities. Many years later, this frustration would continue
after switching to more structured languages and Application Programming
Interfaces (APIs) – e. g. Delphi, Allegro/C++, Java AWT & Swing – as using
call-back procedures for programming interaction has its drawbacks in terms
of descriptive power and maintainability [AB08; Mye91]. This probably strongly
influenced my interest in looking for new ways of describing and programming
interaction, as I will explain in this manuscript.

1.1 many things have been done

Despite its recency, HCI has had an impact on many other research fields, but also
on the technology industry and on society in general. Myers already observed
the impact of academic research in HCI technology, the Computer Science side of
the field, 15 years ago [Mye98]: the mouse, GUI and windows-based applications,
hypertext, gesture recognition, Augmented Reality (AR) and Virtual Reality (VR),
but also Interface Builders or even component architectures, are all inventions
coming from academic HCI research labs. And since Myers’ paper, many other
“HCI-technology research” related products have emerged and have been widely
adopted: multi-touch devices (invented in the 80’s at the University of Toronto,
along with the now-standard pinch and flick gestures), motion-based input
devices, etc.

Ç1982, invention of
multi-touch [Meh82] HCI is of course not the only scientific domain whose results have been widely

adopted, and conversely, most of these innovations cannot be credited only to
progress in HCI. The most visionary concepts were heavily dependent on progress
in other technologies, in order to become feasible on a large scale. But it should be
noted that a large part of the development and acceptance of these technologies
in everyday life is due to HCI: it is the visible part, the usable and used part, the
“interface” between computer science and the world, between the machines and
their users.

1.2 many things remain to be done

Some early visions have already been realized thanks to technological progress,
such as Alan Kay’s Dynabook, which is now incarnated into a variety of mobile
computers (laptops, notebooks, tablets, smartphones). But some are still only
partially achieved, such as Mark Weiser’s “Ubiquitous Computing” [Wei91]:
while the actual technology now enables the miniaturization, inter-connection and
“disappearance” of actual computing devices, “true” ubiquitous computing is still
challenging the field in terms of usage and interaction. This is another fascinating
aspect of HCI research: the youth of the field and its rapid progresses makes it
possible to shape, embrace and, with some luck, make such visionary concepts
become true.

HCI, however, faces many challenges, because of the evolution of interactive
systems technologies, economic and marketing concerns, specific users needs
and more generally changes in our society, all intertwined in a mutual loop. An
interesting example is, again, multi-touch systems and interactions that were first
prototyped in the 80’s by researchers from the University of Toronto. Bill Buxton

gives a good overview and discussion about the evolution and explosion of multi-
touch on his website [Bux07a]. More than simply tracing and commenting on
the history of multi-touch, he also highlights the need for the right and complex

1.2 many things remain to be done 3

context in order to turn a “great invention” into a “real innovation”. This is what
Buxton calls “the long nose of innovation” [Bux08], where any invention needs
(sometime long) refinements and a final “traction” before being turned into an
innovative product.

Figure 1.1: The Long Nose of Innovation [Bux08] © Bill Buxton.

Multi-touch technologies, despite being well-known in HCI research, clearly
became “en vogue” thanks to the whole new ecosystem that manufacturers
created around their multi-touch devices, such as the Apple’s iPhone in 2007. The
Microsoft Surface (the former multi-touch tabletop, not the 2012 tablet device)
appeared at the same period, but with less success than the mobile device. This is
an interesting case, demonstrating the impact of the ecosystem over usefulness
or usability: mobile devices are far less adapted to multi-touch input than a
tabletop surface since they are used most of the time while moving, with only
one hand [KBC08]. Then tablets were introduced (again by Apple) and we now
have four main kinds of multi-touch devices: screen, table, smartphone and tablet.
This commercial success has triggered a regain of interest for HCI research in multi-
touch technologies that the field invented... 30 years ago. Indeed, since the release
of the iPhone, we observe a significant increase in publications about multi-touch
technologies and interaction techniques, whether in mobile conditions (see the
proceedings of the ACM MobileHCI conference) or on dedicated hardware (see
the recently created ITS conference). Technology and marketing made multi-touch
devices now available in the wild and with/for real users, raising new challenges
that were not anticipated before, when those devices were still expensive labora-
tory prototypes with few, if any, real use cases. This, of course, does not mean
that we should stop investigating novel inventions, but that it is different research
than studying them when they become off-the-shelf appliances.

To me, this is another fascinating aspect of HCI. Even if we, as researchers,
do not master all the parameters of what will make a technology available or
popular, the matter of fact is that the evolution of computers, and more generally
of interactive systems, is not frozen, and so are the ways in which we interact
with them. From desktop computers, to mobile devices, to large displays or multi-
surface environments, technology extends the possibles (e. g. high-speed networks
allow remote collaboration), needs initiate technologies (e. g. big data requires
large displays), and HCI is thus a constantly moving field.

4 introduction

1.3 still need to make these things possible

Finally, HCI is also fascinating at an epistemological level, by being both a young
and a multidisciplinary research field. The variety of challenges to address,
as well as their underlying combinations of sub-domains (design, computer
science, experimental psychology, sociology, etc.), imply that we should also
adapt, question and sometimes reinvent our research methods and processes,
pushing the limits of HCI research further. Again, this is not specific to HCI
since reflecting on research methods, criticizing or revising them is a long lasting
scientific tradition. However, unlike, e. g., biology or mathematics that address
the understanding of “natural phenomenons” in a well established way since
centuries now, HCI studies the artifacts that it designs. We have to rely on design
methods to create them, on computer science principles to implement them, on
experimental psychology or sociology protocols to evaluate them, and we should
ensure that all these methods are working well together, in order to operationalize
higher-level concepts that are specific to HCI. As observed and formalized by
Mackay and Fayard, by “triangulating across the scientific and design disciplines that
compose HCI, we can increase the validity of our research results and [...] make them more
useful to real-world problems.” [MF97].

For instance, theoretical models can provide guidelines for designing and
exploring new interaction techniques, but evaluation methods can also help
assessing the feasibility and usability of these new designs. A good exampleÇMT = a+b. log2(DW +1)

Fitts’ law as a theoretical
tool for interaction design

is Fitts’ law, which models the time needed to acquire a target according to
the difficulty of the task (size of the target and its distance from the starting
point). After Card et al. confirmed that pointing with a mouse is modeled by
Fitts’ law [CEB78], it quickly became an essential tool in HCI [Mac92]. It has
been an instrumental source of inspiration for designing new pointing techniques,
by suggesting ways of reducing difficulty and increase performance. But it also
provides HCI researchers with a tool to evaluate and compare pointing techniques,
by grounding and defining an adapted experimental protocol. As we will see later,
this is the approach we followed for designing and evaluating the TorusDekstop
(section 2.1.1) and TapTap (section 2.2.1) interaction techniques.

Another example is how Card et al. generalized this link between computer
science and human factors in their seminal book “The Psychology of Human-
Computer Interaction” [CMN83]. Card et al. also proposed to apply a “Mor-
phological Design Space Analysis” to the study of input devices, an approach
previously used in engineering and by Bertin for his study of the semiology
of graphics [CMR91]. More than describing a design space, the morphological
analysis allows to reflect on the design space itself and to generate further designs.
This is the approach that we latter applied in our work on menu systems [NBH09]
and to body-centric interaction for multi-surface environments [Wag+13].

At the CHI’12 conference, Stuart Card gave a very inspiring lecture specifically
addressing this problem of “how to ground the field, accelerate its progress, and make it
cumulative by fashioning theories and incorporating them into practice” and attempting
“to sketch out, in the spirit of the times, what an interaction science for HCI could look
like, how it might be incorporated into practice, and how it might be taught”. Card

highlighted the fact that technology develops by combinatoric evolution and that
we need to understand how HCI works with technology, and that we need to focus
on technological and theoretical progress all together in order to successfully take
on the new “golden age” that HCI is entering now. This was for me one of the
initial sparks for the framing of my own research work and of my vision of HCI in

1.3 still need to make these things possible 5

general, which led to the concept of “Designeering Interaction” that I introduce in
this manuscript.

“Designeering Interaction” is a portmanteau word that I first coined in order to
describe my two main research interests in HCI: “Design of Interaction Techniques”
and “Engineering of Interactive Systems”. Over time, I realized that I had entered
a loop between these two concerns, going back and forth between designing
and evaluating new interaction techniques, and defining and implementing new
software architectures or toolkits. I observed that they strongly influence each
other: The design of interaction techniques informs on the capabilities and
limitations of the platform and the software being used, giving insights into
what could be done to improve them. On the other hand, new architectures
and software tools open the way to new designs and possibilities, by giving
the necessary bricks to build with. This is a slow and gradual process, where
things cannot be built until the right technology is available and where the most
innovative ideas will push the technology further (examples include Kay’s and
Weiser’s previously mentioned visions).

This situation is quite similar to the evolution of species, which was well
described by Richard Dawkins in his book “Climbing Mount Improbable”: “There
can be no sudden leaps upward – no precipitous increases in ordered complexity. Second,
there can be no going downhill – species can’t get worse as a prelude to getting better.
Third, there may be more than one peak – more than one way of solving the same problem,
all flourishing in the world” [Daw97, pp. 1330-1332]. Among others, Dawkins

defends the idea that even the more improbable evolutionary step might occur,
but that it is impossible to directly jump several levels of complexity at once
(climbing the mountain via its steep cliff, as shown in the side figure). While

The Adjacent Possible

M
ou

nt
 Im

pr
ob

ab
le

Dawkins considers the evolution of “designoids” objects, i. e. “living bodies and
their products”, Steven Johnson makes a similar and complementary observation
concerning designed artifacts and innovation, drawing on the “Adjacent Possible”
theory of Stuart Kauffman: “The trick to having good ideas is not to sit around in
glorious isolation and try to think big thoughts. The trick is to get more parts on the
table.” [Joh10, p. 42]. These parts define the adjacent possible, the set of what
could be designed, through a process similar to the evolution of designoids, but
by assembling the parts in new ways.

Similarly, in HCI, technology – hardware and software – and knowledge –
experience and theories – are the spare parts of the adjacent possible – the new
techniques or systems that could be designed. For example, the Nintendo Wii
Remote is a “first-order” combination of infrared LEDs, accelerometers, buttons
and bluetooth wireless technology, which was obviously in the adjacent possible
when it was designed. Nevertheless, this cheap motion sensing device extended
the adjacent possible, leading to a radical change in the gaming industry [NR12],
and was in turn used as a part for new combinations [Lee08]. But an idea or an
invention that lies outside of the adjacent possible cannot be designed by simply
“climbing the mountain via the steep cliff”. The necessary technological evolutions
that will make it possible should be addressed first, as for example the Dynabook
which led to many side-projects and innovations that it was depending on, but
was never totally realized. This results in a slow and uncertain evolution process,
which helps to explore and fill a number of gaps in our research field, but can also
lead to wrong ways and deadlocks. A better analysis and framing of this process,
i. e. examining the adjacent possible of HCI technology and methods as well as the
ways to extend it, would certainly enrich our field and uncover new possibilities
for interaction design.

6 introduction

Inspired by these evolutionary notions, I will introduce the concept of “De-
signeering Interaction”, as a framework to discuss how the design of novel
interaction techniques and the engineering of interactive systems influence each
other. Through the discussion of several of my research projects and research
contributions in these fields, I will investigate how interaction design challenges
technology, and how technology – or engineering of interactive systems – could support
and unleash interaction design. These observations will lead to the Designeering
Interaction conceptual framework which, by accounting for the multidisciplinary
nature of the young HCI, encompasses the specificities of these two fields and
builds a bridge between them, paving the way to new research perspectives. In
particular, I will discuss which kind of tools, from the system level to the end
user, should be designed, implemented and studied in order to better support
interaction design along the evolution of interactive systems. At a more general
level, Designeering Interaction is also a contribution that, I hope, will help better
“understand how HCI works with technology”.

Note: I use the terms “technology” and “UI technology” loosely, to refer to the
hardware and software tools used for studying and designing interaction tech-
niques/interactive systems (I will most of the time refer to software and toolkits).

This manuscript is divided into three parts.

The first part is the main document, providing an overview of my research since
I defended my Ph.D. in 2005. Chapter 1 is this introduction. Chapters 2 and 3
summarize some of my previous work in the fields of Interaction Techniques and
Engineering of Interactive Systems. These are discussed as an introduction to the
concept of “Designeering Interaction”, which is itself developed in chapter 4. This
last chapter concludes with future directions for research.

The second and third parts are appendices. Appendix A contains the full list
of my publications (section A.1), as well as a selection of nine research papers
that I have co-authored between 2005 and 2013 (section A.2). Finally, appendix B
includes my curriculum vitae.

1.3 still need to make these things possible 7

2006

2008

2007

2010

2009

2012

2011

2013

2005

Positions Students
Interaction Techniques

Engineering
of Interactive Systems

Projects

E. Ghomi
Ph.D.

J. Wagner
Ph.D.

Q. Roy

C. Liu

J. Mathew
Ph.D.

iStar

WILD

Digiscope

WILDER

Digipods

Research

VCoRE

SpiraList*
SnailList*

TapTap &
MagStick*

BiPad*
MobileAR*

Mobile

Arch/ThumbMenu*

Menus*

TorusDesktop*

Gliimpse*

Rhythmic
Interaction*

BodyScape*

Digicarts

Svalabard*
Pen-based
Creativity

Desktop & post-WIMP

3D Mix
Tools

WikipediaViz*

MaggLite*
Mixed-graphs model*

FlowStates*

jBricks*
WILDInputServer*

SketchMachine

Interaction
Transformation

ICon

Ph.D.
Univ. Nantes
EMN

Postdoc
Télécom
ParisTech

Postdoc
CNRS
LRI

Assistant
Professor
Univ. Paris-Sud
IUT Orsay
LRI

on
 le

av
e

at
 In

ri
a

Figure 1.2: Story of my (professional) life.

“We now have interfaces that allow the use of computers for such
highly interactive tasks as making engineering drawings and taking airline
reservations. But despite considerable advancements, the systems we have are
often ragged and in places are sufficiently poor to cripple whole ranges of use.”

Stuart K. Card, Thomas P. Moran and Allen Newell – The
Psychology of Human-Computer Interaction (1983) [CMN83].

2
F R O M D E S I G N I N G I N T E R A C T I O N T O E N G I N E E R I N G
I N T E R A C T I V E S Y S T E M S

Designing and studying novel interaction techniques – for specific needs, contexts
or users – is probably the primary concern of most people working in HCI, whether
being a computer scientist, designer, psychologist or practitioner. Designing
interaction techniques requires drawing on multidisciplinary skills – e. g. design,
prototyping, implementation –, and building upon multiple methodologies – e. g.
design methods, human factors, empirical studies. In this chapter, I focus on the
relationship between Interaction Design and Engineering: I demonstrate, through
examples, that one needs to consider engineering problems when designing inter-
action techniques. The first sections report on my research work and contributions
to the field of novel interaction techniques for both standard desktop and mobile
devices. The last section discusses how Interaction Design challenges technology.

2.1 interaction on the desktop

Despite the new interface paradigms and forms of interaction that were intro-
duced during the last decade, such as touch interfaces, gestural interaction or
physics metaphors [AB06], the Windows Icons Menus Pointer (WIMP) computer
desktop controlled with a mouse and a keyboard is a die-hard metaphor. WIMP

interfaces have seen only minor changes since their early days, mostly cosmetic
improvements that address only a few usability issues. They are still the most
common way, if not the only one, to interact with a personal computer, and they
are, in fact, well-adapted to many professional and entertainment tasks. As a
result, they remain a central focus of HCI research, with a large body of work
on window management and direct manipulation.

9

10 from designing interaction to engineering interactive systems

2.1.1 Pointing

Target acquisition is one of the most frequent tasks in interactive systems and
it that has been studied extensively. However, very few, if any, of the recent
improvements in pointing techniques are used in our everyday interactive systems.
This could be attributed to Buxton’s “Long Nose of Innovation” that I already
mentioned in the introduction, but there are also strong technical reasons: most
of these techniques need to be implemented at a system level (device drivers) or
need access to informations, such as target locations, that is not made available by
the application or the system.

As observed by Wobbrock et al., pointing facilitation techniques can be “target-
aware” or “target-agnostic”, depending on whether they need the system to
respectively know the potential targets in advance or not [Wob+09]. According
to Fitts’ law, one could reduce pointing time to a given target by artificially
increasing its size and/or, less frequently, reducing the distance required to reach
it. Most of the recently introduced pointing techniques are built on this approach,
achieving very high performance rates [Bal04; CLP09; ZDB12]. But the counterpart
of this gain in performance is that most of these techniques are target-aware,
making them very sensitive to distractors [Bal04; BO11] (other objects in the
surrounding area of the targeted one), but also difficult or even impossible to
implement in real systems. I therefore addressed this challenge of designing a
target-agnostic pointing facilitation technique that could perform as well or better
than target-aware techniques.

For the technique to be target-agnostic, affecting target sizes was obviously not
an option. We1 needed to find a way to reduce pointing distance, without any
knowledge of the desired target. The solution that we adopted was to build the
technique upon the principle of “cursor-wrapping”: allowing the system pointer
to jump from one side of the screen to the opposite one when crossing an
edge. Cursor-wrapping had already been introduced years ago in most common
graphical environments: more than 15 years ago, the FVWM X Window Manager
could be configured to enable it, and today, several Windows or Mac OS X
system-level tools provide the same feature2. In fact, this can be implemented
easily as long as an API allows to manipulate the system pointer, which is the
case in all current systems. In terms of performance, this approach effectively

Çpointing through screen
edges could be beneficial

reduces the pointing distance in many cases, and thus might reduce pointing
time in theory: we performed some naive Fitts’ law simulations showing clear
benefits of wrapping in many situations. Some of these results are presented in
Figure 2.1 at several screen resolution. Data is computed by dividing the screen in
potential 40 pixel-wide square targets and estimating movement time for all the
possible pointing tasks (by applying Fitts’ law in both direct pointing and cursor-
wrapping condition). For each starting target, the technique with the shorter
movement time is chosen. In each case, the darker the color, the more beneficial
is cursor-wrapping. While we had no evidence that cursor-wrapping obeys Fitts’
law, which does not capture the potential additional costs of cursor-wrapping,
these simulations were useful to assess the potential of the approach.

Despite these potential improvements, previous cursor-wrapping implemen-
tations had never been formally evaluated nor designed to effectively improve

1 My collaborators on this project were Olivier Chapuis (CNRS-in|situ|) and Pierre Dragicevic (Inria-
AVIZ).

2 e. g. www.networkactiv.com/SoundyMouse.html, www.digicowsoftware.com/detail?_app=
Wraparound

www.networkactiv.com/SoundyMouse.html
www.digicowsoftware.com/detail?_app=Wraparound
www.digicowsoftware.com/detail?_app=Wraparound

2.1 interaction on the desktop 11

(a) 1024x768 (b) 1600x1000 (c) 2560x1600

Figure 2.1: Cursor-wrapping Fitts’ law simulation. Each graphic presents the percentage
of cases when cursor-wrapping is beneficial over direct pointing for different
screen resolutions.

performance. We identified two main reasons why a naive cursor-wrapping
0% 50% 100%

Çcolor scale for Fig. 2.1 (%
of cases when
TorusDesktop is beneficial
over direct pointing)

technique could fail to effectively improve performance, or could have a limited
area of positive impact:

a. The lack of control over cursor jumps;

b. The lack of feedback on cursor position after it jumps.

We then designed the TorusDesktop technique to address these issues. TorusDesk-
top implements an advanced cursor-wrapping technique that adds a dead-zone
between opposite edges of the screen (see Figure 2.2). The dead-zone allows
the user to control and trigger cursor wrapping on-demand, prevents accidental
wrapping and preserves the property of using the border of the screen to stop the
cursor while pointing targets on the edge (known as “edge pointing” [ACB08]).
TorusDesktop also provides continuous visual feedback on both edges of the
screen when the cursor is inside the dead-zone. This helps to control the cursor
when traveling off-screen, and also when reacquiring it after wrapping around
the edges. As shown in Figure 2.2, we explored three visual feedback methods,
two inspired by related work (a and b in Figure 2.2, inspired respectively by the
Halo [BR03] and Wedge [Gus+08] techniques) and an original one (c in Figure 2.2).

DEAD-ZONE

SCREEN

DZ

d

DZ-d

DZ-d

ddd

DZ

d

d

k

d+k

DZ-d+k

k

exiting edge

reentering edge

(a) (b) (c)

Figure 2.2: Torus Desktop dead-zone and feedback principle.

We conducted a series of controlled experiments in order to assess which
feedback method was the most appropriate, which dead-zone size was the most
efficient for preserving edge pointing without penalizing wrapping too much, and

12 from designing interaction to engineering interactive systems

finally we compared TorusDesktop to standard direct pointing. Details about the
experiments and the results can be found in our CHI paper [HCD11] (see full
article p. 143). Here I summarize our most important findings.

In our experimental setup, a 30" 2560x1600 display with a standard mouse, a
125-pixel dead-zone and our “ghost” feedback has proven to be the most efficient
and preferred design for cursor-wrapping. As shown in figure 2.3, the comparison
between direct pointing only, cursor-wrapping only and TorusDesktop (the user
has to chose between direct pointing and cursor-wrapping for each task) gave
us some interesting insights into the performance and the behavior of our
participants, according to the direct distance to the target. First, we observe that
starting from a direct distance of 2010px, both cursor-wrapping and TorusDesktop
perform better than direct pointing, TorusDesktop having an average penalty of
∼50ms over cursor-wrapping that we can explain with the cost of the choice
between the two possible pointing trajectories. Below 1810px, we observe that
TorusDesktop performs similarly to cursor-wrapping, suggesting that participants
overused cursor-wrapping when direct pointing would have been beneficial.
Finally, when the direct distance is between 1810px and 2010px, we observe that
both techniques have similar performances, suggesting that this is an area of
uncertainty, where choosing between direct pointing and cursor-wrapping does
not affect performance.

While positive, these results are less advantageous than expected in our
initial Fitts’ law simulations. We computed a Fitts’ law regression with our
experimental data and obtained an acceptable overall fitting (r2 = 0.848). However,
we observed very high variability across dead-zone and target sizes, showing that
Fitts’ ID only very roughly captures the difficulty of TorusDesktop tasks, explain-
ing the difference between our experimental results and our initial theoretical
simulations (see Figure 2.1).

Direct Distance

M
ov

em
en

t T
im

e
(m

s)

1060 1310 1560 1685 1760 1810 1935 2010 2060 2185 2260 2310 2385 2460

95
0

10
00

10
50

11
00

11
50

12
00

Direct
Wrapping
Torus

5% of the grand meanStdErr for the DD model

Figure 2.3: Average movement time of Direct pointing, Cursor wrapping and TorusDesktop
as a function of direct pointing distance. Since the y-axis has its origin at 950,
scale bars of error and grand mean are shown.

Overall, cursor-wrapping as we implemented in TorusDesktop is a viable
solution for a target-agnostic pointing facilitation technique, that remains simple
to implement and use in existing systems3. It adds a global ∼200ms penalty
to pointing tasks, but is still beneficial over direct pointing when the pointing
distance is greater than 2010 pixels. However, as it was also demonstrated
by Quinn et al., choosing between several possible pointing trajectories has a
performance cost for the user [QCD12], and, as seen in our experiment, can
lead to suboptimal choices. A solution to overcome this problem would be to
help the user to learn which technique to use in each case. While we have not
yet thoroughly explored this possibility, we already have some clues on how to

3 TorusDesktop is distributed as a free Mac OSX application (see http://insitu.lri.fr/TorusDesktop).

http://insitu.lri.fr/TorusDesktop

2.1 interaction on the desktop 13

achieve it. We could build upon a theoretical model of cursor-wrapping with a
dead-zone, similar to Fitts’ law, in order to predict when the technique could be
beneficial. We could then design training and feedback methods to help the user
acquire sufficient expertise to make the right choice, e. g. overlaying a graphical
representation similar to the one we used for our initial simulations onto the
user’s desktop.

2.1.2 Advanced Input Methods for Triggering Commands

Beyond pointing, another common task in standard interactive setups is triggering
actions or commands from menus or shortcuts. One well-known problem of
standard techniques, i. e. linear menus and keyboard shortcuts, is that they do
not scale to the exploding number of commands of current applications [Bea97].
Users need extensive learning and practice in order to become proficient with
them [Bai09]. Extensive research has been conducted in order to design menu
systems that overcome this exponential growth of functionalities, and most of the
time they are based on alternative graphical layouts and items arrangement (a
very complete survey can be found in Gilles Bailly’s work “MenuA” [Bai09]).
Another approach is to investigate the use of alternative input methods to
augment menus or to trigger commands.

a) b) c)

A1
A2
A3

A1
A2
A3

A1

A2
A3

Figure 2.4: A 3-level Push Menu in different states: a) initial state (level 1 is active, colored
in white). b) as the pressure increases, the ring of level 2 grows. c) when the
applied pressure has raised above level 1, the level-2 ring is activated (in white)
and the level-3 ring starts growing.

augmenting marking menus with pressure I extended Marking Menus
[KB91] to take advantage of pressure-sensitive input [HNB08; NBH09]. Marking
Menus are circular menus whose items can be selected as in a traditional menu
(novice mode), or by performing only the corresponding gesture mark (expert
mode) [KB91]. This approach provides a smooth transition from novice to expert,
with the expert mode performing much better than other menu techniques.
However, the number of items that a Marking Menu can contain is limited (∼8)
and hierarchical marking menus are more complex to use and memorize [KB93].
As shown in Figure 2.4, the Push Menu is a standard circular menu made of
several concentric rings, one for each of the pressure level to apply to the input
device. A dynamic visual feedback helps users to adjust and learn the amount Çpressure doubles the

capacity of Marking Menusof pressure required for selecting the desired item in novice mode. In expert
mode, the menu behaves in a similar way to a standard Marking Menu, by
showing only a gesture mark, but accounting for pressure. This augmentation of
Marking Menu with pressure allowed us to double the number of items a user can
handle with performance levels similar to a standard Marking Menu. The main
limitation of the Push Menu is, of course, the required operation of a pressure
sensitive input device. However, such technology is more and more common in
many professional setups (pen-based interfaces), and even on standard laptops
(pressure-sensitive touchpads).

14 from designing interaction to engineering interactive systems

rhythmic patterns as an input method A complementary approach to
the use of advanced input channels is to take advantage of expert practices and
user abilities in order to enhance interaction. This was the main topic of Emilien
Ghomi’s Ph.D. studies, which I co-supervised with Michel Beaudouin-Lafon.
In this context, we4 explored the use of rhythmic patterns as an input method
for triggering actions. In fact, rhythm is predominant in everyday life and has
been studied in many contexts, including perception and action [Gla01; MM05],
knowledge and learning (e. g. language [Lau+04]), artistic applications [Moe02],
curing some diseases such as stress or sleep disorders [Sac08]. Despite our
extensive understanding of rhythm in other domains, it has been little studied
as an input mechanism in HCI.

Interactive software take advantage of the temporal dimension, e. g. the dis-
tinction between long clicks and short clicks, “dwelling”–freezing the interaction
to segment gestural interaction [Hin+05] or to switch mode [FCR09], successively
highlight items in Rhythmic Menus [MAC99]. Some techniques, while not based on
rhythmic input per se, rely on the temporal grouping of input events in a periodic
way, e. g. double click, Motion Pointing [FEG09] or Cyclostar [MLG10]. But onlyÇtemporality and rhythm

in HCI a few techniques involve the reproduction of rhythmic patterns: Five-key [SL07]
enables text entry with rhythmic sequences, in [CM06], tempo reproduction is
used to select a particular song in a music library, and Tapsongs [Wob09] provides
an alternative to textual passwords where users tap a rhythmic pattern that they
have registered with the system for authentication.

Beyond these point design, using rhythm to interact with computer systems
has several potential advantages. First, as evidenced by research in Cognitive
Science, there is a direct correspondence between performing a rhythm (action)
and listening to a rhythm (potential audio stimulus and feedback). This could help
to better learn and memorize commands associated to rhythmic patterns, similarly
to motor learning. Second, rhythms can be performed in a variety of situations
and has many advantages over gestural input in mobility conditions for example,
since sensing rhythm only requires small sensors and reduced movements, andÇadvantages of rhythm as

an input method can be performed eye-free. But rhythmic patterns are not meant to replace more
conventional command input methods. Instead, it is a way to enhance existing
methods with a richer vocabulary, e. g. give access to a restricted set of commands,
or conversely to simplify interaction in some cases, e. g. with a tactile device in the
pocket or while driving, to shut down an alarm clock in the dark, or with devices
that do not have a display.

Our objective was to operationalize and implement a rhythmic input method
for triggering commands in order to generalize previous approaches by giving
a better understanding on the use of rhythm in HCI, thus leveraging its benefits.
Our study, which is reported in detail in our CHI’12 publication [Gho+12] (see full
article p. 175), addressed three research questions:

feasibility : Studies in several domains – e. g. cognitive sciences, physiology,
music – attempt to explain how and why we perceive and produce pe-
riodicities, but they rarely deal with the reproduction and memorization
of rhythmic patterns associated to tasks. Thus, even if perceiving and
performing rhythm is quite natural, are users able to reproduce, learn and
memorize patterns? Can they use them to trigger commands?

4 In collaboration with Guillaume Faure (former Ph.D. student at in|situ|) and his co-advisor Olivier
Chapuis (CNRS-in|situ|).

2.1 interaction on the desktop 15

interaction design : The number of possible rhythmic patterns is virtually
infinite and they can be presented in several ways. Which patterns make
sense for interaction and how to design a vocabulary? What feedback helps
in executing and learning patterns?

technical issues & integration : Like most continuous high-level input
methods, e. g. voice, marks and gestures, Rhythmic Interaction relies on a
recognizer to segment and interpret user input. How can we design effective
recognizers that do not require training?

We proposed a comprehensive framework to support the design of vocabular-
ies of rhythmic patterns. Considering the number of commands and actions often
used when interacting with computers, we introduced a definition of rhythmic
pattern inspired by rhythmic motifs in music. A rhythmic pattern is a sequence
of taps and breaks whose durations are counted in beats. Taps can be an impulse Çdesigning rhythmic

patterns(a hit on an input device), a short tap (one beat) or a long tap (two beats). They
always start at the beginning of a beat, and there cannot be more than one tap per
beat. Breaks can be short (one beat) or long (two beats). A pattern cannot begin or
end with a break or have two successive breaks.

(a) (b)

None Audio Visual AudioVisual

Feedback

S
u

c
c
e

s
s
 R

a
te

 (
%

)

0
2

0
4
0

6
0

8
0

1
0

0

(c)

Figure 2.5: Reproduction of rhythmic patterns. (a) Our animated visual representation of
rhythmic patterns presents impulses, short and long taps with shapes on a
beat scale. Shapes are filled in blue, following the default speed (125 BPM);
(b) During reproduction of patterns, a visual feedback follows user input in a
similar way to the animated visual representation; (c) Reproducing rhythmic
patterns is more accurate with feedback.

We first studied whether “standard” users (without expert skills in rhythmic-
based practices like music) were able to reproduce rhythmic patterns following
our design rules, varying complexity. We selected 30 representative patterns
amongst the 799 possibles between two and six beats long, and asked 12 par-
ticipants to reproduce them. Patterns were presented with the animated visual
stimulus of Figure 2.5a augmented with sound while the shape was filled.
Participants were then asked to reproduce the pattern by taping on the touchpad.
We also investigated four types of feedback during the reproduction of patterns:
visual (similar to the shape-filling stimulus), audio, audiovisual (combination of
visual and audio feedback) and no feedback at all. In order to assess reproduction
accuracy, we have implemented an intentionally very strict recognition algorithm,
able to recognize the 799 patterns in the whole vocabulary and not just the 30

16 from designing interaction to engineering interactive systems

patterns of the study. The overall success rate was of 64.3%. This may seem low,Ç64.3% of reproduction
accuracy with a very strict

recognizer
but the recognizer was deliberately very strict regarding the temporal structure
of patterns. The task was thus similar to playing a percussion instrument, which
can take years to master. Concerning reproduction feedback, we found that no-
feedback was the worst condition (∼50% recognition rate), all the other feedback
conditions being not significantly different from each other (see Figure 2.5c).
Overall, both quantitative and qualitative results suggest that rhythmic patterns
could be a viable alternative for an input method, provided that feedback is given
during reproduction and that the recognizer is less strict, adapted to the actual
subset of patterns (a classifier).

We implemented a pattern classifier which computes the “distance” between
the input sequence and the patterns in the vocabulary [Gho+12] (see full article
p. 175). When applying this classifier to the data of the first experiment, the
overall success rate was of 93%. We used this classifier to conduct a controlled
experiment, comparing rhythmic patterns with standard hotkeys, following an
experimental protocol similar to Appert and Zhai comparison of gesture short-
cuts with hotkeys [AZ09]. The comparison was studying the memorization of 14

“commands” symbolized by pictures, associated to rhythmic 14 patterns and 14

hotkeys (see Figure 2.6a). The experiment involved 14 participants and consisted
of two phases: learning, where both the command and the technique stimulus
were presented, and testing, where only the command was presented but with
the possibility to invoke an help system. After each trial, participants were also
asked to indicate the trigger they were trying to perform, in order to check if
they remembered the trigger but failed to reproduce it, or to test if the recognizer
classified a wrong pattern. The experiment was split into two sessions held on
two consecutive days, with a free session on the second day, where participants
were able to trigger commands with the technique of their choice.

CMD1

Ctrl+Y

R1 = P20

CMD2

Shift+H

R2 = P11

CMD3

Ctrl+X

R3 = P10

CMD4

Shift+E

R4 = P9

CMD5

Ctrl+R

R5 = P19

CMD6

Shift+F

R6 = P4

CMD7

Ctrl+N

R7 = P3

CMD8

Shift+B

R8 = P2

CMD9

Ctrl+D

R9 = P1

CMD10

Shift+T

R10 = P29

CMD11

Ctrl+H

R11 = P18

CMD12

Shift+G

R12 = P6

Ctrl+A

CMD13

R13 = P28

CMD14

Shift+W

R14 = P12

(a) Commands and patterns

1 (day 1) 2 (day 1) day 2

SubSession

R
e

c
a

ll
R

a
te

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0 Rhythm Hotkey

(b) Recall rates by session

1 (day 1) 2 (day 1) day 2

SubSession

H
e

lp
 R

a
te

 (
%

)

0
5

1
0

1
5

Rhythm Hotkey

(c) Help usage rates by session

Figure 2.6: Memorization of rhythmic patterns.

Our analysis of the results revealed very similar results for the two triggering
techniques. As shown in Figure 2.6b, recall rate (the percentage of correct answers
in the testing phase without using the help) are significantly lower in the first
session of the first day than in the second session of the first day and the
session of the second day (which are not significantly different). Recall rate for
both technique is very close (around 93%), except in the first session were it

2.1 interaction on the desktop 17

is significantly higher for hotkeys than rhythmic patterns (81% vs. 74%). For Çrhythmic patterns are
recalled as efficiently as
hotkeys

the use of help, the only significant difference is between the first session and
the two subsequent ones (see Figure 2.6c). The second day, 10 participants out
of 14 used rhythmic patterns more often than hotkeys, seven of them using
patterns more than 80% of the time. Participants reported to have constructed
some mnemonics to remember the rhythmic patterns. For instance, one of them
remembered the “boxing gloves” of command CMD4 and the corresponding
pattern P9 (see Figure 2.6a) as a “pif paf boom” onomatopoeia that echoed the
“short short medium” structure of the rhythmic pattern for him. Overall, these
results show that rhythmic patterns can be as efficient as ordinary keyboard
shortcuts and have promising applications in many contexts of use such as mobile
and eye-free interaction or expressive interfaces. In addition, we also proposed
design guidelines for building rhythmic patterns vocabularies, as well as a user-
independent recognizer software to integrate this input method into real systems.

2.1.3 Improving Users’ Workspace

A recurring issue in window-based systems is window clutter. During Julie
Wagner’s Ph.D. at in|situ|, co-advised with Wendy Mackay, we investigated
users’ behavior with application windows. This work started from Julie’s ob-
servation of her advisors’ desktops, which were most of the time overcrowded
with many opened windows. She hypothesized that some of these windows were

Ç50 windows on a real
user’s virtual desktop

left-over (unused for a while), resulting in an unnecessary window clutter, and
that identifying the reasons for keeping these windows open should help design
appropriate tools.

We implemented a background event logger for Mac OS X, inspired by [Cha05],
and conducted a two week field-study with 10 laptop users. A second hypothesis
was that the use of a laptop computer would lead to fewer reboots, resulting less
desktop cleanup. We collected the logs from our background application (mainly
windows events), answers to critical incident questionnaires during the study, e. g.
“why are you keeping this window open?”, and conducted pre-experiment interviews
in order to identify participants’ habits (reboot frequency, desktop cleanup, etc.).
The detailed protocol and results appear in our publication [WMH12].

12 3reboot:

1 2 3 4 5 67reboot:

Left-over YES NO

N
um

be
r o

f W
in

do
w

s

Number of Sessions
0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50 55

P10
P2

P1
Opened Windows for: P1

P10

P2

50

25

6

Figure 2.7: Open vs. left-over windows patterns: P1 has never rebooted, and has the most
open and left-over windows; P10 rebooted 3 times, and has half as many open
and left-over windows; P2 rebooted 7 times, ans has a few open and almost no
left-over windows.

Overall, we found that interruptions during the day result in shorter work
sessions but also increase the total number of left-over windows, with a corre-

18 from designing interaction to engineering interactive systems

sponding increase in window clutter, and that users who seldom reboot are more
affected than those who reboot often (see Figure 2.7). We also identified a number
of positive reasons for keeping left-over windows, including reminders, to do
lists and facilitating future access to specific windows. However, participants also
admitted that many windows were forgotten and caused undesirable window
clutter. This provides several important results that could be used to inform the
design of advanced desktop management tools, allowing users to quickly identify
left-over windows and distinguish between those that serve a useful purpose and
those that were simply forgotten.

Window clutter is also a common problem in more specific cases such as
document editing with formatting or markup languages: editing environments
are most often based on two or more synchronized side-views (editor and
rendered document) that consume a lot of screen real estate and require efforts
from the user to link the contents between views. We addressed this problem with
Pierre Dragicevic (Inria-AVIZ) and Fanny Chevalier (OCAD University and
DGP, Toronto), by designing and implementing Gliimpse [DHC11] (see full article
p. 159), a complementary approach that provides in-place animated transitions
between the edited markup code and the rendered document (see Figure 2.8 and
video at http://www.aviz.fr/gliimpse).

Figure 2.8: Gliimpse. Animating from markup code to rendered documents and vice-versa.

Figure 2.9: Gliimpse. Animation of an HTML form.

http://www.aviz.fr/gliimpse

2.2 interaction with mobile devices 19

Animation is triggered on demand by the user when she wants to quickly
switch from the markup code to the final document without losing context
and focus of attention. While not formally evaluated, the first user feedback we
gathered suggests that Gliimpse could also be an efficient tool to help learning
complex syntax (e.g., LATEX formulae) since it allows seamless visualization
of the mapping between the code and its results (see Figure 2.9). Our early
prototype supports HTML, Wiki markup and LATEX, and is freely available (see
http://www.aviz.fr/gliimpse). We will see later in this section that behind this
rather simple idea, the actual challenge of this work is its implementation for
use in a real-world editing environment (see section 2.3.2, p. 37). In addition to
the computer graphics algorithms that animate between characters in different
fonts, and the stabilization method that maintains consistency between the views,
the main challenge was to correctly map data from one view to the other. While
one might think that software components in actual systems provide good APIs
for introspection and accessibility, the reality is quite different, and we had to
implement everything from scratch for our prototype to work.

This first set of projects already reveal some relationships between technology
and interaction design. First, the design of novel interaction techniques does
not only consist of studying users’ needs or technological issues, then searching
for the right solution (hardware and/or software). Novel interaction techniques
can be inspired or influenced by technological features from the very beginning,
in parallel with usage considerations (e. g. TorusDesktop or the PushMenu).
Second, designing advanced interaction requires to implement prototypes at
various levels of precision, for testing and evaluation purposes. As we will see
in section 2.3.2 with Gliimpse, this can challenge existing technologies and even
prevent potentially good solutions from being investigated further. The next set
of projects will show that even when starting from user needs, technological
constraints affect the design process.

2.2 interaction with mobile devices

The ecosystem of mobile devices has evolved greatly since the appearance of the
first Personal Digital Assistant (PDA) in the 90’s, in terms of technology, as well
as interaction. While most mobile devices have been shipped with touch-screens
since the beginning, their interfaces often required the use of a stylus since they
were based on the same WIMP paradigm as standard computers. The emergence
of “smartphones” with multi-touch screens changed the landscape, leading to
the development of interaction techniques specifically designed for these devices.
However, whatever the technology, an old-school PDA or the latest multi-touch
smartphone, interaction in mobility conditions creates strong constraints because
of the devices themselves (small screen size, limited input, etc.) and also because
of the context of use, mobility, interruptions and attention switching, etc. When de-
signing mobile interactions, these issues must be addressed to ensure acceptable
performance (time and errors), but also to improve and maintain an acceptable
level of user satisfaction. My approach to the study of interaction on mobile
devices was to address these problems in a global manner, with the explicit goal
of defining high-level design guidelines inspired by the literature as well as my
own research:

mobility and attention : Numerous studies and observations have shown
that in mobility conditions, users are prone to use their small devices with
only one hand [KBC08]. In fact, when walking in the street or traveling via
public transportation, one must often carry a bag or grab a handle in a bus,
limiting the availability of the second hand. Interaction techniques that can

http://www.aviz.fr/gliimpse

20 from designing interaction to engineering interactive systems

be operated with only one hand, usually the thumb of the carrying hand,
are preferable to stylus-based ones in these cases. Mobility also implies a
lot of attention from the user, and in particular divided attention when
simultaneously interacting with a device [PRM00], e. g. manipulating a
navigation system while driving and observing the environment. We need
to take this into account by designing “interruptible” interactions that can be
put in stand-by and resumed later, without having to restart from scratch;

small screen size : The physical size of the screen, despite the very high
resolution available on recent high-end mobile devices, highly constrains
the way data can be presented: data displays must be compact, data-dependent
and/or interactive. For example, Focus + Context [CMS99] techniques such
as Table Lens [RC94] can help adapt display to the user’s current focus
of interest; some techniques like FaThumb can improve search and naviga-
tion [Kar+06], and techniques such as Collapse-to-Zoom interactively adapt
the size of the content depending on its relevance for the user [Bau+04];

graphical occlusions and input precision : Occlusions from the finger-
tip as well as the relative imprecision of direct touch for precise acquisition
of small targets, known as the “fat finger” problem, is particularly acute
with small touch-screens [VB07]. In mobility conditions, we thus face a con-
tradiction between usage and usability: the need to interact with one hand,
typically with the thumb while holding the touch-screen, makes interaction
less precise and more error-prone on a small touch-screen; conversely, stylus-

Çfat finger based or two-handed touch interaction can facilitate interaction and improve
precision but are not well suited for mobility conditions. It is thus necessary
to improve direct touch with specific designs and studies [HB10] or to favor
indirect pointing methods with an offset cursor [PWS88].

I designed several new techniques for mobile interaction that illustrate this
approach by addressing several issues: acquiring on-screen targets, displaying and
manipulating lists of items and triggering commands.

2.2.1 Target Acquisition

In collaboration with Anne Roudaut (then a Ph.D. student at Télécom ParisTech,
now a post-doctoral fellow at Bristol University) and Eric Lecolinet (Associate
Professor at Télécom ParisTech), we addressed the well-known problem of se-
lection on a small tactile screen. As stated above, target acquisition on small
mobile devices in mobility conditions raises the dual issue of making one-handed
interaction with the thumb on a small touchscreen possible, without sacrificing
performance and precision. We addressed three main problems:

1. Visual occlusions – occur when the finger tip or thumb hide parts of the
screen;

2. Accessibility of targets – when operating a mobile device with one hand,
targets close to the borders of the small screen are harder to acquire than
those in the center [KB07; PH08], because the morphology of the thumb
limits its reach;

3. Selection accuracy – touching a target on a small screen with the thumb is
subject to inaccuracy because of the “fat finger” problem. A solution is to
increase the size of the available targets in order to ensure minimal accuracy,
as in several GUI for mobile systems. But this approach does not fulfill the
requirements of many applications that require the display of many targets
on the small screen, e. g. maps.

2.2 interaction with mobile devices 21

Related work only partially addressed these problems. Most target acquisition
improvements on small touchscreen were inspired by the Potter et al.’s take-off
principle, which consists of moving an offset cursor by sliding the finger on
the screen and releasing the finger when the cursor is on top of the desired
target [PWS88]. This solves the accuracy problem, but visual occlusion and
accessibility problems remain. ThumbSpace [KB07] was designed to improve
access to targets on the borders, top and bottom of the screen with the thumb,
but occlusions remain in the center. Shift [VB07] and Escape [Yat+08] address
occlusions and accuracy but do not really improve accessibility, Escape even adds
a level of complexity (gestures) that might make the technique too complex for
casual users. We designed two selection techniques, TapTap and MagStick, with the
goal of addressing occlusion, accessibility and accuracy concerns.

TapTap relies on a simple principle of “Tap-Zoom-Tap”, as illustrated in Fig-
ure 2.10. With this easy two-step interaction technique, the user just has to tap the
screen close to the target she wants to select in order to display a magnified area
in the center of the screen, and to finally select the target. To keep the technique
simple, the size of the magnification area and its zoom factor are not controlled
by the user, but were carefully designed to make the technique efficient: a 80x120

pixel rectangle around the initial tap is zoomed in by a factor of 2, in which
targets are zoomed in again by a factor of 1.5. More details about the design of
TapTap can be found in our paper [RHL08] (see full article p. 124). Thanks to this
design, this simple yet powerful approach addresses the three issues we raised
previously. Zooming in an area of interest reduces visual occlusions and increases
accuracy, since targets are larger. Positioning the area of interest at the center of the

ÇTapTapscreen, wherever the initial tap occurred, improves accessibility of the targets that
are outside of the extent of the thumb. More generally, TapTap coexists with the
standard direct touch selection technique, since tapping directly on a target will
select it without triggering the magnification area. It is also interruptible since the
user can perform both interaction sequences at her own pace (and thus interrupt
the interaction while the magnified area is displayed), and can be canceled by
tapping on an empty space inside or outside of the magnification area.

Figure 2.10: TapTap is a two-step selection technique: the user performs a tap in the area
of the desired target, which is automatically zoomed in (x2) in order to make
targets easier to touch directly.

The second technique, MagStick, extends the principle of the offset cursor
[PWS88], as shown in Figure 2.11. When the user touches the screen, she defines
a “reference point”. Then, dragging the thumb makes a two-part stick appear
around this reference point: The side of the stick which is under the thumb is
for control and the opposite one holds a cursor. Cursor movements are mapped

22 from designing interaction to engineering interactive systems

to thumb movements symmetrically with respect to the reference point. In
order to support precise selection, the cursor is attracted by the targets when
in their vicinity. Finally, a target selection is performed by lifting the thumb
when the cursor hovers a target. This design, inspired by electronic billiards
games, addresses several drawbacks of the standard offset cursor technique. First,
symmetrical movement avoids graphical occlusions, since the thumb has to be
moved in the opposite direction of the desired target, keeping the target and
its surrounding context visible. Second, the cursor appearance when touching

ÇMagStick
the screen, and its movements when dragging are easier to predict than with
a standard offset. The later might require training to be mastered, especially to
figure out where to touch the screen to access a particular target. With MagStick,
the user can access all on-screen locations by always initiating the interaction from
the center of the screen, which improve accessibility, but she can also anticipate
the amount of movement she would have to perform before touching the screen,
since the two ends of the stick around the reference point are of same length.
Third, target magnetism avoids excessive adjustment movement, overshoots and
empty selections that might sometimes occur because of small movements when
releasing the thumb when confirming a selection.

Reference

Point

Part of the stick that
controls the cursor

Part of the stick
controlled by
the thumb

Magnetized target
bends the stick

Figure 2.11: MagStick extends the offset cursor principle [PWS88] by enabling continuous
control of a magnetized cursor at the end of an inverted telescopic stick.

As described in detail in the related publication [RHL08] (see full article p. 124),
we conducted a controlled experiment in order to assess user performance and
accuracy with TapTap and MagStick, compared to the direct touch baseline, and
state-of-the-art techniques at the time: offset cursor [PWS88], ThumbSpace [KB07]
and Shift [VB07]. Our experimental conditions varied the on-screen location of
fixed size targets (3mm, considered to be the smallest possible widget size on
a mobile device [VB07]). While direct touch was clearly the fastest technique, it
also caused too many errors to be really usable with such small targets. If we
exclude direct touch, TapTap was the fastest and least error prone technique.
MagStick was not significantly faster than the others but less prone to error.
More importantly, both TapTap and MagStick have proven to have consistent
performance (time and errors) for all on-screen locations, while other techniques
exhibited sometimes important performance variations due to screen location.
Participants’ assessments were also very positive for both of our techniques.

2.2 interaction with mobile devices 23

2.2.2 Manipulating Lists and Triggering Commands

Visualizing and manipulating large quantities of data is a general concern in HCI,
but is even more challenging on mobile devices for the reasons we described
before (mobility, small devices and input methods). Even though mobile devices
are not expected to be advanced visualization platforms, some of their primary
uses depend strongly on the visualization and manipulation of data: as mobile
phones, they might contain hundreds of contacts in an address book; as multi-
media players, they might manage numerous entries and playlists in a library; as
connected devices, they might contain many web bookmarks or navigation history
entries; etc. When we started to explore this problem in 2007 with Eric Lecolinet

ÇWindows Mobile 5
contacts list

at Télécom ParisTech, standard linear lists were the norm for displaying such
data on mobile devices. These widgets were inspired from standard linear lists on
desktop GUI, with a very similar behavior (scrolling and alphabetical shortcuts),
requiring the use of a stylus for comfortable and reliable operation. New mobile
platforms, i. e. iOS and Android, slightly improved the situation, since their list
manipulation widgets were better designed for touch manipulation (larger items,
speed-controllable scrolling with inertia). However, the linear presentation still
has many drawbacks for displaying and manipulating large lists on such small
screens. In fact, scrollable lists clip the data, presenting only a small subset of
the items inside of a viewport. Beyond the increasing number of actions that are
required to reach a specific item when the size of the list increases, the viewport
principle prevents highlighting, does not support multiple points of interest in
the list, and limits contextual information that could be presented to the user.
This is an issue leading to poor designs where, for example, several missed calls
or pending messages in a contacts list are presented in an additional sublist in
another context.

1 LETTER

FOCUS ZONE

3 LETTERS

2 LETTERS

(a) Sectors and DOI zones (b) SpiraList (c) SnailList

Figure 2.12: SpiraList & SnailList. (a) General principal of the spiral layout for displaying
lists; (b) SpiraList uses a spatial strategy where the whole list is displayed; (c)
SnailList uses a temporal strategy where items are displayed and accessed in
several steps.

We created a new interactive layout that addresses these issues, based on
a compact spiral representation of data. Figure 2.12a shows our visualization
technique made of a Focus + Context (F+C) [CMS99] spiral: each revolution of
the spiral represents a Degree Of Interest (DOI), the innermost one being the
lowest, and the outermost one being the “focus” zone. This compact layout makes
it possible to display a large number of items inside the sectors, by reducing
item size and grouping them using a semantic approach [PF93]. In our spiral
F+C layout, items in the focus zone (the outermost revolution, in yellow in
Figure 2.12a) are displayed completely. In the innermost revolutions, the number

24 from designing interaction to engineering interactive systems

of displayed letters of the items’ labels decreases as we progress inside the spiral.
Additionally, identical collapsed labels are grouped together, in order to optimize
layout capacity and legibility. Some items can be kept outside of a group if they
need to be highlighted, irrespective of their position in the spiral, thus allowing
several points of interest in an augmented context. This layout, associated with the
F+C strategy, suits the constraints of small screens while addressing many of the
drawbacks of linear lists: the layout is compact and centered on the screen, making
it easily accessible by direct interaction with the thumb; the variable DOI makes
it possible to display a large number of items without hiding parts of the list as
with a clipped viewport; items can be interactively moved from the context areas
to the focus zone while keeping an overview of the whole data.
We explored this abstract visualization concept with two concrete designs, using
two different strategies: SpiraList, which uses a “spatial” strategy, and SnailList,
which uses a “temporal” strategy.

spiralist

SpiraList [HL06] builds on a “spatial” F+C strategy. As shown in Figure 2.12b,
items are displayed in alphabetical order all along the spiral layout in a continuous
manner (the first and last visible items are contiguous). The focus area, containing
the current selected item, is located at the bottom of the spiral and information
about the selected items is inside of the spiral. Remaining items are displayed in
the innermost revolutions, their labels reduced and collapsed as explained before.
Unlike standard F+C visualizations, the location of the focus area cannot be moved
and is fixed at the bottom of the visualization, making it well-adapted for small
screens. Interaction with SpiraList is performed with an improved offset cursorÇSpiraList: a spatial

strategy interaction technique (the offset is adaptive, depending on the location of the
touch, in order to help reach the borders of the screen). To change the focused
items, the user must interactively “scroll” the list in the spiral with the blue arrows
on its side, or to fly over an item with the cursor and to release its finger to
make the list automatically scroll to get this item in the center of the focus area.
Additionally, the background of spiral sectors can be colored and flying over items
can display a tooltip, both conveying additional information about the items.

snaillist

Another approach, that we instantiated with SnailList [HL07b], relied on a
“temporal” F+C strategy. While the spatial strategy of SpiraList has proven to be
quite efficient, it scales poorly for very large or unbalanced lists, since many items
are likely to be collapsed into the inner revolutions of the spiral, thus requiring
many actions for the selection of an item. Keeping our compact spiral F+C concept,
we explored a different approach based on temporal multiplexing. In SnaiList, a
fixed context area always lies in the innermost revolution of the spiral. In this zone,
as shown in Figure 2.12c, only the first letters of collapsed items are displayed (as
well as some possible “always visible” items). Then, the user selects a letter inÇSnailList: a temporal

strategy order to unfold the corresponding items after the context area. Finally, selecting
an item puts it in focus on top of the visualization. As with SpiraList, interaction
is performed with an offset cursor. The technique however deals with three levels
of details (context, intermediate and focus) that are successively invoked by the
user, hence the temporal approach. In comparison to the spatial approach, we
expect the temporal one to reduce the complexity of visual search, by splitting it
in simpler successive steps, while maintaining the good properties of our overall
concept (compact layout and possibility of multiple points of interest).

We compared our SnailList design with the standard Windows Mobile 5

scrollable list (which was the standard list widget on mobile devices in 2007), both

2.2 interaction with mobile devices 25

techniques being operated with the thumb of the carrying hand [HL07b] (see full
article p. 110). Participant were asked to find specific items (names of persons)
in balanced lists of 100, 250 and 500 items. While we did not find significant
differences in search time between the techniques, the completion time was less
sensitive to the size of the list with SnaiList. Regarding errors, SnailList was 3.7
times more accurate than the scrollable list, and results show that error rate with
SnailList is slightly increasing with list size whereas it is always high for the
scrollable list, whatever the size of the list.

In this section, I demonstrated how interaction design can follow a user-
centered approach by studying specific aspects of the task and its context of use,
e. g. mobility conditions, but can also account for technological specificities and
constraints, e. g. screen size, device form factor and input precision. This improves
the quality of interaction, gives insights into the advantages and limitations of a
given technology and points to possible improvements. Touch interaction, which
is the technological aspect of these studies, is still an on-going research area and
section 2.3.4 will show that researchers are exploiting similar design principles to
address both usability and technological issues.

2.2.3 Advanced Mobile Interaction

Recent hand-held devices also allow to explore new kinds of interaction tech-
niques, thanks to their advanced technological capabilities, including multi-touch
and high resolution screens, camera, sensors (gyroscopes and accelerometers),
localization, etc. These enable new input and output methods, such as touch and
mid-air gestures or contextual adaptation, which could address some of the issues
we identified before, i. e. mobility conditions, limited display and input means, as
well as to support more everyday activities, e. g. navigation, media authoring. In
this section, I describe two projects designed to explore advanced interaction with
mobile devices in order to (i) help users remember their interaction with physical
objects by using Augmented Reality (AR), and (ii) overcome the limitations of
multi-touch interaction in mobility condition by introducing bimanual interaction
techniques on mobile tablets.

2.2.3.1 Mobile Augmented Reality for Interacting with Physical Objects

Interactive objects and appliances require more or less practice to be operated. But
even after having mastered them, we often need to memorize how to set them up
for a particular purpose: entering a code on a keypad to open a door, launching
a program on a washing machine or an oven, or setting up a particular sound
on a guitar amplifier. These appliances come with operating manuals explaining
how to operate them, and users are sometimes keeping track of particular actions
or settings on paper, or Post-It notes, or in their hand-held devices (with text or
picture notes). But while these instructions and note-taking methods are efficient

Çwhat was my setting for
this song?

to describe the goal of the operation, their static nature does not always provide
meaningful help on “how” to do it, or at the cost of multiple instructions (several
lines of text or multiple pictures). In fact, they lack dynamic and contextual
information, as it can been done with video instructions for example. When
the instructions are long or complex, these “Alternating Attention” tasks [SM89]
require to repeatedly switch between sub-tasks, which can be highly demanding
for the user as it requires memorizing instructions, visually finding the objects of
interest, retrieving the next instruction, etc.

26 from designing interaction to engineering interactive systems

During the Master’s internship of Can Liu at in|situ|, which I supervised in
collaboration with Jan Borchers and Jonathan Diehl from the Media Computing
Group (RWTH Aachen University, Germany), we explored the possible use of
mobile devices for assisting users in keeping track of their interactions with
physical objects through Augmented Reality (AR) interactions. In fact, since the
early KARMA prototype [FMS93], AR has proven to be useful in assisting with
complex operational tasks such as assembly [Tan+03] or maintenance [HF11].
AR combines the advantages of text and pictures, by easing the localization of
physical objects with additional “in-place” information [HF11]. There are many
AR solutions that have been proposed so far for this application (see the complete
review in Can Liu’s master thesis [Liu12]), but most of them are focused on
professional activities and are using a Head-Mounted Display (HMD). While the
HMD provides the best solution for AR in terms of quality of the display and
immersion of the user, this is obviously an impractical setup for our objective of
helping casual users to interact with everyday appliances. Conversely, thanks toÇAR instructions for casual

users their technological advancement, recent smartphones offer an alternative for “Mo-
bile Augmented Reality” applications to provide in-place guidance anywhere and
for everyone. In fact, high-resolution screens and cameras, high-end mobile CPU

and GPU with hardware accelerated graphics, and various connected technologies
(Wi-Fi, bluetooth, GPS) are now making Mobile AR possible with off-the-shelf
hardware, with a growing interest in both academia (a workshop dedicated to
Mobile AR is held every year at the Mobile HCI conference) and industry (e. g. the
Layar application5).

Our objective was twofold: (i) designing a mobile interface and related in-
teraction techniques to create AR notes. AR systems are in general based on
existing content, which is authored and managed by the designer(s) and the
developer(s) of the application. In our case, the augmented instructions have
to be personal notes and should be authored by the end-user; (ii) designing
an AR layer on a mobile phone that enables the user to retrieve her notes
and eases the manipulation of physical objects in real-time while following AR

instructions on the mobile device (e. g. seeing the results of turning a knob in
real-time). Similar approaches have been proposed since the early 2000 – e. g.
“The Augmented Reality Personal Digital Assistant” [Gei+01] or Wagner and
Schmalstieg’s navigation system [WS03] – but they are mostly addressing the
technological issues, they do not allow end-user authoring of the augmented
data and they present “static” augmentation of the real world (text or video
instructions, but without real-time updates from the changes in the environment).
The challenge was then, for this second objective, to design and assess the benefits
of a real-time AR instruction method.

ar note authoring We iterated over several designs for a mobile AR note
authoring interface, whose objectives and design alternatives are described in
details in our Mobile HCI 2011 workshop paper [Liu+11] and in Can Liu’s
thesis [Liu12]. Figure 2.13, describes a paper prototype of the interface. The
principle is to enable semi-automatic detection of common physical widgets
(e. g. knobs and rotary controls, sliders, buttons) and of their actual values
when presenting the hand-held device in front of an appliance (Figure 2.13a
& b). The detection could rely on computer vision algorithms and/or direct
connection between the application and the hand-held device (e. g. through Wi-Fi
or bluetooth). But it would also require user interaction in order to correct miss-
detections and to modify the states of some widgets according to the settings in
order to record personal instructions.

5 see http://www.layar.com/

http://www.layar.com/

2.2 interaction with mobile devices 27

Steps a to d in Figure 2.13 show a possible sequence: the system detects the
widgets and highlights them in an AR layer on the device screen (Figure 2.13a &
b). The user confirms the widgets that were recognized properly by tapping them
on the screen. Some of them can be discarded if their values do not need to be
recorded in the current note (the knob an the slider that remain red in Figure 2.13c
are discarded in Figure 2.13d). Some of the widgets might not have been detected,
such as the button in Figure 2.13b, or their detected values/positions might be
erroneous, such as the rightmost slider in Figure 2.13d. The interface should
then provide the users with means to correct detection: this could been done by
directly adding or editing the AR layers and the recognized controls. For instance,
in Figure 2.13e & f, the user adds a button on the AR layer and anchors it to the
physical control. In Figure 2.13g, she corrects and re-calibrates the miss-detected
value of the slider. Finally, the user could add some additional steps to the note
(with the + button on the top right of he interface), in order to specify complex
settings that would require to be performed step by step.

Recognizing
Widgets...

New Note - Page 1

...

New Note - Page 1

...

...

New Note - Page 1

Anchor

New Note - Page 1

...

New Note

...

Type:

Slider Continuous

Widget 6

Details:

100750

(a) (b) (c) (d)

(g) (f) (e)

Figure 2.13: Storyboard and paper prototype interface for authoring mobile Augmented
Reality notes (picture from Can Liu’s master thesis [Liu12]).

This interface remains a mock-up for several reasons. Implementing it com-
pletely and properly would have required to address many technical issues, e. g.
computer vision, ubiquitous devices connection, which where not our primary
objective considering the limited time for this project. But more importantly, we
focused our work on the second objective: assessing the benefits of real-time AR

for setting physical controls. In fact, considering the cost of developing such an
advanced mobile AR authoring system, one should first question the usefulness of
the instructions it will help to create.

benefits of ar real-time instructions Similarly to the authoring ap-
plication, the instructions system consists in detecting an appliance when it is in
front of the camera of the hand-held device, and to display an AR layer on top of its

28 from designing interaction to engineering interactive systems

control in order to present the setting instructions, similar to a Magic Lens [Bie+93].
Beyond controls detection and personal instructions retrieval, the main challenge
was to design proper visualization and visual feedback for the instructions to
be efficient. Figure 2.14 depicts the two approaches that we investigated. We firstÇhow to display mobile AR

instructions? designed an “offline” AR feedback, which is the way most AR applications work: as
shown in the example of Figure 2.14a, the instructions are displayed on-screen, on
top of the physical controls, here a door keypad. The instructions are displaying
the sequence of keys to press in order to unlock the door. The instructions can be
displayed in a static or dynamic way (animation of the sequence), but they do not
reflect the actions of the user on the physical objects in real-time. While making
the implementation simpler, since it does not require to interpret user actions,
this approach provides limited feedback on what was already done, and it might
also be time consuming when performing complex sequential actions (since one
could wait for the whole sequence to replay after missing a step for example).
Moreover, visual occlusions from the user hand while manipulating the physical
controls (between the AR display and the controls) could prevent the system from
correctly mapping the values of the controls to their on-screen representation,
thus requiring to switch attention between the AR view and the physical world as
with picture instructions. Our second design addresses these issues by adopting
a “real-time” approach, where the AR application gives real-time feedback on the
actions of the user while manipulating the objects. In Figure 2.14b, we can see a
set of physical controls that are manipulated through AR instructions. The values
to reach are displayed in red, and actual values of the controls are updated in
real time while the user manipulates them. When the correct value is reached, the
on-screen feedback turns blue.

(a) Entering a code on a keypad (b) Setting continuous controls

Figure 2.14: Mobile augmented reality for setting physical controls. (a) An “offline”
approach: values to be set are displayed on top of the physical control, in a
static or dynamic way (animation), but without knowledge and feedback on
the actual values. (b) A “real-time” approach: values to reach are displayed in
red, and feedback is updated in real-time while the user is manipulating the
controls. The feedback turns blue once the control is correctly set.

Again, our objective was not to fully implement the system, since it would have
required complex computer vision algorithms and/or inter-device communica-
tion to work efficiently with real-time feedback and with any kind of controls. WeÇan AR instructions

prototype implemented a “high-fidelity” working prototype in order to formally evaluate
the approach. As shown in Figure 2.14b, we used fiducial markers and an Android

2.2 interaction with mobile devices 29

mobile implementation of the well-known ARToolkit library (NyARToolkit6) in
order to detect the location of the physical controls with an HTC Desire mobile
phone. Three markers were put on a JLCooper CS-10

2 MIDI control station that
features controls commonly found on physical appliances (buttons, knobs, sliders
and a jog wheel). In order to provide real-time feedback, the data from the
controller (the values of the controls) is transmitted in real-time to the mobile
application through the MIDI protocol and OSC messages. When the mobile phone
recognizes a marker, it displays an AR layer on top of the real-time camera image
with outlines of the physical controls and in-place instructions to perform the
task, e. g. a value to enter or a button to press. The user can move the controls
while looking through the phone, and see the real-time feedback on its screen, as
explained before.

(a) Instructions Techniques (text, picture, AR and AR+F)

0
10
20
30
40
50
60
70
80
90

M
ea

n
of

 T
ria

l T
im

e
(s

)

Easy Medium Hard
Difficulty

AR+F AR Picture TextInstructions

(b) Trial time

0

10

20

30

40

50

60

Tr
ia

ls
 w

ith
 E

rr
or

s (
%

)

Easy Medium Hard
Difficulty

Each error bar is constructed using a 95% confidence interval of the mean

(c) Error rate

Figure 2.15: Mobile augmented reality experiment. (a) Experimental conditions; (b) Mean
time for setting controls with each kind of instruction and by task difficulty;
(c) Error rate for each kind of instruction and by task difficulty.

We have used this prototype to conduct a controlled experiment, which is
described in details in our CHI’12 short paper [Liu+12]. Our goal was to assess the
potential benefits of both AR methods as instructions for setting physical controls,
with or without real-time feedback. Participants were asked to set the controls
of our prototype with four kinds of instructions: traditional text or picture-based
instructions, AR or AR with real-time feedback (AR+F). These experimental conditions
are shown in Figure 2.15a. We also investigated three levels of difficulty for the
settings, which, from our observations during pilot studies, were based on the
number of controls to set: 3 controls for Easy, 9 for Medium, and 18 for Hard (the
types of controls to set in each settings were also balanced). The results validated Çreal-time feedback

improves mobile ARthe benefits of the additional feedback as well as the performance improvement
of AR versus traditional text or picture-based instructions: (i) Augmented Reality
techniques significantly increase users’ performance (faster and more accurate, as
shown in the graphs of Figures 2.15b and 2.15c); (ii) adding real-time feedback
about user actions into the AR layer helps users performing even better: in fact,
in accordance with our hypotheses, we observed that participants were using
AR without real-time feedback in a similar way as picture-based instructions,

6 see http://nyatla.jp/nyartoolkit/wp/

http://nyatla.jp/nyartoolkit/wp/

30 from designing interaction to engineering interactive systems

because of hand occlusions limiting the possibilities of looking directly “through
the phone” while manipulating the controls. Conversely, real-time AR feedback
enabled the use of the hand-held device as a Magic Lens, reducing the need to
switch attention between the instructions and the physical controls.

2.2.3.2 Bimanual Interaction on Multi-touch Tablet Devices

Multi-touch tablets recently appeared on the market as affordable and acces-
sible mobile devices, which was quickly confirmed by a wide adoption by
many users. Their intermediate form-factor, half-way between a notebook and
a smartphone, makes them adapted for a variety of nomadic usages, from
professional to personal applications, in situations in which the user stands or
walks: teachers can control simulations in class, nurses can track patients on
interactive clipboards [Fon+10], etc. Interaction with multi-touch tablets is similar
to smaller devices, based on gestures performed with one or several fingers of
one hand. But their larger screen could also enable bimanual interaction, which
can increases performance [MH08] and precision [BWB06] in the context of
multi-touch input, and enhances the user experience [LZB98; WB03]. Bimanual
interaction with a multi-touch tablet however poses an obvious problem: the
non-dominant hand is carrying the device. Most existing bimanual interaction
techniques were designed for independently supported displays or tabletops.

Çbimanual interaction
while holding tablets is an

old story...

Exceptions are RearType [Sco+10], which augments a tablet PC with a physical
keyboard on its back, Lucid Touch [Wig+07], a prototype of see-through tablet,
or Gummi [SPM04], a prototype bendable tablet device. These devices enable
bimanual interaction with a tablet device, but this was not the primary intent of
their design. Our objective was to better understand how bimanual multi-touch
interaction can be achieved on hand-held tablets, and to inform designers about
how to leverage the benefits of bimanual interaction techniques.

This work is part of Julie Wagner’s Ph.D. thesis, which I co-supervised with
Wendy Mackay. It is reported in detail in our CHI’12 paper [WHM12] (see full
article p. 165) as well as in Julie Wagner’s Ph.D. dissertation [Wag12]. Our
methodology was first to study how people “naturally” hold multi-touch tablets,
in order to identify holds that would makes interaction with the carrying hand
possible while simultaneously interacting with the other hand. We recruited eight
participants, four owned iPads and four had never used a tablet. We asked them
to perform distractor tasks, i. e. pointing and scrolling, in different tablet orientation
(landscape, portrait) and stance (sit, stand, walk), and we observed how they
unconsciously held the tablet. We did not find a single optimal hold. Surprisingly,Çhow do people hold

tablets? the four novices used the same awkward and uncomfortable hold, with the
fingers, thumb and palm of their non-dominant hand supporting the center of
the tablet like a waiter holding a tray. In contrast, participants who were used to
manipulate a tablet found a variety of secure and comfortable holds, according
to the device orientation. These five holds are presented in Figure 2.16 for the
portrait orientation, holds in landscape orientation being the same. Participants
also confirmed the accessibility of the borders of the multi-touch screen with both
the thumb and the fingers of the support hand. These results suggest that we
should seek a small set of roughly equivalent bimanual interactive holds that
are easy to shift between, in order to alleviate the effects of fatigue (alternating
between thumb and fingers for bimanual input).

bipad interaction techniques and toolkit We have thus implemented
an iOS toolkit, BiPad, which help designers to add three predefined bimanual
interactions to their applications. The toolkit defines the five interactive zones
where the user can interact with the thumb or the fingers of the supporting

2.2 interaction with mobile devices 31

Thumb Bottom
(TBottom)

Thumb Corner
(TCorner)

Thumb Side
(TSide)

Fingers Top
(FTop)

Fingers Side
(FSide)

Figure 2.16: Hand postures while holding a tablet device. The five spontaneous holds
identified for portrait orientation in our preliminary study. Holds are similar
in landscape orientation.

hand, corresponding to the five spontaneous holds identified in the study (see
Figure 2.17a). The application designer defines BiPad-enabled functions that can
be mapped to interactions with the support hand through a simple callback
mechanism. For example, a text editing application could define shift and num Çthe BiPad toolkit (http:

//insitu.lri.fr/Bipad)functions equivalent to pressing the shift or number keys of a virtual keyboard.
Figures 2.17b, 2.17c and 2.17d give some example applications were different
functions are mapped on bimanual interactions: navigating in a document, an
augmented virtual keyboard or map navigation interactions (pan and zoom).
BiPad additionally implements three predefined interaction techniques: bimanual
Taps, Chords and Gestures.

(a) (b)

(c) (d)

Figure 2.17: Bimanual interaction on a multitouch tablet with BiPad: a) BiPad interaction
zones for the non-dominant hand (which holds the device); b) navigating in
a document; c) switching to uppercase while typing on a virtual keyboard;
d) zooming a map. The non-dominant hand is holding the device and could
perform ‘taps’, ‘gestures’ or ‘chords’ in order to augment dominant hand’s
interactions.

evaluation Thanks to the BiPad toolkit, we studied bimanual interaction
with multi-touch tablets more thoroughly. As a first step, we designed the BiTouch
design space, an extension of Guiard’s “Kinematic Chain Theory” [Gui87] that
explicitly accounts for the support function while interacting with hand-held
devices. We have defined three dimensions, Framing, Support and Interaction,
which account for the different parts of the body that support the device, frame

http://insitu.lri.fr/Bipad
http://insitu.lri.fr/Bipad

32 from designing interaction to engineering interactive systems

the interaction and interact on the device (see details in [WHM12], p. 165

and [Wag12]). We used BiTouch as a tool to analyze the five holds and the
three BiPad bimanual techniques, and we conducted a controlled experiment as
a preliminary exploration of how our design space captures this impact of the
support.

We recruited 12 participants and asked them to perform a series of bimanual
Taps, Gestures or Chords, using the thumb or fingers of the non-dominant support
hand to modify the actions of the dominant hand. Tasks were performed while
standing, and we designed 30 unique bimanual conditions involving the three
BiPad interaction techniques, within the five possible holds and the two device
orientation, with an additional unimanual control task. We found that bimanual
BiPad techniques outperform the standard one-handed interaction for a similar
task, with slight differences according to the device orientation. We also found
that bimanual Taps were performing better than Gestures and Chords, and also
get the preference of the participants: this suggest to consider a trade-off between
simplicity (Taps) and expressive power (Gestures and Chords) when designing
tablet’s applications with such bimanual techniques. Regarding the BiTouch
design space, our results suggest some interesting preliminary observations on
the trade-offs when combining holds and orientations (thus changing the way
to support the device) with our BiPad techniques. For example, consideringÇtaps rock and support

matters performance, we observed that bimanual taps and gestures are significantly faster
in holds with thumbs on the side, compared to holds with fingers on the side.
In contrast, thumb on the side is perceived as less comfortable than fingers on
the side. If we examine thumbs and fingers, we see that holding the device with
the thumb on the side leaves only two joints available for interaction, whereas
holding it with fingers on the side has three. This suggests that performance will
be better with interaction techniques that offer a wider range of movement. We
also observed a major effect on tablet orientation in some conditions, depending
on the length of the support, e. g. the hand or the forearm, which results in a
“lever effect” on the device during interaction. Overall, this suggests possible
relationships between (i) performance and comfort, (ii) length and mobility of
the support link and (iii) device form-factor and distance between the support
and the balance point. Investigating these possible relationships by conducting
dedicated experiments would probably help to extend BiTouch and to increase its
predictive power, in order to inform the design of both new interaction techniques
and interactive devices.

2.3 interaction design challenges technology

This overview of the research projects I have worked on during the past years
highlights several of the methods and approaches we are adopting in HCI: design
of new interaction techniques to address specific problems, theoretical framing
of these designs and their empirical evaluations to validate their performance,
accuracy, usability, etc., but also, and more importantly, to get a better under-
standing of their use in order to inform future designs. These are the most visible
contributions of this research in several areas – pointing, desktop interaction,
mobile interaction –, the contributions that we have emphasized in the related
publications. However, this only the visible part of the iceberg, hiding the more
laborious one that made these contributions possible: their implementation. In fact,

Çthere may be more to this
than meets the eye

most of these new interaction techniques required tedious and intensive coding,
hacking, and sometimes pushing the limits of the underlying systems in order to
be implemented “for real”. Although our goal was not to develop final products,
but working prototypes that were precise enough to assess both the usability and

2.3 interaction design challenges technology 33

the feasibility of our approaches, they required a lot of engineering.

There is a long lasting interest and discussion in HCI about prototyping
methods and the kinds of prototypes to use when designing novel interfaces
and interaction techniques. Rudd et al. distinguish between two kinds of proto-
types [RSI96]: low-fidelity (Lo-Fi) prototypes, e. g. paper drawings7, video [MF99]
or computer mock-ups and storyboards, etc.; or high-fidelity (Hi-Fi) prototypes,
e. g. working computer interfaces and interactions, with some of the functionali-
ties of the final product being implemented or simulated. Beaudouin-Lafon and
Mackay give a deeper analysis of the nature of prototypes, which accounts for the
representation, the precision, the interactivity and the evolution of prototypes [BM07].
Regardless of the adopted design methodology, e. g. [EK84; BB95; MF97; CG04;
Bux07b; BM07; Mac08; BK11], even the higher-level ones rely on prototyping,
often throughout the whole design process and in different forms [BM07; LST08]:
paper, video, cards, software. The important point to consider is the prototyping
continuum in the design of interaction. Independently of varying definitions and Çprototyping in HCI

analysis of prototyping methods, designers and researchers in HCI agree that in
the early stages of design, rough prototypes have the advantage of being a useful
way to communicate and to iterate on a proof-of-concept at very low development
costs, helping to fix early issues [Bux07b]. The counterpart is that they have very
limited utility after the early stages of design, whether for evaluating the usability
or usefulness of the system, or for implementing the final version/product.
Conversely, precise and interactive prototypes have more functionalities (vertical
and/or horizontal) and a look and feel quite similar to the target product,
enabling more thorough testing and evaluations, and even sometimes reuse for
the final version. However, they are time-consuming to develop, requiring a lot of
technical efforts, and are de facto limiting iterative design [MHP00]. The solution
is then to adopt the right prototyping method at the right stage of the design,
according to the objectives and the available resources, sometimes reusing or
mixing prototypes at different “levels” for the next stage [McC+06].

During our projects, my collaborators and I have faced this tension between the
need for early rough prototypes for the exploration of design concepts, such as
the paper prototype for the AR note interface in section 2.2.3.1, and more precise
and functional ones for conducting quantitative and qualitative studies to evaluate
and understand the interactive phenomenons we had created. In addition, since
our intent was also to promote advanced interaction, high-precision computer
prototypes were a way to integrate these new techniques into working systems
and environments, pushing further the proof-of-concept to a proof of feasibility
and “existence”. In fact, although it may not be the current trend in HCI research, I
think that as researchers, we should also promote and demonstrate the integration
of our “inventions” in order to help progress towards “innovation” (referring
again to Buxton’s “long nose of innovation” [Bux08]). In a “perfect world of
interaction design”, building advanced prototypes should be as easy as building
rough ones, thus leveraging the benefits of both methods. But we are not there
yet, and there is still a long way to go, despite some promising advances in
that direction. Currently, building functional prototypes requires heavy coding
efforts and a deep immersion into underlying architectures (hardware, software,
languages and APIs), which is distracting from the primary objectives and time
consuming. Paradoxically, implementing such advanced interaction techniques
into real systems often relies on bricolage [TP92], tinkering and hacking, which
are more common practices of early prototyping.

7 And not design sketches which are coming before prototypes [Bux07b, p. 139].

34 from designing interaction to engineering interactive systems

As a result, designing and implementing advanced interaction techniques
often challenges existing technology, especially systems’ architectures (hardware
and software), models and patterns, and programming languages, APIs and
programming tools. As it was already observed by Olsen, “our existing system
models are barriers to the inclusion of many of the interactive techniques that have
been developed” [Ols07]. In the following section, from the lessons learned while
conducting these projects, I discuss their outcomes from a new angle, namely
from three different points of view that stress the advantages and disadvantages
of the most common situations where Interaction Design is Driven by Technology, In-
teraction Design is Constrained/Limited by Technology and Interaction Design Improves
Technology.

2.3.1 When Interaction Design Is Driven by Technology

Design of novel interaction techniques can be inspired or driven by some of the
characteristics of the targeted system or architecture. These might be features,
that are exploited in a beneficial way for improving interaction, but these can
also be limitations, which will thus influence the very early design of the new
technique. In the case of limitations, I do not mean that the objective of the newly
designed technique is to overcome these limitations, but that those limitations
will be considered while addressing another issue. TorusDesktop, the pointing
facilitation technique that I presented in section 2.1.1 p. 10 is a good example of
the latter, while the PushMenu (section 2.1.2, p. 13) illustrates the first case.

designing with limitations As I explained when I introduced Torus-
Desktop, pointing techniques can be classified in two categories: “target-aware”
or “target-agnostic” [Wob+09]. According to Fitts’ law [Mac92], artificially in-
creasing target size or reducing movement distance should improve pointing
time. Intuitively, this suggests that if a pointing facilitation technique is able to
adapt or give control to the user (implicitly or explicitly) on these parameters
of the task, it might improve pointing performance and accuracy. In turn, this
implies that to design and implement such a technique, one should be able to
know the potential targets. As a matter of fact, such target-aware techniques
are the most thoroughly investigated in the literature and are evaluated as the
most efficient ones, whether they control the target size [BGB04], the cursor
activation area [GB05; CLP09], distance to the targets [Bau+03], or even try to
predict the user’s targeted objects [Asa+05]. While these techniques were very
carefully designed and effectively improve the performance of targets acquisition
tasks, they all suffer a major drawback: they are very difficult to integrate into
current interactive systems, since they do not provide any open and simple
mechanisms to access and control potential targets. In fact, according to the
related publications and my knowledge of existing interactive systems, these
techniques were only implemented as ad-hoc prototypes, or with experimental
toolkits designed for advanced interaction (e. g. the DynaSpot technique [CLP09]
used the ZVTM toolkit [Pie05]). While the latter may help integration into specific
applications, it would not work at the system-wide level, for all applications. The
challenge is then to find a trade-off between studying the best design, which is
indeed one of our objective as researchers in order to get a better understanding
of interactive phenomenons, and studying the best “possible” design, which is
also necessary from a practical point of view.

Our methodology for designing TorusDesktop was thus to consider a target-
agnostic technique from the very beginning. First, because these kind of tech-
niques have not been studied as much as target-aware ones, probably because they

2.3 interaction design challenges technology 35

are more difficult to design in order to be efficient. Second, because we accounted
for the limitations of current desktop environments, which do not give easy
access to existing targets, applications and user intentions. Considering that target-
agnostic techniques can easily be integrated in real systems, even if the benefits
are smaller than with target-aware techniques in terms of performance, the actual
practical impact could be higher thanks to the system-wide implementation. This
partly motivated the design of TorusDesktop, which does not mean that the tech-
nique was easy to design, tune and implement, as explained in section 2.1.1. But it
was feasible “by design”, and in addition to our CHI ’11 publication [HCD11], it
resulted in a Mac OS X application that can be downloaded and used by anyone
in a standard desktop environment (see http://insitu.lri.fr/TorusDesktop).

Evaluation

DESIGN
OF INTERACTION
TECHNIQUES

Evaluation

ENGINEERING
OF INTERACTIVE
SYSTEMS

ÇInteraction Design leads
to evaluate Technology

designing for features Conversely, and this should be a more usual
situation, the design of interaction techniques can also be driven by specific
technologies and the advanced capabilities of some systems, as a means to
augment and improve interaction. These can be hardware or software features,
or both. Multi-touch devices, for instance, which were first released with a
limited set of interaction techniques, inspired many interaction designs such as
the bimanual BiPad interaction techniques presented in section 2.2.3.2, p. 30. In
the case of BiPad, the available technology inspired and made the design of
bimanual techniques possible, improving interaction efficiency with hand-held
tablets. Another example are pressure-enabled input devices, such as digitizer
pens or recent trackpads8. Originally designed for basic control of stroke size in
computer-based drawing tool, they were used early on to augment interaction
in a more general way. Pressure Marks [RB07], for instance, augment gesture
marks with pressure for triggering commands, and Ramos et al. further explored
a larger design space of pressure-based interaction with Pressure Widgets [RBB04].
I adopted a similar approach for the design of the PushMenu (section 2.1.2,
p. 13), by redesigning the well-known Marking Menu technique [KB91] to account
for an additional pressure input channel, thus increasing its capacity while
maintaining usability. Regarding software, system-level features are probably not
the primary source of inspiration to design advanced interaction. Higher-level
software technologies or toolkits are more likely to provide features that suggest
new designs. For example, ARToolKit9 or OpenCV10 have had a significant impact
on the implementation of tangible and vision-based interactions.

identifying the limitations of interactive systems Finally, many
interactive technologies are widely used despite some well identified techno-
logical or usability issues. An obvious example is the “desktop metaphor” and
its application windows paradigm, which is the basic User Interface (UI) of
today’s desktop computers. Despite a vast literature on the issues of window
management and the many tools for improving the situation, desktop interfaces
and interactions have not really changed over the past 30 years. This could be due
to the difficulty of integrating such improvements into standard environments,
as I already discussed earlier and that I will discuss again from the angle of
engineering in the next chapter (see section 3.3.3, p. 64). But the fact is that
designing new tools for fixing issues with a system first requires to identify
these issues and their causes, which are sometime underestimated, thus leading
to solutions that address only the surface of the problem. The study of left-over
windows and their causes that I presented in section 2.1.3, p. 17 illustrates this
approach. It gives insight into the way real users behave with existing technology,

8 See the Synaptics ForcePad™: http://www.synaptics.com/solutions/products/forcepad.
9 See the ARToolKit website: http://www.hitl.washington.edu/artoolkit/

10 See the OpenCV website: http://opencv.org/

http://insitu.lri.fr/TorusDesktop
http://www.synaptics.com/solutions/products/forcepad
http://www.hitl.washington.edu/artoolkit/
http://opencv.org/

36 from designing interaction to engineering interactive systems

identifying both the issues and the causes, which in turn gives insights into
limitations or missing functionalities of the system. While this is not directly
an influence of technology on interaction design as in the two previous cases,
such studies are paving the way for future designs. As a side note, one should
also consider the technical difficulty for conducting such field studies in real
environments, that I will address later in the section 3.3.2 of the next chapter.

2.3.2 When Interaction Design is Constrained by Technology

In the previous section, I discussed situations where system limitations inspired
a design for solving a particular problem, or avoiding these limitations while
addressing a different one. Conversely, technology can constrain or limit possible
designs. The design and implementation of the mobile interaction techniques
presented in section 2.2, p. 19, illustrate this case. Beyond the specificities of
mobile interaction, in terms of usage and usability, these platforms are also very
constraining in terms of technology, especially at the time where I conducted
this research: limited computing resources (CPU and memory), relatively poor
graphical capabilities (no GPU or high-level graphical API), advanced but not
always robust input technologies (reliability of touch sensors, accelerometers,
etc.). Even nowadays, despite the obvious technological improvements of mobile
platforms, there are still limitations with related software and development tools.
In fact, although they are more specialized, mobile operating systems and devel-
opment APIs are very close to those of standard computing platforms (desktop or
laptop computers): encapsulated and controlled access to low-level resources such
as input sensors; limited possibilities for implementing system-level interaction
techniques (no access to the UI of the system or existing applications); very
constrained development environments and APIs. While these restrictions ensure

Evaluation
Revision

DESIGN
OF INTERACTION
TECHNIQUES

ENGINEERING
OF INTERACTIVE
SYSTEMS

ÇInteraction Design leads
to revise Technology

the homogeneity of interfaces and the respect of good practices and guidelines
when implementing applications11, they strongly restrict the possibilities for
designing new interactions, leading to revisions of the technology.

We faced many technical challenges during the design of the mobile pointing
techniques and list manipulation techniques of section 2.2. First, implementing
advanced graphics on the Windows Mobile 5 platform required pushing the limits
of its very low-level and basic graphics API. A higher-level library, defining more
advanced graphical objects and methods such as those of standard toolkits, e. g.
Java2D, would have save a lot of time. It also required serious code optimization
in order to make the technique and animations interactive, because of the limited
graphical hardware and memory of the platform. For example, for the the
graphics of SpiraList and SnailList in Figure 2.12, we had to implement lookup
tables to optimize the computation of color gradients, transparencies, etc. We
implemented these tools into a toolkit, which eased the implementation of further
prototypes. But it was a constraint which could have limit our original design.
Beyond these issues, the TapTap and MagStick pointing techniques also raised
the problem of “integration”. In fact, it would have been of great value to test
these two techniques within real applications. But even though the platform
was enabling system-level implementation of “InputMethods”, it only consists
in extended input panels for text entry. Both of our techniques were far more
advanced, requiring to intercept touch events in order to create pointing events
and, above all, to add complementary graphical feedback during interaction (see

11 See Apple’s iOS Human Interface Guidelines: http://developer.apple.com/library/ios/

#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html and
Google’s Android Design: http://developer.android.com/design/index.html

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introduction/Introduction.html
http://developer.android.com/design/index.html

2.3 interaction design challenges technology 37

Figures 2.10 and 2.11). This was unfortunately impossible, and we ended up with
custom incomplete re-implementations of some standard applications in order
to test our designs. Contrary to graphical hardware and APIs for mobile devices
which are more advanced now, these issues with system-wide input management
and access to applications interfaces still remain and we faced them again while
developing the BiPad interaction techniques (see section 2.2.3.2, p. 30).

gliimpse prototype Finally, another project that illustrates many of the prob-
lems we can encounter while designing and implementing advanced interaction
techniques is the Gliimpse markup language editor (section 2.1.3, p. 18). Gliimpse
enables smooth transition between markup or text formating language editor
and rendered documents in the same window. Our objective, while designing
Gliimpse, was to demonstrate the usability and the feasibility of the approach
with commonly used formatting languages: HTML, Wiki markup, RTF and LATEX.
Rather than conducting an empirical study, which would have required to define
an experimental protocol from scratch since formal evaluations of such techniques
are not common, the purpose of this implementation was to let users “feel
and experience” the usefulness of the technique, by testing it in an editing
environment as close as possible to a real one. But the trade-off was again to
balance between the precision and interactivity of the prototype [BM07]: a basic
software mock-up within an environment such as Adobe Flash would have enabled
us to define simple predefined animations with fake code, but would have not
supported free editing of the text with background generation of the resulting
document and the real-time animation of custom content. While technically more
challenging, the latter option was for us the best way to assess the potential and
the feasibility of the approach.

We chose to implement a prototype in Java (see the details in our paper [DHC11]
(see full article p. 159)). First, smoothly animating between graphical objects of
different natures – e. g. groups of glyphs rendered with various fonts and sizes,
pictures, graphical objects or form components – required the implementation of
several non-trivial computer graphics algorithms. This was to be expected, since
these features were at the core of the technique. However, the main challenge was
to determine the actual mapping between the objects to animate, i. e. the text of the
editing window and the resulting text and objects of the rendering window. This
mapping should be at the character level, in order to create precise and smooth
animations. We were expecting to be able to retrieve the mapping by inspecting
the views (with an accessibility API) and to link this information with the output
of the language interpreters (HTML or Wiki code interpreter, or LATEX compiler).
While this is close to our actual solution, the implementation turned out to be
much more complicated than we expected.

Figure 2.18 illustrates the problem. It shows the relationships between the
edited text (T0), the code view (V0), the document view (V1) and the document in
raw text format (T1). XAYB denotes a function that maps subsets of XA to subsets
of YB. The mapping function V0V1 is the one needed to compute animations
between V0 and V1 (collections of glyphs and other graphical objects with all the
information needed to render them individually, e. g. bounds, font, etc.), which
no programming library or API provides. In order to reconstruct this mapping, we
had to determine many other intermediate mappings because of the limitations
of both programming toolkits (Java’s inspection API) and languages interpreters
or compilers: T0V0, the mapping between the source code and its rendering in the
text editor; T0T1, the mapping between the source code and a raw text version ÇIs this Interaction Design?

of the final document; and T1V1, the mapping between the raw text version of

38 from designing interaction to engineering interactive systems

\documentclass{article}\n\usepackage{times}\n\n\
begin{document}\n\n\title{The Unsuccessful Self-
Treatment of a Case of ``Writer's Block''}\n\n\a
uthor{Dennis Upper\\\nVeterans Administration Ho
spital, Brockton, Massachusetts}\n\n\maketitle\n
\n\end{document}\n\n

The Unsuccessful Self-Treatment of a Case of\n «
Writer's Block»\nDennis Upper\nVeterans Administ
ration Hospital, Brockton, Massachusetts\napril
18, 2011\n1

V0 V1

\documentclass{article}\n\usepackage{times}\n\n\
begin{document}\n\n\title{The Unsuccessful Self-
Treatment of a Case of ``Writer's Block''}\n\n\a
uthor{Dennis Upper\\\nVeterans Administration Ho

T0
The Unsuccessful Self-Treatment of a Case of\n «
Writer's Block»\nDennis Upper\nVeterans Administ
ration Hospital, Brockton, Massachusetts\napril

T1

V0V1

\documentclass{article}\n\usepackage{times}\n\n\
begin{document}\n\n\title{The Unsuccessful Self-
\documentclass{article}\n\usepackage{times}\n\n\
begin{document}\n\n\title{The Unsuccessful Self-

T0V0 T1V1

T0T1

T0V
1

Code View Document View

Raw TextMarkup Code

Re
nd

er
in

g

Animation

Figure 2.18: Gliimpse. Mappings between the code (T0), its view (V0), the document view
(V1) and its text version (T1).

the document and the document view. Obtaining these mappings also required
to overcome many technical challenges: extending inspection mechanisms for
T0V0; implementing a custom document rendering view to help maintaining
T1V1 and to enable animation rendering (especially for LATEX to PDF documents);
implementing custom source interpreters and “diff” algorithms to get T0T1.
By composing these mappings, our prototype accurately rebuilds the character
mappings between markup code and the raw text version of simple documents.
It is however not robust enough for a final product: duplicate text regions
and complex mappings can defeat the “diff” algorithm and cause document
regions to be either incorrectly animated or not animated at all. As a temporary
solution, we implemented a T0T1 mapping editor that can be used to author more
complex sample demonstration scenarios, but it defeats our initial objective of a
fully automated approach. Our Gliimpse prototype is usable for experimentation
purposes and to demonstrate the approach. It also highlights some technical
issues that could inspire the implementation of more accurate, robust and usable
APIs for the exploration of similar preview methods. This leads to the last part of
this section, discussing situations where the design of new interaction techniques
helps revise and improve technology.

2.3.3 When Interaction Design Improves/Extends Technology

The last situation is when the technological issues raised while designing novel
interaction techniques inform on the weaknesses and limitations of the tech-
nology. The solutions implemented for ad-hoc prototypes sometimes lead to
more general tools that, beyond the original design itself, can be reused to
facilitate other designs by solving some of the technological issues of the system.
Taking again the example of multi-touch technologies, many protocols and
frameworks for implementing advanced multi-touch interaction techniques come
from specific needs in interaction design, e. g. the TUIO protocol [Kal+05] that
enables abstraction and network connection of multi-touch devices and tangible
interfaces, the Proton framework [Kin+12b; Kin+12a] that facilitates the design
and recognition of multi-touch gestures, and many more tools and toolkits
dedicated to extend systems to support multi-touch technologies. The toolkit for

Evaluation
Revision
Extension

DESIGN
OF INTERACTION
TECHNIQUES

ENGINEERING
OF INTERACTIVE
SYSTEMS

ÇInteraction Design leads
to Extend Technology

2.3 interaction design challenges technology 39

developing advanced mobile interaction techniques mentioned in section 2.3.2
lies in this category, as well as the BiPad toolkit for bimanual interaction on multi-
touch tablets (see section 2.2.3.2, p. 30), and our Rhythmic patterns recognizers
(section 2.1.2, p. 14). The BiPad toolkit addresses only a few technological
limitations, but its advantage is to promote our novel interaction method: The
toolkit could help researchers and interaction designers to develop new bimanual
interaction techniques and to integrate them (or the ones shipped with the toolkit)
into their applications. Additionally, it also facilitates replication by giving the
opportunity to reuse the actual implementation of our techniques as a baseline for
comparison and evaluation of future designs, which is an important issue in HCI

when conducting controlled experiment: One often has to re-implement former
techniques that are not always described finely enough in academic publications,
thus leading to uncertainties in the implementation and potential flaws in the
experiments [Mac+07]. I will discuss this issue in more details in the section 3.3.2
of the next chapter.

Overall, beyond testing the techniques, the development of precise and func-
tional interactive prototypes informs on possible technical issues, and can also be
useful as a reference implementation for a more complete version. It can also
result in an abstraction of several tools with the same purpose implemented
in a toolkit that extends technology and developers possibilities [BM07; Gre07;
Ols07]. As observed by Greenberg, “iterative prototyping would be far easier if
we took the time to build a robust toolkit. [...] This often meant that we had to defer
work on our main human factors goal” and concluding that “the payoff ” is “rapid
prototyping” [Gre07]. However, prototypes implementations are most of the time
very specific, addressing many technical issues, and the code is unlikely to be
reused at a larger scale (e. g. in applications or in future toolkits).

2.3.4 Revisiting Interactive Technologies

Actual relationships between interaction design and UI technology are obviously
not as simple as described above, and can certainly not be summarized by these
three situations only. These situations are likely to overlap and to be intertwined
during the design process of a novel interaction method. Our study of bimanual
interaction on multi-touch tablets, for example, is a case where both “designing
for features” and “improving technology” (toolkit-level implementation) were
considered. However, the analysis of these simple situations already provides
interesting insights. First, and not surprisingly, interaction design is influenced by
technology. It can be a positive influence, taking advantage of specific features (e. g.
pressure sensing) or even of some limitations that open different perspectives for
design. It can also be a negative influence, when technology constrains the initial
design, making it difficult to prototype/implement. Overall, this leads to a kind
of retrospective evaluation of what can be achieved with a given technology, of
its “possible”. Because advanced interaction often pushes the limits of technology
and is often based on unintended and unexpected uses of existing systems, it
makes it easier to assess these possibles, beyond what was already expected and
documented when the technology was first created. This leads to the second
outcome of this discussion, i. e. that interaction design helps extend technology,
by identifying possible revisions to address the encountered limitations/issues,
and by suggesting or even implementing the related improvements.

A good example of this intertwined situation is, again, touch technologies.
Touch sensing opens new possibilities for design but also limits these possibilities
because of hardware constraints and user capabilities, as mentioned in sec-

40 from designing interaction to engineering interactive systems

tion 2.2.1. Sensor precision, occlusions and the “fat finger” problem are major is-
sues that have driven research in this area and generated the design of alternatives
to the more natural but imprecise direct touch, e. g. offset cursor [PWS88], our Tap-
Tap and MaggStick techniques [RHL08], multi-finger and bimanual techniques for
precise selection [BWB06]. These innovations have significantly improved touch-
based interaction, but recent research has investigated how to overcome these
limitations by improving the sensing technology itself, with for example finger-
prints recognition [HB10], or better understanding of touch interaction [HB11].
Over time, we can observe an evolution from design for “features” and with
“limitations”, leading to an evaluation of the “constraints” of the technology and
to “revision” and “improvement”.

The evaluation of UI systems and technologies has been discussed extensively
in the literature, pointing out the need of adapting the evaluation tools and
methodologies to the problem at hand. Olsen [Ols07] has assembled a set
of criteria into a framework for the evaluation and comparison of interactive
systems. But depending on the problems and situations being considered, and
simply because of the varying knowledge that designers/developers have of a
given technology, these “measures” might be hard to assess a priori, and many
issues might arise too late in the design process (e. g. while prototyping). A
real progress would be to make such evaluations possible a priori, or at least in
better coordination with the design process, especially during its early stages,
in order to better inform the design. This would however require to rethink
interactive technologies (i. e. systems, toolkits and associated tools) to better
support advanced interaction (a long quest in HCI), to better disclosure their
capabilities, and thus to better support interaction design.

The next chapter, after presenting some of my research work in engineering of in-
teractive systems, will continue this discussion by addressing the complementary
issue of how “Engineering Unleashes Interaction Design” (section 3.3).

“The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong it usually turns out to be impossible to get at or repair.”

Douglas N. Adams – Mostly Harmless (1992) [Ada92].

3
F R O M E N G I N E E R I N G I N T E R A C T I V E S Y S T E M S T O
D E S I G N I N G I N T E R A C T I O N

Technology has some positive and negative effects on the design process depend-
ing on whether the required technology is available, accessible, adapted or not.
From the Interaction Design perspective, technology is often challenged, and rarely
provides the adequate tools to prototype, test and implement new designs. This
new point of view on my research revealed the importance of this “hidden part
of the iceberg” of interaction design for most, if not all, of the projects I have
worked on. This chapter takes a deeper look at the underwater part of the iceberg
– technology and, in particular, Engineering of Interactive Systems – to illustrate how
it bears the tip of the iceberg – interaction design.

New UI toolkits often emerge once a specific problem has been explored with
ad-hoc prototypes, and a set of tools has been built to abstract it out [Gre07], e. g.
WIMP interfaces [MA88], zoomable interfaces [BH94; Pie05], groupware [TG04],
mark- or ink-based interaction [HL00; AZ09], state machines support [BB06;
AB08], multimodal interaction [BNG04; HDS11], multiple input support [DF04;
CLV07; KRR10], multi-touch [Kin+12a]. For example, during my Ph.D., I ad-
dressed many technical issues to study novel interaction techniques for architec-
tural design, which was my main research topic [Huo05]. Over time, many of the
software tools that I implemented proved to fit together in a consistent framework
for the prototyping and implementation of multi-input post-WIMP interaction. It
became the MaggLite [Huo+04a] toolkit and its Mixed-Graphs model [HDD06],
and eventually the major contributions of my Ph.D. work. This specialization
of software tools for advanced interaction highlights an important technological
need: “using the right tool for the right task”. Designing interaction with the

41

42 from engineering interactive systems to designing interaction

wrong technology is like “driving a nail with a screwdriver”: it can have bad
consequences on the design process (as discussed in section 2.3.2), but also
on the designer! Conversely, we should also be cautious with toolkits that

Çthe right tool for the right
task

address too many purposes, as they can lead to sub-par solutions and to an
unmanageable complexity (in terms of use and maintenance). The challenge is
then to determine the right level of granularity for the set of problems that a
toolkit addresses, without sacrificing its generality [Ols07]. But most of all, since
designing novel interaction techniques is by nature exploring a design space and
often leads to combine paradigms and technologies, modularity and interoperability
are important requirements for UI technology that supports interaction design. For
instance, can a designer/developer easily implement a novel zoomable interface
with the ZVTM toolkit [Pie05], describe its interaction logic with state-machines
through the HSM toolkit [BB06] and support mark-based [AZ09] and multi-
touch [Kin+12a] input?

Following the same approach as in the previous chapter, this chapter discusses
this relationship between Engineering and Interaction Design through examples
after reporting on my research work in the field of software architectures and
tools for interaction. In the last section, I demonstrate that one should consider
the specificities of interaction design when engineering new technologies.

3.1 unifying two models for describing and programming inter-
action

A common problem in programming interaction is that handling input devices
and describing the “logic of interaction” is mostly based on “callbacks”, pro-
cedures that are triggered in reaction to events (from input devices, system,
application, etc.). These callback procedures, usually implemented with listeners
or delegates in object-oriented languages, result in an entanglement of procedure
calls that makes the code of interactive applications difficult to understand,
modify and maintain [Mye91]. It also introduces a high level of indirection
between how interaction techniques are commonly thought of or described, and

Çthe spaghetti incident the way they are implemented: in fact, we are more inclined to think about
“interaction” in terms of states and transitions between these states than in terms
of reactions to events. State-transition formalisms are often used in the literature
as a means to abstract and present interaction techniques [Bux90; HCS98]. Finally,
if we consider the lower level of input management, the current events/callbacks
approach is most of the time rigid, requiring to bind inputs with the interaction
logic of the application in a static and quasi-immutable way [DF04].

beyond the standard event-driven architecture Many solutions to
improve interaction programming beyond the event-driven architecture exist, and
among the approaches that have been proposed so far, we can identify three main
trends: improved event-based mechanisms, state-based paradigms and data-flow models.

Some architectures have improved over the basic event-based mechanisms.
The subArctic [HMS05] toolkit, for instance, redefines the dispatch policy of
events and makes it more controllable by the developer. Garnet/Amulet [Mye+90;
Mye+97] introduced the concept of “Interactors”, high-level objects that reify
interaction techniques by intercepting events and transforming them into higher
level operations on graphical objects. While they improve the development of
standard WIMP interfaces and interactions, these approaches do not really enrich
the interaction vocabulary. In addition, these toolkits are relatively opaque for the
programmer, making it difficult to improve or extend them.

3.1 unifying two models for describing and programming interaction 43

State-transition paradigms have proven to be a good, or at least useful, way to
describe interaction techniques in the literature [Jac85]. In terms of interaction pro-
gramming, state-transition approaches focus only on the states of the interactive
system and consider only the external events that are relevant to the current state.
This makes interaction the first-class object [Bea04]. Description and programming
are more declarative, as well as more compact, clearer and more explicit than
programming callback functions for every possible event and managing the
state of the system with global variables. State-transition paradigms have been
successfully used in toolkits such as PetShop, with the ICO formalism [BP99]
that relies on Petri nets for specifying interaction, hsmTk [BB06] which introduces
hierarchical states machines in C++, and SwingStates [AB08] which extends the
Java language for defining state machines as control structures.

Data-flow approaches, on the other hand, are based on a cascade of processing
devices, inspired by reactive languages. These approaches are highly modular,
since processes and actions are encapsulated in independent bricks that only
exhibit their inputs and outputs. The data-flow model makes it easy to describe
sequential and parallel processing, and is well adapted to visual programing.
Originally, it was mostly used for image, video or sound processing [Cyc; Mes] or
for prototyping 3D interfaces and interactions [Das], but it was also successfully
applied to advanced interaction: e. g. ICon [DF04] and Squiddy [KRR10]. It is
now even used in the standard WIMP toolkit Qt1, as an alternative to callbacks.
The fine level of granularity of the data-flow model has obvious advantages in
terms of modularity and flexibility. Its major drawback for describing interaction
is however that some behaviors can become very complex to describe, especially
if they include a lot of control such as conditional treatments and modes.

In summary, data-flow is well adapted to the description of low-level dynamic
connection between input/interaction channels and logical components of appli-
cation, but it does not scale well for describing states and modes. Conversely, state
machines are well adapted to the description of the logic of interaction, but in a
more static way. Combining both should increase flexibility and expressiveness
when programming interaction. This is what we experimented with FlowStates2.

flowstates FlowStates [App+09] (see full article p. 132) combines the data-
flow and state-transition paradigms of the ICon and SwingStates toolkits. In
FlowStates, ICon handles low-level events e. g. from input devices. ICon modules,
which are normally connected to an application [DF04] or a scene-graph [Huo+04a],
are linked to SwingStates state machines by forwarding the signals they receive
from their input slots as high-level abstract events that in turn trigger transitions
between states. State machines then call application functions, e. g. to update the
graphics or change the underlying data, through the actions associated to their
transitions (see Figure 3.1). State machines can also inject abstract events into the
data-flow and be disconnected from the rest of the application, which supports the
combination of interaction techniques as suggested by the Instrumental Interaction
model [Bea00].

This three-layer model (input devices, interaction logic and application objects)
combines the benefits of each model for processing events at different levels of
abstraction. The associated styles of specification – i. e. visual language for ICon

and imperative language for SwingStates – address different issues: input devices

1 see Qt website: http://qt-project.org/.
2 FlowStates is a collaborative work with Caroline Appert (CNRS-in|situ|), Pierre Dragicevic (Inria-

AVIZ) and Michel Beaudouin-Lafon (Université Paris-Sud-in|situ|).

http://qt-project.org/

44 from engineering interactive systems to designing interaction

Figure 3.1: Example FlowStates configuration. Low-level ICon devices – keyboard and
pointer – are connected to interaction devices – trackingMenu, pan and zoom –
implemented with SwingStates state machines. The Events layer shows custom
FlowStates events that trigger state machines’ transitions when the appropriate
slots of an ICon device are updated.

might change and need to be reconfigured often, while the logic of interaction
is more stable and tied to the application [92]. However, we designed FlowStates
in such a way that the frontier between the two models is not frozen, giving the
programmer complete control over which model to use for each purpose.

Figure 3.2 shows a simple example of a FlowStates code construct. It uses
an extended syntax derived from SwingStates, allowing to specify state machines,
transitions and abstract events. As we can see in the figure, each instance of the
IConStateMachine class will be instantiated into a corresponding ICon device
(the “zoom” and “pan” state machines of Figure 3.2). Transitions that are defined
inside a state machine are bound to groups of input slots in the corresponding
data-flow processing device, according to the event class which is responsible for
triggering the transition (the “Zoom” group of slots of the “zoom” state machine).
Finally, input slots are derived from introspection of the transition event classes:
an input slot is created for every pair of setSlot/getSlot methods defined in a
transition class (the setSlotDZ and getSlotDZ of the “Zoom” event class).

In practice, when the generated device will be connected inside of a running
ICon configuration, the FlowStates engine will generate instances of the corre-
sponding events each time an input slot is updated. This event will be propagated
to the linked state machine which will then update its state accordingly, as shown
in Figure 3.1. This very simple code snippet illustrates the basic principles of
FlowStates. More complete constructs that demonstrate extended features and
possibilities can be found in our paper [App+09] (see full article p. 132). In par-
ticular, we have shown that FlowStates can be used to simply implement state-of-
the-art interaction techniques such as the “Tracking Menu” [Fit+03]. Not counting
the code of the graphical part of the technique, the FlowStates implementation
consists of about 30 lines of code to describe the behavior of the technique
(see Figure 3.3). Besides this relative simplicity and expressiveness, it makes the
technique generic and easily reusable in other applications simply by plugging the
generated ICon device into input devices or methods in a data-flow configuration
at run-time. Moreover, it improves the level of control and customization of the
technique by supporting a large variety of input devices, and even changing some
of its behavior: for instance, in [App+09], we easily transformed the tracking

3.1 unifying two models for describing and programming interaction 45

public class Zoom extends IConEvent {
 protected double dZ;
 public void setSlotDZ(double dz) { dZ = dz; }
 public double getSlotDZ() { return dZ; }
 public boolean occurs() { return dZ > 0; }
}

new IConStateMachine(”zoom”, canvas) {
 State idle = new State() {
 Transition zoom = new Event(Zoom.class) { ... };
 };
}
new IConStateMachine(”pan”, canvas) {
 State idle = new State() {
 Transition pan = new Event(Pan.class) { ... };
 };
}

public Pan extends IConEvent {
 private double dX;
 private double dY;
 public double getSlotDeltaX() { return dX; }
 public double getSlotDeltaY() { return dY; }
 public void setSlotDeltaX(double dx) { dX = dx; }
 public void setSlotDeltaY(double dy) { dY = dy; }
}

STATE MACHINE
'ZOOM'

STATE MACHINE
'PAN'

EVENT
'ZOOM'

EVENT
'PAN'

DEVICE
'ZOOM'

DEVICE
'PAN'

Figure 3.2: Basic FlowStates code constructs. IConStateMachine classes are instantiated as
ICon device prototypes. Event classes that trigger state machines transitions,
are instantiated as groups of ICon slots and added to the devices of the state
machines that are using them.

menu into a “Trailing widget” [FVB06] by simply connecting an inertia processing
device to the values that are sent to its positional input slots. Finally, thanks to the
possibility of injecting outputs of the state machines into the data-flow through the
output slots of the processing devices, several state machines can be dynamically
connected and reconnected together. This makes it possible to decompose the
logical part of an application into several small and reusable blocks.

While FlowStates is not the first and only “hybrid” attempt to combine state-
oriented and data-flow paradigms – e. g. PMIW [JDM99], ICon+PetShop [Nav+06],
IntuiKit [CLV07] or StateStream [HP09] – it is probably the most integrated one
while at the same time letting the programmer decide which model to use in each
particular case. The “link” between state-transition and data-flow paradigms can
be instantiated by the developer closer to the toolkit or closer to the application.
For instance, the Pan and Zoom devices and their associated state machines in
Figure 3.1 are closer to the application logic, since they define some parts of
its functionalities (pan and zoom). Conversely, the trackingMenu is closer to the
toolkit, since it does not define any part of the application logic but a standalone
interaction technique. This provides a controllable level of granularity to the
developer, an approach that is particularly modular and opens many possibilities
for prototyping new interaction techniques that can be changed and combined
together and with various input devices or methods at runtime.

46 from engineering interactive systems to designing interaction

 1 IConStateMachine smTrackingMenu = new IConStateMachine("trackingMenu", canvas) {
 2 MenuItem currentItem;
 3
 4 State outOfRange = new State() {
 5 Transition startTrackingInMenu = new SwitchOnTag(MenuItem.class, InRange.class, SWITCH_ON, ">> tracking") { };
 6 Transition startTrackingOutMenu = new SwitchOnPosition(InRange.class, SWITCH_ON, ">> tracking") {
 7 public void action() { menu.showMenu(getPoint()); }
 8 };
 9 };
10 State tracking = new State() {
11 Transition stopTracking = new Switch(InRange.class, SWITCH_OFF, ">> outOfRange") { };
12 Transition startControl =
13 new SwitchOnTag(MenuItem.class, Control.class, SWITCH_ON, ">> touching") {
14 public void action() { currentItem = (MenuItem)getTag(); }
15 };
16 Transition moveOutMenu = new EventOnPosition(InRange.class) {
17 public boolean guard () {
18 double d = menu.getCurrentPosition().distance(getPoint());
19 return d > menu.getRadius();
20 }
21 public void action() { /* compute dx, dy */ menu.moveBy(dx, dy); }
22 };
23 };
24 State touching = new State() {
25 Transition stopControl =
26 new SwitchOnPosition(Control.class, SWITCH_OFF, ">> tracking") { };
27 Transition control = new EventOnPosition(Control.class) {
28 public void action() { /* perform action associated with current menu item */ }
29 };
30 };
31 };

// events classes
public class InRange extends IConPositionSwitchEvent { }
public class Control extends IConPositionSwitchEvent { }

Figure 3.3: Tracking Menu implemented with FlowStates. The state machine describing
the behavior of a “Tracking Menu” (from [Fit+03]) and the corresponding
FlowStates code. On the right, the ICon device which will be automatically
generated in order to control the state machine.

3.2 distributed graphics and interaction in multi-surface envi-
ronments

The “Personal Computer”, whether it is a standard desktop/laptop computer or a
mobile device, is still the norm for the vast majority of users of interactive systems.
Since the late 90’s, these devices access remote or distributed data more and more
often, e. g. web pages, databases, multimedia resources. However, during the past
decade, we have witnessed a progressive swift from “data-only” distribution, to
a richer but more complex distribution of computing resources. From the user’s
point of view, we can identify two main trends. The first one is commonly called
Cloud Computing: while the user is still interacting with her personal client
device, she makes transparent use of distributed services, such as data, storage,
applications, computing power, etc. This “evaporation” of computer functional-
ities has many advantages, including enabling interaction with anything from
anywhere with any device, freeing users from hardware and location constraints,
and improving distant collaboration by facilitating the sharing of resources. ItÇtowards the distribution

of interaction also raises many technical (e. g. infrastructure, security, performance, scalability)
and usability (e. g. accessibility, awareness, privacy, reliability) problems that I
will not discuss here 3. The second trend, which is more central to my research,
concerns the distribution “across” end-user devices, and relates partly to the
concept of Ubiquitous Computing [Wei91]. Here, applications, and interaction,
can be split across multiple devices that the user will operate simultaneously or
in sequence. Whether they are called “multi-devices”, “multi-surface”, “smart”,
“ambient” or “interactive” environments, they all share the same concept of
multiple interconnected input and output devices that cooperate seamlessly and
must be combined together for the user to accomplish tasks. Again, the concept
of such environments is not new and emerged several decades ago [Wei91], but
recent technologies – e. g. display, input, network – made deeper exploration
possible only recently.

Multi-surface environments, as I will call them in the following, have been
the subject of much research in HCI, addressing both interaction design and

3 See for example the recent (2012) report from the “CLOUD Computing Expert Working
Group” of the European Commission (http://cordis.europa.eu/fp7/ict/ssai/docs/
future-cc-2may-finalreport-experts.pdf).

http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf

3.2 distributed graphics and interaction in multi-surface environments 47

engineering. Noticeable breakthroughs in terms of interaction include Rekimoto’s
Pick-and-Drop [Rek97] and Augmented Surfaces [RS99], Dynamo [Iza+03], which
supports multi-user data sharing across multiple surfaces. More fundamental
studies have investigated e. g., pointing [Nac+06] or perception [Nac+07] in multi-
surface environments. For technology and engineering, which are the primary
concerns of this section, the issues of modeling, designing and implementing such
interactive systems and their interaction techniques, was addressed by several
research fields, with different perspectives: Distributed & Parallel Computing,
Computer Graphics, Software Engineering, and of course HCI. Before giving a
short overview of the state of the art of this research area and summarizing my
own contributions, I briefly describe the WILD platform, which was developed in
the in|situ| group as a testbed for conducting this research.

3.2.1 The WILD Project

Wall-Sized Interaction with Large Datasets (WILD) was a project initiated by
Michel Beaudouin-Lafon and coordinated by Emmanuel Pietriga, involving
three research groups: in|situ|, Inria-AVIZ and LIMSI-AMI. The main objec-
tive was to design an interactive platform for studying both single-user and
collaborative visualization and manipulation of massive datasets. The motto
of the project was “to design an extreme environment for designing with ex-
treme users”, a platform which, by pushing the limits of both hardware and
software technologies for highly demanding working conditions, would inform
the design of future interactive systems. Several laboratories from the Paris-
Saclay campus – astrophysics, particle physics, chemistry, molecular biology,
neuroscience, mechanical engineering, and applied mathematics – were invited
as associate partners, since their research activities require a large variety of tools
and techniques to manipulate and understand massive and complex scientific
datasets. We conducted workshops with them as potential end-users, discussing Ça platform for scientific

explorationand investigating relevant interactive tools to support their work-flow in such
an environment. As summarized in our recent IEEE Computer paper [Bea+12],
the outcomes of the project – which ended in 2012 but is now continued as
part of the larger Digiscope project – range from fundamental HCI to novel
interaction techniques (see for example Mathieu Nancel and Julie Wagner

Ph.D. theses [Nan12; Wag12] and related publications), and from design methods
to engineering of interactive systems (see the Shared Substance [Gje+11] and
jBricks [Pie+11] frameworks described below).

The WILD Room is a multi-surface environment arranged around a wall-sized
display as its central component (see Figure 3.4). This display is a tiled surface
made of 32 30-inch high-resolution LCD monitors (Apple Cinema HD) arranged
in a 8×4 grid for a total of 131 million pixels (20480 x 6400). The screens are
mounted on four independent mobile carts that make it possible to change its
spatial configuration (flat or “curved”) The resulting 5.5m wide by 1.8m high
“wall” is driven by two front-end computers and a cluster of 16 computers
with two high-end graphic adapters each: each computer drives two screens. A Çinto the WILD

defining characteristic of WILD is its very high pixel density (about 100 dpi),
which is rare on wall displays, most commonly made of rear-projected panels
(for a pixel density of 30 to 60 dpi). Another characteristic that most other wall-
sized display miss, even larger ones such as UCSD’s HIPerWall is interactivity:
WILD also features a high-end marker-based motion tracking system with 10

infrared cameras. The system has very low latency and a precision of less than one
millimeter, enabling accurate 3D tracking of users, devices, as well as advanced
mid-air interactions. A 1920×1080 FTIR interactive tabletop that can sense up

48 from engineering interactive systems to designing interaction

to 32 contact points, with RFID capabilities, allows several users to collaborate,
manipulate and exchange data with the wall (see Figure 3.4). Finally, various hand-
held interaction devices are available – e. g. gyroscopic mice, wiimotes, multi-
touch smartphones and tablets, Anoto pens, physical props –, while the platform’s
wireless network provides users with a way to connect and use their own personal
devices (laptops, smartphones, tablets, etc.). Beyond designing new interaction
techniques (interactive visualization of large datasets, collaboration over multiple
surfaces and devices) and working with scientists as end-users (specific work-
flows and methodologies, personal habits, limited availability), WILD raises a
number of software engineering challenges [Bea+12].

(a) Wall display and tracking system (b) Hand-held devices (c) Collaboration

Figure 3.4: WILD is a multi-surface environment designed for studying collaborative
visualization and manipulation of massive datasets. It is made of a high-
resolution tiled display with 32 30-inch monitors arranged in an 8×4 grid for
a total of 131 million pixels (20480 x 6400), a high-end tracking system with 10

infrared cameras, a 1920×1080 FTIR interactive table, and a variety of hand-held
interaction devices: gyroscopic mice, PDAs, tablets, etc.

3.2.2 Technical Issues of Distributed Graphics and Interaction

The applications shown in Figures 3.4b and 3.4c illustrate some of the technical
issues encountered in such environments. High resolution enables high-quality
2D graphics, opening wall-sized display platforms such as WILD to new appli-
cations, e. g. in astronomy, geospatial intelligence and visual analytics at large.
These applications essentially combine very large bitmap images, high-quality
text and 2D vector graphics, e. g. satellite imagery augmented with data layers (see
Figure 3.4b), or information visualization techniques for displaying large datasets,
e. g. for the visual exploration of large networks, or the comparison and analysis of
similar data (see Figure 3.4c). In Figure 3.4b, the user is using a multi-touch tablet
to interact with high-resolution images of astronomical data displayed on the wall
display. The hand-held device could be used to manipulate the pictures (panning
and zooming), but also to apply filters (e. g. colors, frequencies) in order to explore
the dataset. The example of Figure 3.4c involves two users in a collaborative
task. They analyze and compare 3D models of Human brain scans (e. g. tagged
sulci, connections, pathologies), which are displayed on both the wall display and
the interactive table. The user in front of the wall takes advantage of the high
resolution of the wall display to make precise observations and comparisons. He
can manipulate the displayed 3D brains by moving a plastic brain in his hand.
The orientation of the brain is tracked by the VICON, so is the position of a wand
to designate areas of the brain. The user at the table has a less detailed view of

3.2 distributed graphics and interaction in multi-surface environments 49

the data due to the lower resolution of the display, but a better overview of all the
brain scans. Using touch interactions, he can rearrange the layout of the brains
on the wall, according to the observations and potential matches or differences
among them. The two users clearly have different roles and tasks, depending on
the components of the platform they are using: the user in front of the wall acts as
an observer of the data, while the user at the table is the coordinator of the overall
task. These two examples and scenarios are sufficient to point out the five major
technical issues commonly encountered in these environments:

distribution of data processing and rendering : As illustrated in both
examples, data visualization can be continuous along a surface, as in
Figure 3.4b where the wall is considered as a unique panel, or split across
surfaces, like in Figure 3.4c where brains are displayed in a grid of 3D
models on the wall, and possibly in another form on the table. With an
underlying architecture made of 19 connected computers – two front-ends,
a cluster of 16 computers, and one computer for the tabletop – driving
33 displays – the wall and the tabletop – plus additional computers and Çwhere is the data &

where does the rendering
take place?

displays such as hand-held devices or laptop computers, how do we create
an integrated, seamless experience for the user? The problem is to create
strategies that are adapted to this distribution, specifying which parts
of the platform are processing data, performing the rendering, and how
they communicate (e. g. centralized or distributed processing, replication or
sharing of data).

distribution of input channels and interaction logic : This issue re-
semble the previous one but focuses on interaction. How and where are the
input events handled, and how are interaction techniques defined in the
system? For instance, the multi-touch tablet in Figure 3.4b might be used
as both a pointing device for the wall – i. e. by tracking its 3D position
– and a track-pad to manipulate the pointed data – i. e. by sensing user
touches on its surface. From the user’s point of view, it is a single input Çwhere is the interaction?

device. From the designer’s and the developer’s point of view, multiple
input channels, coming from different sources in the environment, must
be combined in order to create a “logical device” with its related interaction
logic. The question is then to determine which part of the architecture is
performing this combination, and where to define the logic of interaction,
i. e. the response to the actions on this logical device.

More generally, these first two points question the concept and the
model of an interactive “application” in these environments, which becomes
closer to distributed and cloud computing principles, where an application
is a dynamic composition of services. However, in cloud computing, the
distributed part mostly concerns data storage and the functional part of the
application, but rarely interaction which is typically running on the user’s
personal computer or device.

using legacy applications and tools : Another problem is to reuse exist-
ing applications in such environments. The brains comparison example of
Figure 3.4c comes from a real task by the neuroscientists we worked with.
It must use both the dataset and the rendering that they are used to work
with, and thus the application and the functionalities that are essential to
their work-flow, augmented with the specific capabilities of the platform, e. g.
high-resolution rendering, multiple display surfaces, advanced interaction. Çwhere is my app.?

Rewriting the complete application from scratch would be the best solution
to adapt it to the new environment, but it is likely to be tedious and

50 from engineering interactive systems to designing interaction

time-consuming, without any guarantee that it would fulfill the require-
ments of the original one. Conversely, porting legacy applications to such
environments is not straightforward, and highly depends on their level
of “openness”: Is the source code available? Does the application provide
libraries or APIs? Is the application scriptable or does it provide a remote
control protocol?

programming and prototyping : The previous issue also extends to the
development of new dedicated applications. Since programmers are more
likely to use languages, tools and APIs they already know and master,
e. g. OpenGL for rendering), how to enable their use on this architecture?
Should we completely hide or on the contrary expose its distributed nature?
Our own experience with WILD is also that such a platform requires
maintenance downtime or is sometimes running at full capacity, making
it unavailable to some users. This raises the issue of tools that would let
users (developers) program, simulate and test applications and interaction
techniques outside of the platform, but minimize the overhead when porting
them back into the actual environment. For instance, the graphical renderingÇwhere is my API?

of the two aforementioned applications could be tested on a dual-monitor
setup and the interaction techniques developed with cheaper devices (e. g.
MS Kinect, Nintendo Wiimotes) before being deployed and fine-tuned “in
the WILD”. Beyond that, we should also facilitate iteration and prototyping
of new designs with appropriate tools. As already discussed in section 2.3,
p. 32, developing precise prototypes of novel advanced interaction tech-
niques often challenges “mainstream” technology (desktop computers and
mobile devices). In extreme interactive environments such as WILD, this
could be even more challenging without appropriate tools. In addition to the
increased difficulty and amount of work to implement prototypes, it might
have a negative impact on the overall project schedule and especially on end-
users’ involvement if there is too much time between successive prototypes.

collaborative interaction : The last issue is the support of collaborative
interaction, with appropriate groupware, the technology enabling Computer-
Supported Cooperative Work (CSCW). Groupware applications and support-
ing toolkits should: account for the different roles and the awareness of
their users; define how data sharing is achieved (replication, centralization or
mixed); enable synchronization of changes on data; and provides mechanisms
for controlling concurrency. For example, in the brains manipulation example
of Figure 3.4c, data (the brains’ models) is shared across both surfaces.Çwhere is my mind?

Loading new brains’ models could be restricted to the tabletop user only,
as a coordinator of the task (role). When this user loads a new brain model,
this should be reflected on both side (synchronization). While the user who
initiated the change will notice it, his colleague may be immersed in another
task and should be notified (awareness, which is even more crucial for
remote collaboration). Finally, some manipulations such as changing the
position of a brain scan, should be exclusive in order to avoid conflicts.

These issues have been addressed in several ways, by different research fields,
with an abundant literature. The reader can refer to Ni et al.’s survey of ap-
plications and technologies for large high-resolution displays [Ni+06], Endres

et al.’s survey of software technologies for Ubiquitous Computing [EBM05]
or the book “Computer Supported Co-operative Work” for groupware technolo-
gies [Bea99]. In summary, while the aforementioned issues of distributed graphics
and interaction have been addressed in many ways and from many angles, no
single solution or tool has emerged to solve both problems. Computer Graphics
methods [EMP09; Hum+02; Jeo+06] address the quality and performance of

3.2 distributed graphics and interaction in multi-surface environments 51

distributed rendering, but lack high-level structured graphics and toolkit support
for advanced interaction [Pie+11]. Conversely, several toolkits dedicated to Post-
WIMP interaction provide such mechanisms [BGM04; Huo+04a; Pie05; AB08],
but without supporting distribution. Studies of software architectures for Ubiq-
uitous Computing and Ambient Environments have led to elegant and powerful
descriptive models [Cou06; Dem+08; MVV11] of distributed interaction, but lack
concrete and reliable prototyping and implementation tools, especially for Post-
WIMP interaction and distributed rendering [Cou10]. Finally, groupware solu-
tions define and implement efficient multiple-input/multiple-user architectures
and mechanisms [DC91; RG96; TG04; AGG09; Bie+08], but are limited in terms of
high-quality distributed rendering.

3.2.3 Engineering in the WILD

During the WILD project, we investigated three approaches to address these issues
in prototyping and implementing custom applications: Ç“I suppose it is tempting,

if the only tool you have is
a hammer, to treat
everything as if it were a
nail” – A. Maslow, 1966

implicit distribution : From the developer perspective, this model is similar
to standard standalone WIMP applications. Distribution and synchroniza-
tion of data and the rendering process are transparent for the developer.
Hydrascope [HMB13], implemented by Michel Beaudouin-Lafon and Björn
Hartmann (Assistant Professor at UC Berkeley), relies on web technologies
to leverage their intrinsic capabilities for distribution and sharing. It con-
sists of a client-server architecture for web applications, based on content
replication and synchronization. Clients are web browsers distributed in
the multi-surface environment, and the application (the server) generates
and distributes the interactive content. Distributed interaction is achieved
by notifying the server whose will propagate changes to other clients when
a client is updated. This approach as the advantage of relying on well-known
and widely used web technologies e. g., HTML, CSS and JavaScript, running
in standard browsers. This can be very useful for fast prototyping and for
porting applications to different platforms, provided that synchronization
mechanisms are transparent for the developer.

explicit distribution : With this model, sharing is transparent but distribu-
tion is explicit. The resulting toolkit, SharedSubstance [Gje+11], was devel-
oped by Tony Gjerlufsen (former intern at in|situ|), Clemens Nyland-
sted Klokmose and James Eagan (former postdocs at in|situ|), Clément
Pillias (former research engineer at in|situ|) and Michel Beaudouin-
Lafon. The developer defines processes (called “environments”) that run on
different machines and discover each other dynamically, thus composing a
distributed application. Environments contains a hierarchical data structure
that they can share in whole or in part with other environments. Through
this structure, environments can share different kinds of resources: data
of any type, rendering capabilities, input streams, etc. Sharing is thus
transparent but distribution is explicit since the developer must specify the
required environments for a given application. However, he does not have to
care about “where” the environments are running and “how” they share the
data (similar to a service-oriented architecture). The brain scans comparison
application of Figure 3.4c was implemented with SharedSubstance. It defines
several environments including: rendering environments on each computer
of the graphic cluster, sharing their rendering capabilities; another rendering
environment on the tabletop computer; a VICON process, sharing output
data from the tracking system; a data provider process, sharing brain scans
data; etc. SharedSubstance makes the description of distributed applications

52 from engineering interactive systems to designing interaction

Figure 3.5: CHI’13 Program Going WILD. Wendy & Michel are scheduling sessions for
the CHI’13 conference with an Hydrascope web application. Content of the
176 sessions is arranged in a 16×11 HTML table displayed on the wall-sized
display. They can select and manipulate content with their hand-held multi-
touch tablets.

clear and flexible, thanks to efficient mechanisms for dynamic sharing.
However, it does not improve the implementation of lower-level capabilities,
such as rendering, since they are encapsulated into environments.

mixed approach : The last approach, the jBricks framework, is based on a repli-
cation strategy for structured graphics in order to make the distribution of
rendering transparent for the developer. However, the distribution of input
and interaction is explicit to achieve a high-level of flexibility. A leading
principle of jBricks is to dissociate the management of input/interaction
from the functional and graphical components of applications with two
modules: ZVTM-Cluster for graphics, developed by Emmanuel Pietriga

(former Researcher at in|situ|) and Romain Primet (Research Engineer
at in|situ|), and WILDInputServer for interaction, that I have developed.
The following presents an overview of jBricks, details can be found in our
EICS’11 paper [Pie+11] (see full article p. 153).

the jbricks framework – zvtm-cluster ZVTM-Cluster is the module
of jBricks implementing the graphical parts of jBrick’s applications. It extends
the ZVTM [Pie05] library with distributed rendering capabilities. ZVTM is an
advanced structured graphics library for the Java language. It supports standard
Java2D primitives, but also features high-level graphical primitives (e. g. polygons
of arbitrary shape, splines, Swing widgets, bitmap images and high-quality text,
advanced stroke and fill patterns) as well as advanced mechanisms to ease the
implementation of advanced Post-WIMP interfaces and zoomable visualizations
(e. g. virtual spaces, cameras, animations, built-in advanced interaction techniques
such as lenses). ZVTM rendering is handled in retained mode: the toolkit retains
a complete model of the objects to render. This feature was used to extend ZVTM
into ZVTM-Cluster: distributed rendering consists of replicating a single virtual
space among all cluster nodes, and setting one camera per display configured
so that their juxtaposition forms an overall coherent image from the user’s
perspective. As shown in Figure 3.6, a single instance of the application runs on
a client node, generating the geometry and distributing it to render servers running

3.2 distributed graphics and interaction in multi-surface environments 53

on cluster nodes. When changes occur in the client node (the master application),
it transmits only atomic changes to the appropriate objects on the render servers.
Our tests showed that up to 200,000 objects could be rendered at interactive frame
rates on the WILD platform. ZVTM-Cluster also enables interactive visualization
of very large images, such as the 26 gigapixel panorama of Paris (354 048×75 520

pixels) and Spitzer’s Infrared Milky Way (see Figure 3.6), that can be freely panned
and zoomed on a wall display. In terms of development, ZVTM-based desktop
applications can be adapted to run on a cluster-driven large display by changing
as few as four lines of code, mainly to load the platform’s geometry and to replace
the standard view component with the distributed rendering one. This is the only
part of the distributed behavior that a developer has to deal with. Render servers
are instances of a generic display program distributed with jBricks that have to be
run on cluster nodes. Overall, this enables quick prototyping, development and
deployment, as well as the ability to develop outside of the platform.

Input
Server

Input
Server

Runs Interaction messages Graphics messages

pan-zoom

point

pan
click

magnification

x
y

mult

mult

VICON laser
coordinates

x
y

Input Configuration

Server

Runs Interaction messages Graphics messages

pan-zoompan-zoom
point

pan
click

magnification

x
y

VICON laserVICON laserVICON laser
coordinates

x
y

Input
Server

Input
Server

multmult

multmultmult

Input Configuration

Render Server 1 Render Server n

Client App

iPod (OSC)
zone A

x
y

press
zone B

press
zone C

press

mouse
button

left
middle

right
pointer

x
y

wheel

CD gain

mousemouse

CD gain

Figure 3.6: Example jBricks configuration: wall’s graphics client and input server for
motion tracker and tablet run on client node; input server for mouse, keyboard
and smartphone run on user’s laptop.

the jbricks framework – wildinputserver While ZVTM provides ex-
tensive support for the graphical part of advanced interaction techniques, it
relies on standard Java input and interaction management, meaning that it only
handles basic input events from standard devices. This raises a similar issue as
previously mentioned tools, such as e. g. Equalizer [Nam+09], where designing
and programming advanced interaction techniques for complex interactive en-
vironments requires ad-hoc support at the application level, through multiple
external libraries and APIs. I addressed this issue in the second module of jBricks,
which is the input and interaction manager of the framework, WILDInputServer
(WIS) (see Figure 3.7). WIS is a standalone application based on the FlowStates
toolkit presented in section 3.1 of this chapter. It makes it possible to use both
the data-flow editor of ICon and the state machines programming model of
SwingStates in a distributed multi-surface environment.

Thanks to ICon’s built-in support for many input devices, WIS handles many
kind of distributed input and allows their distribution to several applications.
We extended the ICon library to further support generic devices through the
most widely used protocols, with specific data-flow devices that can receive
and send Open Sound Control (OSC) [WF97], Ivy [Bui+02], TUIO [Kal+05] or
Virtual Reality Peripheral Network (VRPN) [Tay+01] messages. This approach

54 from engineering interactive systems to designing interaction

Figure 3.7: The WILDInputServer.

provides a straightforward and implicit way of performing automatic device
registration thanks to the addressing mechanism of these protocols: each input
source that sends a message addressed to a specific receiving device in a running
configuration is implicitly considered. For instance, a WIS’ OSC receiver device can
listen to messages addressed to /WIS/position4 with two arguments, x and y.
This data-flow device will then externalize the corresponding output slots which
will be updated each time a new /WIS/position message is received, wherever
it comes from: a smartphone running an application that sends OSC messages
from touchscreen events, the tracking software of an interactive table, mouse
movements from a laptop running another instance of the WIS, etc.

The input manager is easily extensible, thanks to the simple programing
principles of FlowStates’ state machines. This makes it possible to support new
input devices, but also to implement re-usable processing functions or even
built-in interaction techniques as data-flow processors. However, FlowStates was
originally developed as a library for developing applications, meaning that one
should recompile the application after adding a new feature (a new state machine).
This is not a viable approach in the jBricks framework, since it would require to
change and recompile the input manager all the time. I addressed this issue by
adding a dynamic plugin management system to WIS that supports unloading and
reloading functionalities at run-time. Plugins are developed with a simple API andÇpluggable interactions

can contain several FlowStates’ state machines, which will be made available in
the input editor without restarting it. They can be used to extend the input server
in a persistent way, by simply copying a plugin’s jar file in the application folder,
or they can be loaded temporarily and installed over the network. For example,
an application can implement domain-specific processing devices (e. g. pointing
acceleration functions, simulation algorithms, etc.) and install them in WIS through
a simple network protocol when it is launched. Combined with ICon capabilities
to edit input and interaction configurations at runtime, this makes the overall
system highly adaptable.

4 The OSC protocol consists of messages containing an “Address Pattern” (URL-like) and optional typed
arguments. See the specification: http://opensoundcontrol.org/spec-1_0

http://opensoundcontrol.org/spec-1_0

3.2 distributed graphics and interaction in multi-surface environments 55

Input configuration and part of the description of interaction techniques are
specified with ICon’s data-flow configurations, using the extensive library of
adapter devices, e. g. math or logic operators, control structures, flow control,
input filtering. These can be used to manipulate and transform the raw values of
input channels into higher-level data structures (e. g. the mult device in Figure 3.6).
The WIS library and default plugins also extend the basic processing devices of
ICon with platform-specific ones, adapted to interactive platforms such as WILD.
For instance, a “pointed tile” data-flow component returns the display tile that is
intersected by a 3D vector received as input (typically modeling the user’s arm).
More than simple low-level processing components, these higher-level devices
are close to the re-usable interaction techniques of MaggLite [Huo+04a], offering
several levels of granularity to the user when building an input configuration.
They can for example implement the logical part of many advanced interaction
techniques – e. g. Marking Menus [KB91], Toolglasses [Bie+93] – independently of
their visual feedback and resulting actions.

connecting jbricks modules This higher-level part of the interaction
(i. e. visual feedback, manipulation of objects and data) is coded into the client
application developed with ZVTM-cluster, since it is the domain-dependent part
of the application. It is therefore necessary to connect both parts together: the
input configuration and the client application. In order to keep the framework
modular and flexible, we chose to support several kinds of coupling, from a loose
one to a more tight approach, in a way that is similar to FlowStates “moving
frontier” between data-flow – lower-level system control – and state machines
– higher-level interaction logic – (see section 3.1). The connection between the
ZVTM application and WIS can be established in two ways: with high-level
interaction events through network protocols or with plugins. For example, the
image manipulation application of Figure 3.6 supports pan and zoom interactions
in order to explore very large images. Pan and zoom operations can be performed
for example with a multi-touch hand-held device, as in the figure, or with a 3D
motion tracker (e. g. MS Kinect or VICON). In the latter case, applications typically
implement a VRPN “tracker” listener, receive raw 3D data from the device, and
implement the interaction technique from these raw values. Even if VRPN trackers
could be changed at run-time, this raises the issue of controlling the application
with another kind of input device. Since the application directly receives raw
values from specific input channels (e. g. 3D locations and rotations), controlling
it with other input channels (e. g. 2D positions on a touch surface) requires to
change the core application code, or to implement a fake VRPN tracker.

We solve this problem by using higher-level interaction events, e. g. through
OSC messages, that allow us to choose and adapt the level of abstraction for con-
necting the input/interaction configuration to the application. In our pan & zoom
application example, the application will define its “interaction entry points” as a
simple OSC protocol: /spitzer/pan with x and y parameters, and /spitzer/zoom

with x, y and z parameters. Then, each time the application receives a message,
it performs the corresponding action, which is somewhat similar to a Remote
Procedure Call (RPC) protocol. On the WIS side, the designer/developer just has to
connect built-in OSC data-flow devices as end points of an input configuration in
order to create and send these messages to the application. Figure 3.8 gives two
example configurations for the panning interaction. In Figure 3.8a, OSC messages
are received from both a VICON tracker – the VICON OSC that delivers raw 3D
positions – and a multi-touch tablet – the iPad OSC that delivers boolean touch
events. The VICON’s output slots are connected to a control device, multi-pass,
which interrupts the data-flow when the tactile tablet is not touched (the iPad’s

56 from engineering interactive systems to designing interaction

touch output slot is false). Then, outputs of multi-pass are filtered through
Casiez et al.’s “One Euro Filter” [CRV12], before going into the pointedScreen

device which is, in summary, a laser pointing method for the wall display. The
resulting 2D coordinates are then sent to the application through the Pan (OSC)

device. Thus, each time the tablet device is touched, the panning interaction
is enabled and can be controlled by pointing toward the wall-sized display.
Figure 3.8b shows an alternative configuration with the multi-touch tablet only
used as a touchpad. It can be built in less than a minute and saved for future use,
and can replace the previous one without relaunching the application.

(a) VICON + Tablet

(b) Tablet

Figure 3.8: WILDInputServer Panning Configurations.

A deeper integration of the two modules can be achieved through the plugin
architecture of WIS. As explained before, applications can install plugins in the
input management system, and these plugins can declare data-flow processing
devices implemented via FlowStates state machines. As shown in Figure 3.9, the
developer can use this architecture to define several communication channels be-
tween the input configuration and the application. In the first case, the application
is embedded into the plugin (see Figure 3.9a), so that the ZVTM client application
will run in the same Java Virtual Machine (JVM) as WIS. This tight coupling gives
direct access to data-flow processing devices and their values from the application
code, enabling finer control of the application and avoiding the use of a network
protocol. It is however more rigid and makes it harder to handle cases with aÇconnection with plugins

high-level of distribution, e. g. an application that should receive input data from
several instances of the input management system. The second case, illustrated
in Figure 3.9b, consists in embedding only a part of the application in the plugin,
typically a dedicated communication protocol, e. g. for performance or security
issues. While this is a more flexible approach, the drawback is that it makes the
application closed to more generic protocols and thus to other input management
systems. The last case consists of using the first connection method, through built-
in protocols such as OSC, but to install processing devices that are specific to an
application (see Figure 3.9c). While this does not directly connect the input server
and the application, these devices can be required for data transformation before
sending events to the application (e. g. range transformation, physics simulations,
pointing acceleration functions, etc.).

3.2 distributed graphics and interaction in multi-surface environments 57

plugin

in1
in2

app.

(a) Embedded application

plugin

in1
in2

app.protocol

(b) Embedded protocol

app.

plugin

in1
in2

out1
out2

osc
in1

in2

in1

in2in2

(c) Loose connection

Figure 3.9: WILDInputServer Plugins and Applications.

This separation of concerns, where the interaction management module is
independent of the application code and the application is not aware of low-level
input configuration, achieves a high-level of flexibility, which is of great value in
environments with distributed multiple input and displays. Several instances of
WIS can run on different machines – managing sub-parts of the input configuration
– in a transparent way for the main application by creating “composite virtual
input devices” that produce high-level input events: the combination of the
iPad and VICON in Figure 3.8a can be seen as a unique device. Input and
interaction configurations can be modified rapidly at run-time with the visual
editor and by non-programmers, e. g. interaction designers, which is well-adapted
to rapid prototyping. Furthermore, since the two modules of jBricks can also be
run on standard computers (desktops, laptops), the framework makes it easy to
prototype outside of the platform by replacing a complex and expensive device,
e. g. the VICON system, by an accessible one in seconds (see the illustrating
scenario in our paper [Pie+11], included p. 153). At a higher level, the separation
between input/interaction and graphics extends the “mixed-graphs” model that
I introduced with the MaggLite toolkit [Huo+04a] to a distributed architecture.
The different levels of coupling between the two jBricks’ modules also resem-
ble the FlowStates concept of “moving frontier” between the system and the
application: more description of the interaction within the application, which
implies lower re-usability but deeper integration, vs. more interaction within
the input manager, which implies better re-usability, but requires to externalize
more of the application functionalities. This supports the interaction design
continuum within a single development framework, from several levels of “live”
prototyping to a final implementation, thus “reducing viscosity”, “empowering
new design participants” and enabling “power in combination”, according to
Olsen’s criteria [Ols07].

JBricks is widely used for developing applications in the WILD room, by the
in|situ| and AVIZ research groups. In particular, Mathieu Nancel used it to
implement the novel pointing techniques and controlled experiments reported in
his Ph.D. thesis [Nan12]. These techniques are now re-usable in other projects,
thanks to the modularity of WIS. Julie Wagner also used jBricks to implement
several body-centric interaction techniques during her Ph.D. [Wag12], as well as
controlled experiments. Their work highlight both the possibilities of the frame-

58 from engineering interactive systems to designing interaction

work for designing and implementing novel interaction techniques in distributed
environments, but also its robustness and reliability for conducting experiments.
Finally, WIS is also used independently of the ZVTM rendering architecture in
most of the applications running on the platform. Outside of our WILD Room,
several researchers have shown strong interest in using it, and it will be included
soon in the software framework of the “Inria-VCoRE technological action”.

3.2.4 Going WILD-er

The general lessons of the WILD project are summarized in our IEEE Computer
paper [Bea+12]. In terms of engineering, we created a set of frameworks and
applications that we use for demonstration purposes and for our own research.
Yet we did not solved nor addressed all the issues summarized at the beginning of
this section. For instance, reusing existing applications still has to be investigated
further. We have already extended some applications for scientific visualization to
be displayed on our wall-sized display, thanks to their scripting capabilities (i. e.
PyMol5 and BrainVISA/Anatomist6 for the brains scans application of Figure 3.4c)
and we have started to explore the reuse of web applications with Hydrascope. In
addition, both the SharedSubstance and jBricks frameworks support the display
of existing running application windows (with respectively the Scotty [EBM11]
and Metisse [CR05] systems). However, this support is limited to pixels streaming
and basic input redirection, and thus does not leverage the high-resolution and
advanced input capabilities of the platform. Beyond multiple-device handling and
configuration, we did not address specific collaboration issues for groupware,
such as roles and conflicts policies, which should be implemented at the appli-
cation level. However, our architectures already enable sharing, and WIS delivers
customizable high-level events that could be used to distinguish easily among
users. Collaborative aspects, in terms of both usage and engineering, will be the
primary focus of our investigation in our recently launched projects Digiscope7,
coordinated by Michel Beaudouin-Lafon, and Digipods, which I am coordinating.
These projects will create a unique platform for distant collaborative work with 9

heterogeneous advanced visualization platforms, including high-resolution wall
displays, CAVEs, large touch and 3D displays, interconnected by a high-end audio-
video telepresence system.

3.3 engineering unleashes interaction design

In this last section, I will discuss the matching between software tools and some of
the requirements of interaction design, which relate to the necessity of using “the
right tool for the right task” that I mentioned in the introduction of this chapter.
Some steps of the interaction design process can require one specific and unique
tool. But some other, and especially the implementation of precise prototypes, can
require to combine different tools and components in order to test and improve
the solutions. The question is then to identify which tools or toolkits to use and
how to combine them. In the previous chapter, I already discussed the situation

Ç“This is what makes time
travel possible: the flux

capacitor!”

where the required tools – e. g. hardware or software architecture, API or toolkit –
are incomplete or even not existing yet. Here, my concern is more to identify the
possibilities that engineering of interactive systems offers to interaction design,
thanks to the lessons learned during the projects I have summarized in this
chapter, and to some relevant related work.

5 see PyMol website: http://www.pymol.org/
6 see BrainVISA website: http://brainvisa.info/
7 see Digiscope website: http://digiscope.fr/

http://www.pymol.org/
http://brainvisa.info/
http://digiscope.fr/

3.3 engineering unleashes interaction design 59

I will identify and discuss three common situations, where “Technology
Defines Possible Designs”, “Technology Enables The Evaluation Of Design” and
“Technology Integrates Design”. I do not claim that these are the three only
ways to relate interaction design and technology, since this close relationship has
already been observed and discussed: by Kay and his early vision of interaction
with computers that shaped technological breakthroughs such as SmallTalk; by
Beaudouin-Lafon, who is advocating the promotion of interactions as first-
class objects in toolkits [Bea04]; by Olsen, who is discussing the notion of
viscosity [GP96] of UI tools in the interaction design process [Ols07]. My objective
is to initiate discussion and to gain a first understanding of the relationships
between the two research strands and their mutual evolution. This can open the
way to new research perspectives, which will be the topic of the last chapter.

3.3.1 When Technology Defines Possible Designs

Interaction design, even with the now commonly adopted user-centered ap-
proaches, cannot escape to take technology into account from the very early
stages, since the overall objective is to design for users interacting with technology.
As discussed in the previous chapter, technology can even inspire interaction
design. Considering that, we can now refine, from the technological point of view,
the situations discussed in sections 2.3.1 – When Interaction Design Is Driven by
Technology – and 2.3.2 – When Interaction Design is Constrained by Technology – by
considering the following attributes for a system:

1. what technology suggests is what designers, and sometimes users when
involved in participatory design [EK84], will be inspired to ideate for specific
needs, based on existing or envisioned technologies.

2. what technology enables are the capabilities of hardware, models, architec-
tures, etc. to support the implementation and the transition from an idea to
a prototype.

Prototyping

DESIGN

ENGINEERING

OF INTERACTION
TECHNIQUES

OF INTERACTIVE
SYSTEMS

Prototyping

ÇTechnology Enables
Design3. what technology provides are the already existing technologies or compo-

nents that could be reused, extended and assembled for the implementation.
These could be some of those parts that also “suggested” a new design.

There is a strong link between what technology enables and what it provides, which
is what Olsen defines as “power in combination” [Ols07]: the capacity of a UI

system to provide a set of basic primitives and to enable their combination to
build more complex systems. When the gap is too wide between what technology
(and the design process in general) has suggested and what it effectively enables
and provides, there is some overhead in prototyping and implementing design
alternatives, trying to fix the system, and even sometimes discarding some good
solutions, if not the original idea itself. This is what Johnson describes in his
book Where Good Ideas Come From: The Natural History of Innovation, when he draws
a parallel between innovation and Kauffman’s concept of “Adjacent Possible” in
natural sciences [Joh10]. The adjacent possible is the set of possible first-order
combinations of the atomic parts “in our possession”, e. g. electronic parts, raw or
factory-made materials, theories, methods, etc. Every new combination extends
the boundaries of the adjacent possible, since they should be in turn used as
what Johnson calls spare parts. However, as he illustrates with many examples
in the history of innovation and science, even the best idea cannot be turned
into a concrete innovation if it goes beyond the limit of the adjacent possible,
if the spare parts are not (yet) available. For example, referring again to Kay’s
Dynabook concept, it is clear that it was not in the adjacent possible at the
time. Despite many efforts to push the limits and to add more parts, ending

60 from engineering interactive systems to designing interaction

up along the way with many concrete innovations (e. g. SmallTalk and Object
Oriented Programming, the MVC model, the Xerox Alto and its GUI), the necessary
adjacent possible was not reached at that time and the Dynabook remained a non-
functional mock-up. Conversely, our mobile AR technique for note-taking (see

ÇDynabook mock-up

section 2.2.3.1) was obviously less visionary than Kay’s Dynabook, and directly
inspired by the adjacent possible of actual technology. We can have the same look
at HCI technology in general and in particular UI toolkits: What is their intrinsic
adjacent possible? How easily can they be extended or combined with other parts?
Is there a (more or less) iterative path between their current adjacent possible and
the one that will make a design possible? This is especially crucial if we want
UI systems to be better tools that support prototyping and exploration along the
design process.

Existing and widely used UI toolkits – e. g. Java Swing, Qt –, which are the
technological foundation of our current interactive systems, are good tools for
what they were designed for, implementing WIMP user interfaces [Bea04]. Some
associated development environments, such as Interface Builders, are also well
adapted to quick prototyping of WIMP interfaces. But they fail to account for and
support what some current trends, models and technologies “suggest” in terms
of advanced interaction: direct manipulation, multi-modal interaction, gestural
interaction, etc. In fact, these toolkits rarely “provide” the necessary components
that “enable” such innovations, which are outside of their “adjacent possible”:
their atomic primitives (widgets) do not capture direct manipulation [Bea04], their
event model does not scale to complex interactive systems [Mye91], they have
proven to be difficult to extend beyond their initial scope [Cha94]. The past 20

years have seen very active research in UI toolkits, focusing on completely new
tools tailored for a particular problem [Mye+90; Mye+97; GF01; DF04; Huo+04a;
HMS05; Har+07; Law+09; Mar+11; KMC12; Kin+12b], or on extending existing
tools [CR05; AB08; AZ09] for new purposes. The FlowStates toolkit presented

ÇExtending the adjacent
possible of a tool

in this chapter lies in this second category, since it extends the Java language
and event-model to provide designers and developers with relevant new tools:
state-based control structures to describe the interaction logic, and a data-flow
model and visual language for input and interaction configuration. FlowStates is
relevant to be discussed here for two reasons. First, it is a combination of two
existing “spare parts” (SwingStates and ICon) which are extending the adjacent
possible of each other at the engineering level (combination of models). But at
a higher level, as a tool for interaction design, FlowStates’ model facilitates and
fosters extensibility by considering interaction as a first-class object [Bea04], the
toolkit itself following the principles of instrumental interaction [BM00]: data-
flow devices reify state-machines (or interactions), thus enabling their direct
manipulation by the developer, the designer or even the end user through the
graphical editor. Interaction techniques can be re-used in a polymorphic manner
(with other objects of interest, etc.). Using the toolkit in this way extends its own
adjacent possible: once implemented with FlowStates, an interaction technique
or a part of an interaction technique can be reused and combined to create new
techniques, and so on. The OpenInterface framework [Law+09] is also a good
illustration of this approach, since it provides developers and designers with both
low-level tools for extensibility (component model) and high-level tools for their
composition (visual editor).

But we also observe that most of these advanced UI toolkits are rarely used
by researchers or designers when prototyping or implementing novel interaction
techniques, despite they have an interesting “adjacent possible”. The first reason
is that the adjacent possible is not an “absolute” measure, and depends of

3.3 engineering unleashes interaction design 61

course on the knowledge we have of the tools that exist. In his discussion about
innovation, Johnson observes that media, and the Internet in particular, have
changed the boundaries of the adjacent possible, making existing spare parts
easier to find [Joh10]. In fact, searching the web for existing solutions to a problem
is nowadays an essential activity in every domain. In our case, finding a UI toolkit
that addresses the problem we are facing is most of the time a partial solution. The
adjacent possible of a toolkit is also absolute: it depends on the knowledge that
the user has of the toolkit, which is likely to be non-existent in that situation, but
also on how the toolkit “discloses” its capabilities, as I already mentioned in the
conclusion of the previous chapter. For instance, for designing and prototyping
the Gliimpse technique (see section 2.3.2), we used the standard Java API and
Swing toolkit mostly because we did not rapidly find an obvious solution to
the first problems we have identified, thus blurring the choice of a potentially
better technical solution. We thus started to implement our prototype with a
toolkit we are already mastering. Gliimpse was clearly on the edge of the adjacent
possible of the technology we used, and its implementation was a challenge. The
positive effect is that it helped us better understand how the technique could
be implemented, the requirements at the toolkit and application levels, and gave
insights into how it could be replicated or help the design of future development
tools for similar techniques. On the other hand, this limited our investigations of
more advanced designs, such as local animations of only parts of the code. In the
worst case, this could even have made the prototype impossible to implement.
Overall, a possible explanation of the problem we encountered is the limited
“power in combination” [Ols07] of the tools we used, part of what I called
the enable and provide properties: the main issue in Gliimpse was to construct
mappings and combine things together, whether they were provided by a single
tool or from several ones, i. e. editor and document rendering components and
markup language interpreters and animation engine.

ÇCombining tools for a
new adjacent possibleExtending the overall adjacent possible of a whole “ecosystem” (i. e. an ensem-

ble of tools) requires power in combination between the different tools that are
making it. This is what we tried to achieve with the jBricks toolkit for multi-surface
environments (see section 3.2), by decoupling input and interaction management
from the graphical application, while providing efficient mechanisms to compose
them in a generic way, with several levels of integration. As a result, the two tools
benefit from each other, but can also be used independently, with other tools.
This might support several phases of interaction design: from several prototypes,
where multiple alternatives can be tested with different combinations of tools, to
a more robust implementation where the components can be integrated deeper.

3.3.2 When Technology Enables The Evaluation Of Designs

The HCI community has a long history of discussing methods and tools for
research and practices in HCI, especially on the hot topic of evaluation of novel
interaction techniques and interactive systems in general. Greenberg and Buxton

give an overview of the situation in their 2008 position paper [GB08], advocating
for a more grounded and better informed choice of evaluation methods according
to the design and research problems, instead of blindingly running usability
studies (i. e. controlled experiments). Related to this debate on the role and
relevance of evaluation in HCI, the community is currently trying to promote
“replication” (of studies, systems, methodologies) as one of the ways to ground
the field (e. g. two RepliCHI panels were held in 2011 and 2012 [Wil+11; Wil+11],
and a workshop will be organized at CHI 2013

8). My goal here is not to take side

8 See the CHI’13 RepliCHI workshop website: http://www.cs.nott.ac.uk/~mlw/replichi.php

http://www.cs.nott.ac.uk/~mlw/replichi.php

62 from engineering interactive systems to designing interaction

in these debates, but to emphasize how engineering, and better technology, can
support evaluation when necessary. Greenberg and Buxton [GB08] also promote
the use of the right tool for the right task, but at the methodological level. Some of
these tools for the evaluation of interaction design, such as controlled experiments
or field studies, need robust functional prototypes and systems, with additional
functionalities related to the evaluation protocol itself [MHP00]. The issue is then,

 Evaluation
Prototyping

DESIGN

ENGINEERING

OF INTERACTION
TECHNIQUES

OF INTERACTIVE
SYSTEMS

ÇTechnology Enables
Evaluation of Design

again, to have access to and to use the right technological tool(s).

This implies that the underlying technology satisfies several requirements.
An evaluation is always evaluating the “whole thing”: the apparatus and the
user. To ensure that measurements, and thus the results, are not corrupted, we
need to control the behavior of the system and prevent potential problems such
as performance issues, crashes, participant loss of concentration due to system
failures, etc. Performance, robustness, reliability and predictability are standard
objectives of software development in general, but they are harder to achieve when
prototyping advanced interaction techniques that challenge technology and are
rarely based on well-tried software engineering methods and tools. Our jBricks
framework has proven to be reliable and efficient enough to conduct highly-
demanding experiments with the WILD platform, as mentioned before. One of the
benefits of jBricks in this context is again its modularity, which helps to identify
and fix problems (e. g. live data monitoring with WIS, on-the-fly disconnection
and reconnection of modules to identify flaws) as well as the ability to alternate
quickly between experimental conditions and to re-use existing blocks from one
experiment to another, thus favoring replication.

Beyond implementing the prototype of the interactive system, another require-
ment is to ease to conduct the experiment, with appropriate mechanisms for
instrumenting the prototype and running the experimental protocol: displaying
instructions, moving to the next trial, performing measurements and logging, etc.
Except for some low-level logging mechanisms, these features are not present in
standard interactive systems, since they would be of little use in normal use, so
they need to be implemented for every new experiment. Some frameworks were
developed to ease this process, in particular the Touchstone platform developed
at in|situ| [Mac+07]. Touchstone was, however, designed to conduct controlled
experiments on standard computers, not on mobile devices or distributed multi-
surfaces platforms like WILD. The evaluation of the mobile techniques presented
in sections 2.2.1 and 2.2.2, that I have conducted before the release of these
frameworks, required to implement all these mechanisms from scratch (tak-
ing into account the platform limitations) and to test their reliability before
conducting the actual experiments. I extended Touchstone with a simple but
efficient network protocol, enabling communication between the mobile device
or distributed application running the prototype, and the Touchstone platform
running the experimental protocol and the logger on a standard computer. We
can thus focus on the implementation of the techniques to evaluate on the
mobile or distributed environment. We conducted the evaluations of BiPad (see
section 2.2.3.2) and mobile AR techniques (see section 2.2.3.1) with this platform,
extended with a jBricks’ WIS configuration for the mobile AR setup (to enable
three-way communication between the hand-held device, the physical control
board and Touchstone, see implementation details in Can Liu’s thesis [Liu12]).
This has proven to be reliable, and reduce development time in comparison to the
implementation of an instrumented prototype on the mobile device.

Finally, as stated by Greenberg and Buxton, “usability evaluation, as practiced
today, is appropriate for settings with well-known tasks and outcomes. Unfortunately, they

3.3 engineering unleashes interaction design 63

fail to consider how novel engineering innovations and systems will evolve and be adopted
by a culture over time.” [GB08]. This stresses that evaluation of interactive systems
should also capture their adoption by users on a more long-term use, but also how
they are effectively used, sometimes adapted in more convenient or unintended
ways. An example is the field study we have conducted on left-over windows (see
section 2.1.3), which helped us to identify patterns of use of a technology and
corresponding users’ behaviors. Such studies are long and difficult to design and
conduct, but can also raise many technological issues: the studied techniques, and
possible additional software (tools for the study), must be reliable enough for real
use, with real users, and without supervision from an operator. In our case, we
also faced problems because our study was investigating an existing system, not a
design prototype, and implementing the event logger was the longest phase of the
project. We used several APIs (e. g. Cocoa, AppleScript Access, Accessibility) and
designed several algorithms to identify windows’ and their states, to maintain
lists of open/reduced/left-over windows, to access low-level events, etc.

3.3.3 When Technology Integrates Designs (Or Not)

Designing novel interaction techniques and interactive systems, understanding
and explaining “interaction phenomena”, defining and operationalizing theories
and models are satisfying for us as scientists. Another reward is to see the results
from our field spread into the “real world”, as an ultimate assessment of their
relevance and usefulness. This is however rarely the case, and even the small
number of technologies that succeed in getting out of the research labs rarely
do so in less than 20 years. The history of HCI technology is riddled with many
well-known examples that I have already mentioned. Kay advocates that very
novel ideas come from changing points of view [Kay89], and Buxton points
out the need of iterative augmentation and refinements before a good invention
eventually turns out to become an innovation [Bux08]. We all have in mind the
impressive number of inventions by Xerox PARC scientists that turned into real
innovations in the 70’s, and sometimes in about 10 years: the Xerox Alto (1973)
inspired the design of the Apple Lisa released in 1983, followed by the Macintosh
one year later.

Setting aside marketing and business concerns and considering only technol-
ogy, the context of HCI in the 70’s was very different from now: everything was still
open to design and these pioneers almost completely shaped modern interactive
technologies. The “adjacent possible”, as discussed before, was small and many
good ideas and breakthroughs were needed to push its limits. But we are now in a
different situation, were the adjacent possible has been extended and is fortunately
still growing and opening the way to many new designs. The counterpart is that
it might also make new ideas and major advances more difficult to envision.
In addition, and probably more important, they are more difficult to transfer
into the “real world”, since they must be integrated with operating systems
and higher-level paradigms – e. g. WIMP, event-based architectures, UI toolkits –
that have not really changed since they were conceived. This “installed base”
prevents a radical change of interactive systems, and also limits the integration
of novel interaction methods. In fact, the adjacent possible not only comes

 Evaluation
 Integration

Prototyping

DESIGN

ENGINEERING

OF INTERACTION
TECHNIQUES

OF INTERACTIVE
SYSTEMS

ÇTechnology Enables
Integration of Design

from the available parts, but also from the possibilities of assembling those
parts, what I called “what technology enables”, echoing Olsen’s “power in
combination” [Ols07], Buxton’s “refinements and augmentations” [Bux08] and
Beaudouin-Lafon’s “reinterpretability” [Bea04].

64 from engineering interactive systems to designing interaction

So, how could we offer better integration of our “inventions” into the current
ecosystem of interactive technology? The first solution is when integration is
straightforward, by the means of the Operating System (OS) and/or adapted
toolkits. But the further we get from the WIMP paradigm, the more unlikely it is
to occur. The second solution is to account for the properties of the target system
from the early stages of design, as illustrated with the TorusDesktop pointing
facilitation technique in section 2.3.1. This trade-off might drastically reduce the
design space, requiring to balance between the benefits of possible designs and
their feasibility given the constraints of the technology. The drawback is obviously
to discard better alternatives from the start, but this risk should also be assessed
in terms of related work. In the case of TorusDesktop, target-aware techniques
are supposed to be better, were already explored in depth, but none of them
has been incorporated into an existing interactive system. The third solution,
illustrated by Gliimpse, is to target an ad-hoc but advanced prototype, half-way
to the “final” version, but comprehensive enough to convey the innovation. As
discussed in section 2.3.2, this high level of viscosity [Ols07] implies to hack and
tweak, as well as to reinvent parts of interactive systems. While enabling the
evaluation and revision of underlying technology, it only provides “surface”-level
integration (in a standalone application) where a deeper integration could durably
extend the adjacent possible: For instance, a built-in animation engine between
heterogeneous data and objects at a system- or toolkit-level9 would have been of
great help to implement Gliimpse, but also to explore a similar solution in other
situations. Again, such an implementation can in turn inform the design of a more
general approach, and might help implement it in a toolkit, but it is unlikely to
scale to the system level.

As a fourth solution, research has produced several systems or toolkits that
facilitate the integration of advanced interaction into real systems. The most
complete and advanced one is probably Metisse, developed in the in|situ| group
by Olivier Chapuis and Nicolas Roussel. Metisse is a redesign of parts of the X
Window system in order to support advanced window management techniques
in a standard Linux graphical environment [CR05]. Metisse “intercepts” and
“redirects” the rendering and input events of application windows in order to
recompose windows and modify interaction in various ways. It has been used
to implement existing advanced window manipulation techniques [Bea01], to
create and experiment with many novel techniques in a real environment, with
legacy applications [Stu+06; CR07; CLP09; FCR09; CR10]. Metisse has even been
included in a Linux distribution (Mandriva Linux in 2007), and used for game
development. Higher level tools help achieve the integration of novel post-WIMP
techniques by “hijacking” and interpreting pixels rendered on the screen [DF10],
or by leveraging introspection mechanisms of some UI toolkits and “injecting” new
code into a legacy application at run-time [EBM11]. The integration is weaker than
with Metisse, but powerful enough to allow testing advanced techniques which
otherwise would have been impossible or cumbersome to implement in a real
environment.

These examples show that improving the support for integrating novel tech-
niques into existing systems requires an increased level of “openness” in terms of
access to resources (e. g. input, pixels, etc.) and objects (applications, widgets, etc.),
as well as their level of extensibility. All the approaches described above consist of
intercepting system resources more or less deeply in order to make these resources
more accessible: in short, they plug into “open closed systems” wherever they can.

9 For instance, Apple APIs provide such built-in animation mechanisms, but between predefined objects
attributes of the same type.

3.3 engineering unleashes interaction design 65

ICon [DF04] and WILDInputServer (see section 3.2.3) also follow this principle for
input resources, therefore facilitating the integration of multiple-device interaction
techniques with limited effort and increased configuration capabilities. However,
these are only “fixes” and should be part of low-level system architectures to
exploit the full potential of advanced interaction in real conditions of use.

3.3.4 A Missing Link Between Interaction Design and Engineering

Now that we have studied both parts of the “iceberg” it should be clear that they
both influences each other: On the one hand, designing advanced interaction both
leverages and challenges interactive systems and tools; On the other hand, UI tools
and technologies both support and inspire interaction design, but also limit what
is possible. It is this strong coupling that I call the loop of “Designeering Interaction”
and that I explore in the next chapter.

“And if the gap between creative design and computer tools was a result
of the poor creative power of the tools for interaction design? Exploring,
proposing and evaluating solutions, questioning conventions and established
knowledge, this is how we defined creative activities. These are also the
activities that should be supported by future tools for interaction design, so that
the limitations of applications would not reflect the limitations encountered by
their developers or their designers, but the limitations defined by their users.”

Stéphane Huot – Ph.D. Dissertation (2005) [Huo05].

4
D E S I G N E E R I N G I N T E R A C T I O N

The introduction of the previous chapter asked: “can a designer/developer easily
implement a novel zoomable interface with the ZVTM toolkit [Pie05], describe its
interaction logic with state-machines through the HSM toolkit [BB06] and support mark-
based [AZ09] and multi-touch [Kin+12a] input?”. One way to answer this question
is the extent to which these tools put the system to be designed within the
adjacent possible. Chapter 2 illustrated various situations: Gliimpse was on the
edge of the adjacent possible; BiPad was in the adjacent possible; FlowStates
was intentionally designed to extend the adjacent possible. However, this is a
retrospective analysis and the problem lies in the designer’s a priori knowledge of
the “adjacent possible” of the tools at hand. Exploring the adjacent possible often
requires a trial-and-error strategy focusing on technical issues only, rather than
design issues. While this makes sense when engineering new interactive systems
or toolkits, it does not support interaction design as a creative activity very well.

I already addressed this tension between UI technology and interaction design
during my Ph.D., pointing out the gap between the creative nature of interaction
design and the creative power of the tools we use. Research in HCI has produced
many toolkits, addressing many different issues in various ways. But as illustrated
in the previous chapters, designing advanced interaction still remains too often
a process full of technical pitfalls, requiring to hack systems, to master low-
level technologies and to combine them together [OK05] in ways they were not
expected to be combined. From a technological point of view, we are in a situation
quite similar to the Do It Yourself (DIY)/hackerspace community a few years ago:
Testing and implementing prototypes was required deep knowledge in electronics
to assess the feasibility of the idea and to design sometimes complex circuit

67

68 designeering interaction

diagrams before assembling low-level components. The Arduino1 technology now
makes it possible for anyone, with a minimum of knowledge, to invent, prototype
and explore: Such tools make technology affordable and more accessible by
encapsulating complexity and enabling rapid combination, thus better supporting
creativity. Even though some ideas will always be on the edge, it makes it easier to
assess and explore the adjacent possible of this technology. The only tools similar
to Arduino that we have in HCI are those dedicated to WIMP interfaces, based on
the combination of widgets. As I already discussed in section 3.3.1, they hardly
support new forms of interaction. On the other hand, the profusion of specialized
Post-WIMP toolkits with different abstractions does not ease their combination.
These challenges were already pointed out in 2000 by Myers et al. in their paper
“Past, Present, and Future of User Interface Software Tools” [MHP00]. Most of them
are still on today’s research agenda.

Through the lens of Johnson’s adaptation of Kauffman’s “Adjacent Possible”
theory [Joh10], I identified some attributes of UI toolkits as some of the “spare
parts” for interaction design: what they suggest, enable and provide. The challenge
is now to design a framework that captures these attributes in order to inform
designers on the adjacent possible of existing toolkits, and to identify the re-
quirements for designing future ones. This chapter gives a first sketch of what
this “Designeering Interaction” conceptual framework could be. It also discusses
several future directions for research on the operationalization of the framework,
as well as the design of tools that support the concept at several levels: system
and programming level, prototyping level, and end-user level.

4.1 the cycle of designeering interaction

The goal of the concept of “Designeering Interaction” is to get a better under-
standing and a definition of the relationships between interaction design and the
technology that it uses, mainly software tools as a first step, in order to inform
both the design process (especially prototyping) and the engineering of new tools.
Improving existing tools and shaping new ones is an inherent part of many, if notÇ“We shape our tools and

thereafter our tools shape
us” – M. McLuhan, 1964

all, Human activities (e. g. crafting/manufacturing, cooking, hunting). As a first
step towards the Designeering Interaction framework, I take a closer look at the
relationships between the two.

In chapters 2 and 3, I discussed these relationships separately, from the
interaction design and the engineering points of views. From a more general
perspective, they constitute a cycle, as shown in Figure 4.1. This is well illustrated
with multi-touch technologies (section 2.3.4), if we set aside the emergence of the
initial technology: multi-touch features and limitations suggested new designs
that technology made possible to prototype and to evaluate; in turn, these new
designs led to evaluate and to revise and improve technology. We can expect that
in turn, these improvements to the technology will make it possible to prototype,
evaluate and integrate new designs, which will again inform on necessary revision(s)
or possible extension(s) of the technology.

Figure 4.1 presents the cycle of designeering, linking the relationships between
interaction design and engineering. Some of the relationships may not be present
in all situations, depending on where a prototype lies with respect to the Adjacent
Possible boundaries:

1 See the Arduino web site: http://www.arduino.cc/.

http://www.arduino.cc/

4.1 the cycle of designeering interaction 69

 Evaluation
 Integration

Prototyping

Evaluation
Revision
Extension

DESIGNEERING
INTERACTION

DESIGN

ENGINEERING

leads to
of

 enab
le

s
fo

r

OF INTERACTION
TECHNIQUES

OF INTERACTIVE
SYSTEMS

DESIGN

ENGINEERING
OF INTERACTIVE
SYSTEMS

 Theories & Methods

Th
eories & Methods

Figure 4.1: The infinite loop of “Designeering Interaction”.

inside If the prototype is inside of the adjacent possible, we are likely to observe
only “engineering ⇒ design” relationships: TorusDesktop or BiPad (see
chapter 2), for example, were inside the adjacent possible and did not really
challenged technology. Designing prototypes inside the adjacent possible
means that we have the right tools, and this might not lead to the revision
of existing tools or the engineering of new ones.

borderline For prototypes that are near the boundary, some “engineering ⇒
design” relationships may be missing but most or all of the “ design ⇒
engineering” relationships will be present. These borderline problems are
the most interesting, since they make the loop more efficient and are likely
to significantly extend the Adjacent Possible, thus paving the way to systems
outside of it. However, as mentioned in the introduction of this chapter,
engineering should not be the single focus of attention. Some examples
include Gliimpse, which I already discussed in this document, and the
CPN2000 project which, by studying principles on the edge of the adjacent
possible, has resulted in many findings in terms of technology [BL00],
interaction techniques [Bea+01] or theory [BM00].

outside If the prototype is beyond the adjacent possible, the “engineering ⇒
design” section is likely to be nonexistent and is unlikely to engage the
“design⇒ engineering” part of the cycle. In this case, intermediate goals that
lie within the edge of the Adjacent Possible are required to make progress,
but with no guarantee that they will lead to the right result (e. g. Dynabook).

It is unlikely that we can define the exact “path” for designs that lie outside
the Adjacent Possible. However, estimating whether the system to be designed is
inside or not, and using tools that drive the designeering loop faster could ease the
exploration of design spaces and the improvement of technologies, thus helping
to extend the boundaries of the Adjacent Possible faster.

This discussion has addressed the concept of an overall Adjacent Possible in UI

technologies. Its atomic parts are the theories, models, methods and technologies
that we assemble together to create new designs. We can recursively apply this

70 designeering interaction

concept to these parts, and especially to UI technologies and toolkits. If we could
operationalize the concept of the Adjacent Possible of a toolkit, as well as their
possible combinations, we could in turn better estimate the feasibility of a new
design.

4.2 towards a conceptual framework

Defining the Adjacent Possible of a toolkit requires to think in terms of “com-
bining atomic parts”. These atomic parts constitute the provide attribute of a
toolkit that I defined in the previous chapter. Generally speaking, toolkits provide
developers with abstractions and a basic set of concrete implementations of these
abstractions. For example, all WIMP toolkits are based on two abstractions, the
widget [MA88] and the events/callback mechanism (e. g. Listeners in Java), and
they all provide a set of default widgets.

The atomic parts of Post-WIMP toolkits highly depend on the level of abstrac-
tion and generalization of the concepts that the toolkit implements. For instance,
toolkits for stroke-based interaction, such as SATIN [HL00] or SST [AZ09], provide
developers at least with gestures recognizer(s) and strokes interpreter(s) as their
atomic parts. These components are also likely to depend on the data they
manipulate, e. g. strokes and gestures, that should be considered atomic parts as
well. In this example, the atomic parts are components dedicated to a particular
task or interaction method. Conversely, some toolkits provide lower-level and
generic atomic parts that do not encapsulate a specific interaction but instead an
abstraction to describe interaction. This is the case of FlowStates, whose atomic
parts are state machines, data-flow processing devices and the abstract events they
exchange. Another example is Proton++ [Kin+12a], which provides a way to
describe multi-touch gestures with regular expressions.

These atomic parts must then be assembled. The attribute that I called enable
in the previous chapter represents the set of operations that the developer can do
with the atomic parts, mainly their creation, extension, and combination.

extension Extension or implementation in toolkits is often achieved by inheri-
tance from the abstract concept or from an existing concrete atomic part. The level
of extensibility is hard to assess, as it depends on the level of abstraction of the
provided atomic parts. For example, in the Java Swing toolkit, slightly changing
the behavior of a widget (e. g. adding a roll-over effect on a button) is fairly easy to
achieve with inheritance, but implementing a widget from scratch is difficult (as in
Motif [MHP00] and most WIMP toolkits). Conversely, with FlowStates, extending
an existing state machine is not easy and can even be problematic at a conceptual
level (e. g. when redefining an existing transition), but creating a new one is
straightforward.

combination For the combination of atomic parts, I propose to distinguish
between two cases, depending on whether the combination is “structural” or
“logical”. Structural combination consists in assembling atomic parts in a way
that do not create a synergy2, a new interaction technique. For example, WIMP

interfaces are purely structural combinations of widgets, guided by the structure
of the resulting interface. Even though some logic will be defined as responses to
user’s actions on the widgets (e. g. changing the content of a widget when clicking
another one), this is the logic driven by the application and does not define a new

2 In systems theory, synergy refers to interactions between elements that produce an effect greater than
the sum of their individual effects.

4.2 towards a conceptual framework 71

form of interaction. Similarly, in the case of stroke-based interaction, chaining
a shape interpreter with a recognizer is a structural combination. Conversely,
a logical combination creates new “spare parts” with different or extended
capabilities. For instance, a Marking Menu [KB91] is a combination of a Pie
Menu [Cal+88] and a gesture recognizer. This type of combinations is relatively
easy to achieve with FlowStates, sometimes without even writing code: provided
that the two blocks have already been implemented, they can be connected in
the visual editor. Logical combinations are for example the main principle of the
Ubit toolkit [Lec03] whose “brickgets” extend the widget concept to extensible
and combinable bricks of lower granularity (e. g. behavior, graphics). Logical
combinations are more powerful than structural ones, especially for prototyping,
since they define new interaction techniques and not only a set of co-existing
techniques. In other words, structural combinations remains inside the Adjacent
Possible of a toolkit, whereas we can expect logical combinations to extend
it. However, enabling logical combinations is more difficult to achieve since it
requires an adapted model that accounts for modularity and interoperability of
the atomic parts.

reuse An important property to consider for both the extension and combina-
tion of atomic parts is how the toolkit allows to reuse these newly created parts.
This is related to the “design ⇒ engineering” phase of the designeering cycle,
when interaction design extends the adjacent possible of technology, making
future explorations easier and faster. Most toolkits let developers reuse extensions
of atomic parts, typically through the features of the underlying programing
language (e. g. Object Oriented Programming). Reusing combinations is more
complex since it requires combinations to be also considered as atomic parts, and
therefore to be compliant with the abstractions and the model of the toolkit. In
WIMP toolkits, this is usually achieved by encapsulating several widgets into a
parent widget. Reusing combinations in toolkits for advanced interaction is in
general more difficult to achieve because of their specialization. For example, a
combination of custom gesture recognizers designed with a toolkit for pen-based
interaction is unlikely to be reused with a 3D motion capture system, even though
it is a very similar problem. Overall, reusing extensions and combinations is often
limited to the sole purpose they were originally made for, which is of limited
interest for the exploration of new designs. In fact, most UI toolkits have poor
support for polymorphism [BM00], since the abstractions they provide are most of
the time highly dependent on their application domain and the underlying data.

interoperability Finally, combination and reuse is even more difficult to
achieve when combining elements from different toolkits. This lack of interop-
erability between toolkits is one of the main limitations for rapid and iterative
prototyping of advanced interaction. As discussed before, we now have many
different tools that address specific problems, but they are difficult or impossible
to use together. Different toolkits are based on different abstractions and models,
requiring to deal with several programing paradigms, abstractions, data struc-
tures and even sometimes programming languages within the same prototype. Çtoolkits are good to do

what they were made for,
and to make us do what
they were made for.

For example, combining the four toolkits listed in the introduction (ZVTM, HSM,
SST and Proton++) would require to: (i) implement Java bindings for the HSM
and Proton++ toolkits (written in C++), which is not straightforward and could
seriously limit the accessible functionalities of the toolkit; (ii) handle multiple
and different events mechanisms from SST (marks gestures) and Proton++ (multi-
touch gestures), and connect them to HSM state machines; (iii) link HSM state
machines to ZVTM functionalities. This requires specialized programing skills
and is time consuming: it might be easier to develop an ad-hoc solution from

72 designeering interaction

scratch, even though it is unlikely to be reused. However, being able to leverage
the capabilities of these toolkits together for a new purpose would enrich the
adjacent possible of both interaction design and technology.

Current solutions to overcome this lack of interoperability mainly consists
in external mechanisms that “glue” toolkits together. Distributed components
such as Java Beans or Service Oriented Architecture (SOA) [VCT12] have been
used as mechanism to externalize some toolkits components and functionalities.
This is however constraining for prototyping since it imposes to follow specific
patterns and conventions. Simpler and lighter protocols, such as Ivy [Bui+02]
and OSC, come from the domain of computer music and are more and more
used in interaction design as tools for connecting heterogeneous modules of an
interactive system (as we did in our distributed environments for WILD). The
problem is that only a few toolkits, if any, embed these types of mechanisms
for interoperability, and so they have to be added at the application level. Finally,
another unresolved issue for interoperability is to deal with the different concepts
and abstractions manipulated by toolkits, which always require an adaptation
layer when combining them. A good example of interoperable tools are web
technologies such as HTML, JavaScript and Cascading Style Sheets (CSS), since
they were designed to manipulate the same abstraction: the Document Object
Model (DOM). Beaudouin-Lafon’s proposition to promote interaction as first-class
objects in toolkits [Bea04] is a promising way towards better interoperability,
provided that they have a similar abstraction of what interaction is.

4.2.1 Extension and Operationalization of The Framework

The provide and enable attributes are a first attempt to assess the intrinsic adjacent
possible of a toolkit in order to estimate the feasibility of a prototype. They refine
Olsen’s “power in combination” [Ols07] criterion, and could help choose the right
tool for a given problem. The four dimensions of the enable attribute, i. e. extension,
combination, reuse and interoperability, also define important features for toolkits
to support the designeering cycle in both directions by promoting the facilitation
of prototyping and the extension of the technology. I believe that these attributes
can help rethink the notion of a toolkit since a common abstraction for Post-WIMP
interaction, similar to the widget for WIMP interfaces, is unlikely to exist. Following
these principles might help create better tools for interaction design, not just a set
of predefined building blocks, but interoperable frameworks to create, reuse and
combine the blocks needed for the task at hand.

However, these attributes and their dimensions need to be refined and in-
vestigated deeper in order to operationalize the framework, compare existing
tools, and develop new ones. A first step is to study and classify existing tools
for interaction design with respect to these attributes to assess their relevance.
Table 4.1 shows a preliminary coarse-level assessment of these attributes for the
Java Swing, Proton++ and FlowStates toolkits.

Additionally, as discussed in section 3.3.1, what the toolkit suggests has to be in
line with what it actually provides and enables. This is however a complex problem,
since what the toolkit suggests is subjective. It might vary from one developer
to the next, depending on their knowledge and experience of a particular toolkit
and of what Myers et al. call “threshold and ceiling” of a toolkit: “The ‘threshold’ is
how difficult it is to learn how to use the system, and the ‘ceiling’ is how much can be
done using the system.” [MHP00]. Finally, it should also depend on the visibility of

Çthe guy with an infinite
adjacent possible

what the toolkit provides and enables, and the possibility to assess these attributes

4.3 tools for designeering interaction 73

easily. For example, we can hypothesis that Visual Languages better exhibit these
attributes, by making the atomic parts visible in a library of components and
manipulable directly in an editor. An interesting research direction would be to
define a measure for the “level of disclosure” of a toolkit, inspired by Gaver’s
technology affordances [Gav91], in relation to its provide and enable attributes.

Provide Java Swing Proton++ FlowStates

Atomic parts: abstract yes yes yes

concrete yes no yes

Enable

Extension: inheritance good poor poor

creation poor good good

Combination: structural good good medium

logical poor poor good

Reuse: extensions good medium good

combinations medium medium good

Interoperability: internal medium good good

external poor medium good

Table 4.1: The Provide and Enable attributes of a UI toolkit, illustrated with three examples:
the Java Swing WIMP toolkit, Proton++ for multi-touch gestures and FlowStates.

4.3 tools for designeering interaction

While not fully operationalized yet, the “designeering” framework already sug-
gests some interesting directions for the engineering of new tools that better
support the “designeering cycle”: tools that enable prototyping, to evaluating and to
integrating novel interaction techniques, while being modular and flexible enough
to be revised and extended with these new designs. While some research trends are
adopting an “horizontal” approach, considering the whole life cycle of interactive
software development at multiple levels (programming languages, libraries and
toolkits, software architectures, prototyping) [Cha08a; Cha08b; Let+10], my re-
search strategy is to follow instead a “vertical” approach, focusing on interaction
design and prototyping. By developing and studying tools that support the
concepts of “designeering interaction”, my goal is to enrich the framework which
in turn will help understand the necessary improvements to the tools in an
iterative co-evolution process. In this section, I briefly discuss what this tools
could be at three levels: “system and programming”, “prototyping”, and “end-
user level”. These are the three main research directions that I have started to
explore in my current projects or that I plan to initiate in the near future.

4.3.1 System & Programming Languages

Interactive systems, e. g. desktop computers, mobile devices or distributed plat-
forms, are built on very similar architectures and operating systems. They mainly
consist of a stack with five layers: Hardware & Peripherals, Kernel (CPU and
memory management, file system, drivers, etc.), System libraries, Application
Frameworks (toolkits) and Applications. Each layer accesses and encapsulates

74 designeering interaction

the resources from the layer underneath and provides the upper layer with
the higher-level functionalities it is supposed to need. This encapsulation and
abstraction of low-level resources is partly the result of the standardization of
development processes, which, in terms of interaction, is based on the wide
acceptance of the WIMP paradigm. At the application framework level, WIMP

toolkits provide developers with widgets and high-level input events (mouse and
keyboard) so that prototyping or implementing advanced interaction is hard to
achieve if the required functionalities are not already implemented at the toolkit
level. The only solution is to go down the levels until the desired features can
be accessed, which most of the time requires shifting to another programing
paradigm and/or language. Common examples that are still issues today include
accessing advanced channels from input devices (e. g. pressure from a pen
tablet), which requires going down to system-level libraries and manufacturer’s
API, or managing multiple mouse cursors, which requires implementing custom
drivers [BL00] or fake cursors accessible only at the toolkit level [HB99; Lec03;
DF04; TG04]. The same applies to programming languages, which were designed
to describe computation, not interaction [Cha08a; Bea08].

While the HCI community argues that systems architectures and programming
languages must be revised to better account for interaction [MHP00; Cha08a;
Bea08], we will probably not have the opportunity to revolutionize or even
just reshape the core of operating systems to better account for interaction as
the central issue of computing. First, it would require a lot more time, efforts
and resources than the HCI community is willing to spend. Second, except for
experimental purposes, and even in the case of technical success, it is unlikely
to be adopted by industry if we consider the current installed base of “standard”
systems. Renouncing to design an “Interaction Machine”, we are thus “hacking”
systems, in order to experiment with new interactive technologies and to promote
their integration in real setups. We can distinguish between three levels of
extension: system and libraries, programming languages, and application frame-
works. For example, Metisse [CR05] illustrates low-level system modifications that
enable advanced interaction in real window managers. SwingStates [AB08] or
I∗ [Cha08b] are libraries that extend programming languages and their concepts
to better handle interaction. At the application framework level, ICon [DF04] gives
high-level access to low-level resources (input devices), thus avoiding developers
to manage this level of complexity.

As discussed in the designeering framework, the problem is again the interop-
erability between these tools at several levels. An interesting research direction
is to define a common low-level language or library that accounts for the
combination and interoperability properties of the designeering framework. It
could be used as a transversal and universal access point to the different layers of
systems. I have started to explore such a low-level interaction library based on the
erlang programming language [AVW93]. Its built-in management of concurrency,
message passing paradigm and hot swapping of code are powerful properties for
combination and interoperability. In fine, the goal is not to make such a low-level
library a multi-purpose development tool for advanced interaction, but a core
library that would support combination and interoperability of higher-level and
more focused frameworks and toolkits.

4.3.2 Creative Prototyping: Sketching Interaction, not Interfaces

Tools for rapid design of user interfaces appeared with the rise of the WIMP

paradigm. Noticeable Interface Builders include the pioneering HyperCard [Goo88],

4.3 tools for designeering interaction 75

and the widely used VisualBasic. However, even the more recent Interface Builders
are limited for specifying behaviors of an interface beyond simple predefined
actions on widgets, and rely on standard event-based programming for the logic
of interaction. Tools based on hand-drawn sketches have also been studied as a
way to bridge the gap between early design phases and functional prototypes,
such as SILK [LM95] for WIMP interfaces or DENIM [New+03] for web sites. But
the definition of interaction is also limited to simple behaviors (e. g. transition to
another form when pressing a button). For novel forms of interaction, the diversity
of input and interaction methods has led to various domain-specific authoring
and prototyping tools such as: the Phidgets API [GF01], which pioneered easy
development of physical interfaces by encapsulating low-level communication
with electronic devices into high-level reusable blocks; d.tools [Har+06], which
extends and generalizes this principle with an integrated environment based
on visual programming for the design, test and analysis of applications for
“information appliances” and physical interfaces; Exemplar [Har+07], which is
based on Programming by Demonstration (PbD) for programming sensor-based
interactions; The OpenInterface framework and its SKEMMI editor [Law+09] to
reuse and connect components for advanced interfaces in a data-flow editor;
DejaVu [KMC12], an Integrated Development Environment (IDE) for camera-based
interactions, that combines standard programming with video stream capture and
processing in a visual editor.

Overall, current tools for prototyping interaction reflect the situation that I
already discussed for UI toolkits in general: Interface Builders are powerful tools
for prototyping standard UIs by “structural combination”, even with sketch-based
methods, but require to switch to a lower-level paradigm for describing behaviors
(standard event-based programming) and fail to support the requirements for
advanced interaction. Conversely, tools for advanced interaction have better
support for prototyping interactive behavior and novel interaction techniques in
a creative ways, by “logical combination”, but are often domain-specific.

sketching interaction Following the principles of “designeering interac-
tion”, I propose to explore new tools for designing advanced interaction, with the
overall goal of supporting extension, combination, reuse and interoperability along
the whole design process, from early design stages to functional prototyping.
Sketching is the tool of choice in early stages of interaction design [Bux07b;
Gre+12] but is rarely exploited further. Most sketch-based tools for interaction
design, even the more recent ones [KCV10; SV12], only make it possible to
draw “interfaces” (i. e. graphics and structural combinations), in a similar way
to SILK [LM95]. “Sketching interaction” (i. e. creating logical combinations) raises
some new challenges. It requires to abstract “interaction” as an atomic part of the
system and to reify this abstraction into a visual language that matches the user’s
representation. The sketch-based Post-WIMP Interface Builder that I developed
during my Ph.D. was a first step [Huo+04a], mixing sketching for graphics and
ICon’s visual language for describing interaction. I started to investigate a more
integrated approach, with an interactive sketch-based environment that could be
appropriate for describing both the interface and the interaction. The first step
is to explore the use of the state-transition and data-flow models, leveraging the
properties of the FlowStates toolkit as an underlying runtime library for iterative
and real-time sketch-based prototyping (see Figure 4.2).

The next steps will be to investigate how sketching can be used as a high-level
“glue” for extending and combining different design tools inspired by previous
work, such as programming by demonstration, and how to seamlessly integrate

76 designeering interaction

(a) Sketching a state machine. (b) Sketching graphical components.

Figure 4.2: SketchMachine!!! First prototype of a real-time sketch-based prototyping
environment for advanced interaction.

standard programming when necessary (e. g. scripting or usual programming
language). Finally, “sketching interaction” is likely to be user-dependent, espe-
cially in the context of interaction design, and imposing a rigid and fixed drawing
language could constrain design opportunities and iterations. This raises the issue
of the “resilience” of the underlying system, defined by Beaudouin-Lafon as “the
ability of a system to resist to change [e. g. web browsers] are very tolerant of incorrect
syntax in the HTML documents they display” [Bea04]. An interesting direction is to
study personalization of the drawing language for interaction design, as done
in MusInk [TLM09] for music composers, as a way to extend the system and its
language.

4.3.3 Adaptability for End-Users

At a higher level, supporting combination and interoperability as defined in the
designeering framework could also benefit the end-user by making systems and
applications more flexible and open to customization and adaptability. End-user
programming and UI customization have been advocated for a while as a way
for users to better appropriate and reinvent their interactive systems according
to their needs, sometimes in unexpected ways [Mac91; MHP00; Lie+06]. This “co-
adaptation” phenomenon [Mac91], where users not only adapt to technology but
adapt the technology to their needs, is even more crucial in the emerging context
of distributed and multi-devices environments [Cou06]. However, current systems
still offer limited customization power [MHP00], mostly accessible to skilled users
via application dependent scripting, and rarely at a system-level3.

As mentioned previously, we will hardly revise the already established ar-
chitecture of systems to account for interaction and its specificities. But we can
promote intermediate tools (libraries or application frameworks) that help support
customization by considering interaction as a first-class object. For example, I
already discussed how ICon [DF04] and its extensions (MaggLite, FlowStates and
WIS) enable a high level of adaptability and customization of interaction. Its fine
level of granularity and visual language make it a powerful tool for developers
and interaction designers, but they require practice and skills that are unlikely to
transfer to end-users. However, the underlying reactive and data-flow models of
ICon may be a good starting point for creating advanced customization tools for
end-users.

3 Mac OS is an exception, with its AppleScript system-level scripting language. However, it has to be
explicitly supported by applications.

4.3 tools for designeering interaction 77

I started to address these issues, in collaboration with James Eagan dur-
ing Quentin Roy’s internship at in|situ|, in a project that called “Interaction
Transformation”. We studied several scenarios in the context of UI teleportation
with the Scotty system [EBM11]: parts of a standard interface, e. g. an image
viewer, running on a laptop computer were deported on a tabletop surface, and
the user was able to dynamically associate touch interactions from the host
device with the original scrolling controls of the application. The two main
challenges we identified were: (i) to provide end-users with adapted interaction
techniques to manipulate and configure interaction techniques (e. g. programing
by demonstration, system suggestions); (ii) to define the underlying model
that enables combination and interoperability of interaction techniques, and more
precisely reinterpretability [Bea04]: Can we define a level of compatibility to ensure
that two interaction techniques can replace each other for a given task? Can we
define some generic adapters to compensate for the lack of compatibility between
two interaction techniques?

These challenges will be at the heart of the recently started Digipods project that
I am coordinating. The objective is to design new mobile and multi-device interac-
tive environments, the DigiCarts, that offer customizable control of heterogeneous
visualization platforms (e. g. Wall-Sized Displays, CAVEs). End-users should be
able to adapt interaction methods according to their needs, to the capabilities
of the platform and to the task at hand, but also to enable remote collaborative
interaction with users working in other platforms(s). I expect this extreme use

ÇDigiCart blueprint
(drawing by Mathieu
Nancel)

case of end-user customization and system adaptability to enrich the designeering
cycle and to inform the engineering of future interactive systems – another step in
climbing the Mount Improbable of HCI to extend the adjacent possible we created
with the WILD Room (see Figure 4.3).

The Adjacent Possible

Th
e

M
ou

nt
 Im

pr
ob

ab
le

196019701980199020002010

WILD Platform

Sketchpad

NLS/Augment

Smalltalk

ICon

MT = a+b.log2(D/W +1)

Fitts’ Law in HCI

Apple’s
Newton Multitouch

Videoplace

Ubiquitous
Computing

HiRes
LCD

ZVTM

Pick & Drop

Figure 4.3: The in|situ|’s WILD Room is the result of gradual evolutions in HCI technology,
made of a succession of Adjacent Possibles [Joh10], rather than a single jump up
the steep cliff of the Mount Improbable [Daw97].

B I B L I O G R A P H Y

[92] “A metamodel for the runtime architecture of an interactive system:
the UIMS tool developers workshop.” In: SIGCHI Bull. 24.1 (1992).
Pp. 32–37. (Cit. on p. 44).

[Ada92] Douglas N. Adams. Mostly Harmless. Arthur Dent series. Random
House, 1992. (Cit. on p. 41).

[AB06] Anand Agarawala and Ravin Balakrishnan. “Keepin’ it real: push-
ing the desktop metaphor with physics, piles and the pen.” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’06. Montréal, Québec, Canada: ACM, 2006, pp. 1283–
1292. (Cit. on p. 9).

[AGG09] Brian de Alwis, Carl Gutwin, and Saul Greenberg. “GT/SD: per-
formance and simplicity in a groupware toolkit.” In: Proceedings of
the 1st ACM SIGCHI symposium on Engineering interactive computing
systems. EICS ’09. Pittsburgh, PA, USA: ACM, 2009, pp. 265–274. (Cit.
on p. 51).

[ACB08] Caroline Appert, Olivier Chapuis, and Michel Beaudouin-Lafon.
“Evaluation of pointing performance on screen edges.” In: Proceed-
ings of the working conference on Advanced visual interfaces. AVI ’08.
Napoli, Italy: ACM, 2008, pp. 119–126. (Cit. on p. 11).

[AB08] Caroline Appert and Michel Beaudouin-Lafon. “SwingStates: Adding
State Machines to Java and the Swing Toolkit.” In: Software: Practice
and Experience 38.11 (2008). Pp. 1149–1182. (Cit. on pp. 2, 41, 43, 51,
60, 74).

[AZ09] Caroline Appert and Shumin Zhai. “Using strokes as command
shortcuts: cognitive benefits and toolkit support.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI
’09. Boston, MA, USA: ACM, 2009, pp. 2289–2298. (Cit. on pp. 16, 41,
42, 60, 67, 70).

[AVW93] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent
programming in ERLANG. 1993. (Cit. on p. 74).

[Asa+05] Takeshi Asano, Ehud Sharlin, Yoshifumi Kitamura, Kazuki Takashima,
and Fumio Kishino. “Predictive interaction using the delphian desk-
top.” In: Proceedings of the 18th annual ACM symposium on User
interface software and technology. UIST ’05. Seattle, WA, USA: ACM,
2005, pp. 133–141. (Cit. on p. 34).

[Bai09] Gilles Bailly. “Techniques de menus : Caractérisation, Conception
et Evaluation.” Ph.D. Thesis. Grenoble: Université Joseph-Fourier -
Grenoble I, 2009. (Cit. on p. 13).

[Bal04] Ravin Balakrishnan. “"Beating" Fitts’ law: virtual enhancements for
pointing facilitation.” In: Int. J. Hum.-Comput. Stud. 61.6 (Dec. 2004).
Pp. 857–874. (Cit. on p. 10).

[BB95] Jakob Bardram and Olav W. Bertelsen. “Supporting the Devel-
opment of Transparent Interaction.” In: Selected papers from the 5th
International Conference on Human-Computer Interaction. EWCHI ’95.
London, UK, UK: Springer-Verlag, 1995, pp. 79–90. (Cit. on p. 33).

79

80 Bibliography

[BP99] Rémi Bastide and Philippe Palanque. “A Visual and Formal Glue
between Application and Interaction.” In: Journal of Visual Languages
and Computing 10 (1999). Pp. 481–507. (Cit. on p. 43).

[Bau+03] Patrick Baudisch, Edward Cutrell, Mary Czerwinski, Daniel C.
Robbins, Peter Tandler, Benjamin B. Bederson, and A. Zierlinger.
“Drag-and-Pop and Drag-and-Pick: Techniques for Accessing Re-
mote Screen Content on Touch- and Pen-Operated Systems.” In:
IFIP TC13 International Conference on Human-Computer Interaction.
INTERACT ’03’. IOS Press, 2003. (Cit. on p. 34).

[BR03] Patrick Baudisch and Ruth Rosenholtz. “Halo: a technique for visu-
alizing off-screen objects.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’03. Ft. Lauderdale, Florida,
USA: ACM, 2003, pp. 481–488. (Cit. on p. 11).

[Bau+04] Patrick Baudisch, Xing Xie, Chong Wang, and Wei-Ying Ma. “Collapse-
to-zoom: viewing web pages on small screen devices by interactively
removing irrelevant content.” In: Proceedings of the 17th annual ACM
symposium on User interface software and technology. UIST ’04. Santa Fe,
NM, USA: ACM, 2004, pp. 91–94. (Cit. on p. 20).

[Bea97] Michel Beaudouin-Lafon. “Interaction instrumentale : de la manip-
ulation directe à la réalité augmentée.” In: "Actes Neuvièmes journées
francophones sur l’Interaction Homme Machine. IHM ’97. Sept. 1997. (Cit.
on p. 13).

[Bea99] Michel Beaudouin-Lafon, ed. Computer Supported Co-operative Work.
Vol. 7. Trends in Software. John Wiley & Sons, 1999. (Cit. on p. 50).

[Bea00] Michel Beaudouin-Lafon. “Instrumental interaction: an interaction
model for designing post-WIMP user interfaces.” In: Proceedings of
the ACM SIGCHI Conference on Human Factors in Computing Systems.
Vol. 2(1). CHI ’00. "The Hague: ACM, 2000, pp. 446–453. (Cit. on
p. 43).

[BM00] Michel Beaudouin-Lafon and Wendy E. Mackay. “Reification, Poly-
morphism and Reuse: Three Principles for Designing Visual Inter-
faces.” In: Proceedings of the International Conference on Advanced Visual
Interfaces. AVI ’08. Palermo: ACM, May 2000, pp. 102–109. (Cit. on
pp. 60, 69, 71).

[BL00] Michel Beaudouin-Lafon and Michael Lassen. “"The architecture
and implementation of CPN2000.” In: Proceedings of the ACM Sympo-
sium on User Interface Software and Technology. Vol. 2(2). CHI Letters.
San Diego: ACM, Nov. 2000, pp. 181–190. (Cit. on pp. 69, 74).

[Bea+01] Michel Beaudouin-Lafon, Wendy E. Mackay, Peter Andersen,
Paul Janecek, Mads Jensen, Michael Lassen, Kasper Lund, Kjeld
Mortensen, Stephanie Munck, Anne Ratzer, Katrine Ravn, Søren
Christensen, and Kurt Jensen. “CPN/Tools: A Post-WIMP Inter-
face for Editing and Simulating Coloured Petri Nets.” In: Proceedings
of the 22nd International Conference on Application and Theory of Petri
Nets (ICATPN’2001). Ed. by J-M Colom and M. Koutny. Lecture
Notes in Computer Science. Springer-Verlag, June 2001, pp. 71–80.
(Cit. on p. 69).

[Bea01] Michel Beaudouin-Lafon. “Novel interaction techniques for over-
lapping windows.” In: Proceedings of the 14th annual ACM symposium
on User interface software and technology. UIST ’01. Orlando, Florida:
ACM, 2001, pp. 153–154. (Cit. on p. 64).

Bibliography 81

[Bea04] Michel Beaudouin-Lafon. “Designing interaction, not interfaces.”
In: Proceedings of the Conference on Advanced Visual Interfaces. AVI ’04.
Gallipoli (Italy): ACM, May 2004, pp. 15–22. Invited keynote address.
(Cit. on pp. 43, 59, 60, 63, 72, 76, 77).

[BM07] Michel Beaudouin-Lafon and Wendy E. Mackay. “Prototyping
Tools and Techniques.” In: "Human Computer Interaction Handbook:
Fundamentals. Ed. by Andrew Sears and Julie A. Jacko. CRC Press,
Sept. 2007. (Cit. on pp. 33, 37, 39).

[Bea08] Michel Beaudouin-Lafon. “Interaction is the Future of Computing.”
In: HCI Remixed, Reflections on Works That Have Influenced the HCI
Community. Ed. by Thomas Erickson and David McDonald. MIT
Press, 2008, pp. 263–266. (Cit. on p. 74).

[BH94] Benjamin B. Bederson and James D. Hollan. “Pad++: a zooming
graphical interface for exploring alternate interface physics.” In:
Proceedings of the 7th annual ACM symposium on User interface software
and technology. UIST ’94. Marina del Rey, California, USA: ACM, 1994,
pp. 17–26. (Cit. on p. 41).

[BGM04] Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer. “Toolkit
Design for Interactive Structured Graphics.” In: IEEE Trans. Softw.
Eng. 30.8 (Aug. 2004). Pp. 535–546. (Cit. on p. 51).

[BWB06] Hrvoje Benko, Andrew D. Wilson, and Patrick Baudisch. “Precise
selection techniques for multi-touch screens.” In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’06.
Montréal, Québec, Canada: ACM, 2006, pp. 1263–1272. (Cit. on
pp. 30, 40).

[Bie+08] Jacob T. Biehl, William T. Baker, Brian P. Bailey, Desney S. Tan,
Kori M. Inkpen, and Mary Czerwinski. “Impromptu: a new inter-
action framework for supporting collaboration in multiple display
environments and its field evaluation for co-located software devel-
opment.” In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’08. Florence, Italy: ACM, 2008, pp. 939–948.
(Cit. on p. 51).

[Bie+93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and
Tony D. DeRose. “Toolglass and magic lenses: the see-through
interface.” In: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. SIGGRAPH ’93. Anaheim, CA:
ACM, 1993, pp. 73–80. (Cit. on pp. 28, 55).

[BGB04] Renaud Blanch, Yves Guiard, and Michel Beaudouin-Lafon. “Se-
mantic pointing: improving target acquisition with control-display
ratio adaptation.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’04. Vienna, Austria: ACM, 2004,
pp. 519–526. (Cit. on p. 34).

[BB06] Renaud Blanch and Michel Beaudouin-Lafon. “Programming rich
interactions using the hierarchical state machine toolkit.” In: Proceed-
ings of the working conference on Advanced visual interfaces. AVI ’06.
Venezia, Italy: ACM, 2006, pp. 51–58. (Cit. on pp. 41–43, 67).

[BO11] Renaud Blanch and Michael Ortega. “Benchmarking pointing
techniques with distractors: adding a density factor to Fitts’ pointing
paradigm.” In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’11. Vancouver, BC, Canada: ACM, 2011,
pp. 1629–1638. (Cit. on p. 10).

82 Bibliography

[BK11] Susanne Boedker and Clemens Nylandsted Klokmose. “The Human-
Artifact Model: An Activity Theoretical Approach to Artifact Ecolo-
gies.” In: Human-Computer Interaction 26.4 (Dec. 2011). Pp. 315–371.
(Cit. on p. 33).

[BNG04] Jullien Bouchet, Laurence Nigay, and Thierry Ganille. “ICARE
software components for rapidly developing multimodal interfaces.”
In: Proceedings of the 6th international conference on Multimodal inter-
faces. ACM. 2004, pp. 251–258. (Cit. on p. 41).

[Bui+02] Marcellin Buisson, Alexandre Bustico, Stéphane Chatty, Francois-
Régis Colin, Yannick Jestin, Sébastien Maury, Christophe Mertz,
and Philippe Truillet. “Ivy: un bus logiciel au service du développe-
ment de prototypes de systèmes interactifs.” In: Proceedings of the 14th
French-speaking conference on Human-computer interaction (Conférence
Francophone sur l’Interaction Homme-Machine). IHM ’02. Poitiers, France:
ACM, 2002, pp. 223–226. (Cit. on pp. 53, 72).

[Bux07a] Bill Buxton. Multi-Touch Systems that I Have Known and Loved. Jan.
2007. Updated by the author on Aug 30, 2012. Retrieved from: http://
www.billbuxton.com/multitouchOverview.html (Accessed February 3, 2013).
(Cit. on p. 2).

[Bux07b] Bill Buxton. Sketching User Experiences: Getting the Design Right and
the Right Design. Morgan Kaufmann, Mar. 2007. (Cit. on pp. 33, 75).

[Bux08] Bill Buxton. The Long Nose of Innovation. Businessweek. Jan. 2008.
Retrieved from: http://www.businessweek.com/innovate/content/jan2008/

id2008012_297369.htm (Accessed February 02, 2013). (Cit. on pp. 3, 33,
63).

[Bux90] William Buxton. “A three-state model of graphical input.” In: Pro-
ceedings of the IFIP TC13 Third Interational Conference on Human-
Computer Interaction. INTERACT ’90. Amsterdam, The Netherlands,
The Netherlands: North-Holland Publishing Co., 1990, pp. 449–456.
(Cit. on p. 42).

[Cal+88] John R. Callahan, Don Hopkins, Mark D. Weiser, and Ben Shnei-
derman. “An empirical comparison of pie vs. linear menus.” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’88. Washington, D.C., USA: ACM, 1988, pp. 95–100.
(Cit. on p. 71).

[CEB78] Stuart K. Card, William K. English, and Betty J. Burr. “Evaluation
of Mouse, Rate-Controlled Isometric Joystick, Step Keys, and Text
Keys for Text Selection on a CRT.” In: Ergonomics 21.8 (1978). Pp. 601–
613. (Cit. on p. 4).

[CMN83] Stuart K. Card, Thomas P. Moran, and Allen Newell. The Psychol-
ogy of Human-Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum
Associates Inc., 1983. (Cit. on pp. 4, 9).

[CMR91] Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. “A
morphological analysis of the design space of input devices.” In:
ACM Trans. Inf. Syst. 9.2 (Apr. 1991). Pp. 99–122. (Cit. on p. 4).

[CMS99] Stuart K. Card, Josh D. Mackinlay, and Ben Shneiderman. Read-
ings in Information Visualization: Using Vision to Think. London: Aca-
demic Press, 1999. (Cit. on pp. 20, 23).

http://www.billbuxton.com/multitouchOverview.html
http://www.billbuxton.com/multitouchOverview.html
http://www.businessweek.com/innovate/content/jan2008/id2008012_297369.htm
http://www.businessweek.com/innovate/content/jan2008/id2008012_297369.htm

Bibliography 83

[CRV12] Géry Casiez, Nicolas Roussel, and Daniel Vogel. “1€ filter: a simple
speed-based low-pass filter for noisy input in interactive systems.”
In: Proceedings of the 2012 ACM annual conference on Human Factors
in Computing Systems. CHI ’12. Austin, Texas, USA: ACM, 2012,
pp. 2527–2530. (Cit. on p. 56).

[CG04] Matthew Chalmers and Areti Galani. “Seamful interweaving: het-
erogeneity in the theory and design of interactive systems.” In: Pro-
ceedings of the 5th conference on Designing interactive systems: processes,
practices, methods, and techniques. DIS ’04. Cambridge, MA, USA:
ACM, 2004, pp. 243–252. (Cit. on p. 33).

[Cha05] Olivier Chapuis. “Gestion des fenêtres: enregistrement et visualisa-
tion de l’interaction.” In: IHM ’05: Proceedings of the 17th international
conference of the Association Francophone d’Interaction Homme-Machine.
IHM 2005. Toulouse, France: ACM, 2005, pp. 255–258. (Cit. on p. 17).

[CR05] Olivier Chapuis and Nicolas Roussel. “Metisse is not a 3D desktop!”
In: Proceedings of the 18th annual ACM symposium on User interface
software and technology. UIST ’05. Seattle, WA, USA: ACM, 2005,
pp. 13–22. (Cit. on pp. 58, 60, 64, 74).

[CR07] Olivier Chapuis and Nicolas Roussel. “Copy-and-paste between
overlapping windows.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’07. San Jose, California,
USA: ACM, 2007, pp. 201–210. (Cit. on p. 64).

[CLP09] Olivier Chapuis, Jean-Baptiste Labrune, and Emmanuel Pietriga.
“DynaSpot: speed-dependent area cursor.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’09. Boston,
MA, USA: ACM, 2009, pp. 1391–1400. (Cit. on pp. 10, 34, 64).

[CR10] Olivier Chapuis and Nicolas Roussel. “UIMarks: quick graphical
interaction with specific targets.” In: Proceedings of the 23nd annual
ACM symposium on User interface software and technology. UIST ’10.
New York, New York, USA: ACM, 2010, pp. 173–182. (Cit. on p. 64).

[CLV07] S. Chatty, A. Lemort, and S. Vales. “Multiple Input Support in a
Model-Based Interaction Framework.” In: Proc. TABLETOP ’07. Oct.
2007, pp. 179–186. (Cit. on pp. 41, 45).

[Cha94] Stéphane Chatty. “Extending a graphical toolkit for two-handed
interaction.” In: Proceedings of the 7th annual ACM symposium on User
interface software and technology. UIST ’94. Marina del Rey, California,
USA: ACM, 1994, pp. 195–204. (Cit. on p. 60).

[Cha08a] Stéphane Chatty. “Programs = Data + Algorithms + Architecture:
Consequences for Interactive Software Engineering.” In: Engineering
Interactive Systems. Ed. by Jan Gulliksen, MortonBorup Harning,
Philippe Palanque, GerritC. Veer, and Janet Wesson. Vol. 4940.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 356–373. (Cit. on pp. 73, 74).

[Cha08b] Stéphane Chatty. “Supporting Multidisciplinary Software Compo-
sition for Interactive Applications.” In: Software Composition. Ed. by
Cesare Pautasso and Éric Tanter. Vol. 4954. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2008, pp. 173–189.
(Cit. on pp. 73, 74).

[Cou06] Joëlle Coutaz. “Meta-user interfaces for ambient spaces.” In: Pro-
ceedings of the 5th international conference on Task models and diagrams
for users interface design. TAMODIA’06. Hasselt, Belgium: Springer-
Verlag, 2006, pp. 1–15. (Cit. on pp. 51, 76).

84 Bibliography

[Cou10] Joëlle Coutaz. “User interface plasticity: model driven engineering
to the limit!” In: Proceedings of the 2nd ACM SIGCHI Symposium on
Engineering interactive Computing Systems. ACM. 2010, pp. 1–8. (Cit.
on p. 51).

[CM06] Andrew Crossan and Roderick Murray-Smith. “Rhythmic inter-
action for song filtering on a mobile device.” In: Haptic and Audio
Interaction Design. HAID ’06. Springer, 2006, pp. 45–55. (Cit. on p. 14).

[Cru+92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert
V. Kenyon, and John C. Hart. “The CAVE: audio visual experience
automatic virtual environment.” In: Commun. ACM 35.6 (June 1992).
Pp. 64–72. (Cit. on p. 98).

[Cyc] Cycling ’74. max/msp/jitter. http://www.cycling74.com (Accessed Febru-
ary 10, 2013). (Cit. on p. 43).

[Das] Dassault Systèmes. Virtools Dev. http://www.virtools.com/ (Accessed
February 10, 2013). (Cit. on p. 43).

[Daw97] Richard Dawkins. Climbing mount improbable. Penguin science. Pen-
guin, 1997. Kindle edition. (Cit. on pp. 5, 77).

[Dem+08] Alexandre Demeure, Jean-Sébastien Sottet, Gaëlle Calvary, Joëlle
Coutaz, Vincent Ganneau, and Jean Vanderdonckt. “The 4C Ref-
erence Model for Distributed User Interfaces.” In: Proceedings of the
Fourth International Conference on Autonomic and Autonomous Systems.
ICAS ’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 61–69. (Cit. on p. 51).

[DC91] Prasun Dewan and Rajiv Choudhard. “Flexible user interface cou-
pling in a collaborative system.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’91. New Orleans,
Louisiana, USA: ACM, 1991, pp. 41–48. (Cit. on p. 51).

[DF10] Morgan Dixon and James Fogarty. “Prefab: implementing advanced
behaviors using pixel-based reverse engineering of interface struc-
ture.” In: Proceedings of the ACM SIGCHI Conference on Human Factors
in Computing Systems. CHI ’10. Atlanta, Georgia, USA: ACM, 2010,
pp. 1525–1534. (Cit. on p. 64).

[DF04] Pierre Dragicevic and Jean-Daniel Fekete. “Support for input adapt-
ability in the ICON toolkit.” In: Proceedings of the 6th international
conference on Multimodal interfaces. ICMI ’04. State College, PA, USA:
ACM, 2004, pp. 212–219. (Cit. on pp. 41–43, 60, 65, 74, 76).

[EBM11] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay.
“Cracking the cocoa nut: user interface programming at runtime.” In:
Proceedings of the 24th annual ACM symposium on User interface software
and technology. UIST ’11. Santa Barbara, California, USA: ACM, 2011,
pp. 225–234. (Cit. on pp. 58, 64, 77).

[EK84] Pelle Ehn and Morten Kyng. “A tool perspective on design of
interactive computer support for skilled workers.” In: Proceedings of
the Seventh Scandinavian Research Seminar on Systemeering. 1984. (Cit.
on pp. 33, 59).

[EMP09] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. “Equal-
izer: A Scalable Parallel Rendering Framework.” In: IEEE Transactions
on Visualization and Computer Graphics 15.3 (2009). Pp. 436–452. (Cit.
on p. 50).

http://www.cycling74.com
http://www.virtools.com/

Bibliography 85

[EBM05] Christoph Endres, Andreas Butz, and Asa MacWilliams. “A sur-
vey of software infrastructures and frameworks for ubiquitous com-
puting.” In: Mob. Inf. Syst. 1.1 (Jan. 2005). Pp. 41–80. (Cit. on p. 50).

[Eng62] Douglas C. Engelbart. Augmenting Human Intellect: A Conceptual
Framework. Air Force Office of Scientific Research, AFOSR-3233. 1962.
(Cit. on p. 1).

[Eng88] Douglas C. Engelbart. “The Augmented Knowledge Workshop.” In:
History of Personal Workstations. Ed. by Adele Goldberg. New York,
NY: ACM Press, Aug. 1988, pp. 187–236. (Cit. on p. 1).

[FCR09] Guillaume Faure, Olivier Chapuis, and Nicolas Roussel. “Power
tools for copying and moving: useful stuff for your desktop.” In:
Proceedings of the 27th international conference on Human factors in
computing systems. CHI ’09. Boston, MA, USA: ACM, Apr. 2009,
pp. 1675–1678. (Cit. on pp. 14, 64).

[FMS93] Steven Feiner, Blair Macintyre, and Dorée Seligmann. “Knowledge-
based augmented reality.” In: Commun. ACM 36.7 (July 1993). Pp. 53–
62. (Cit. on p. 26).

[FEG09] Jean-Daniel Fekete, Niklas Elmqvist, and Yves Guiard. “Motion-
pointing: target selection using elliptical motions.” In: Proceedings of
the 27th international conference on Human factors in computing systems.
CHI ’09. Boston, MA, USA: ACM, 2009, pp. 289–298. (Cit. on p. 14).

[Fit+03] George Fitzmaurice, Azam Khan, Robert Pieké, Bill Buxton, and
Gordon Kurtenbach. “Tracking menus.” In: Proceedings of the 16th
annual ACM symposium on User interface software and technology. UIST
’03. Vancouver, Canada: ACM, 2003, pp. 71–79. (Cit. on pp. 44, 46).

[Fon+10] Amanda Fonville, Eun Kyoung Choe, Susan Oldham, and Julie
A. Kientz. “Exploring the use of technology in healthcare spaces
and its impact on empathic communication.” In: Proceedings of the 1st
ACM International Health Informatics Symposium. IHI ’10. Arlington,
Virginia, USA: ACM, 2010, pp. 497–501. (Cit. on p. 30).

[FVB06] Clifton Forlines, Daniel Vogel, and Ravin Balakrishnan. “Hy-
bridPointing: fluid switching between absolute and relative pointing
with a direct input device.” In: Proceedings of the 19th annual ACM
symposium on User interface software and technology. UIST ’06. Mon-
treux, Switzerland: ACM, 2006, pp. 211–220. (Cit. on p. 45).

[Gav91] William W. Gaver. “Technology affordances.” In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’91.
New Orleans, Louisiana, USA: ACM, 1991, pp. 79–84. (Cit. on p. 73).

[Gei+01] Christian Geiger, Bernd Kleinjohann, Christian Reimann, and
Dirk Stichling. “Mobile AR4ALL.” In: 4th International Symposium
on Augmented Reality. ISAR 2001. IEEE Computer Society, 2001,
pp. 181–182. (Cit. on p. 26).

[Gje+11] Tony Gjerlufsen, Clemens Nylandsted Klokmose, James Eagan,
Clément Pillias, and Michel Beaudouin-Lafon. “Shared substance:
developing flexible multi-surface applications.” In: Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems. CHI
’11. Vancouver, BC, Canada: ACM, 2011, pp. 3383–3392. (Cit. on
pp. 47, 51).

[Gla01] Leon Glass. “Synchronization and rhythmic processes in physiol-
ogy.” In: Nature 410.6825 (Mar. 2001). Pp. 277–284. (Cit. on p. 14).

86 Bibliography

[Goo88] Danny Goodman. The complete HyperCard handbook. Macintosh per-
formance library. Bantam Books, 1988. (Cit. on p. 74).

[GP96] Thomas R. G. Green and Marian Petre. “Usability Analysis of
Visual Programming Environments: a ‘cognitive dimensions’ frame-
work.” In: Journal of Visual Languages and Computing 7 (1996). Pp. 131–
174. (Cit. on p. 59).

[GF01] Saul Greenberg and Chester Fitchett. “Phidgets: easy development
of physical interfaces through physical widgets.” In: Proceedings of the
14th annual ACM symposium on User interface software and technology.
UIST ’01. Orlando, Florida: ACM, 2001, pp. 209–218. (Cit. on pp. 60,
75).

[Gre07] Saul Greenberg. “Toolkits and interface creativity.” In: Multimedia
Tools Appl. 32.2 (Feb. 2007). Pp. 139–159. (Cit. on pp. 39, 41).

[GB08] Saul Greenberg and Bill Buxton. “Usability evaluation considered
harmful (some of the time).” In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’08. Florence, Italy:
ACM, 2008, pp. 111–120. (Cit. on pp. 61–63).

[Gre+12] Saul Greenberg, Sheelagh Carpendale, Nicolai Marquardt, and
Bill Buxton. Sketching User Experiences - The Workbook. Academic
Press, 2012. (Cit. on p. 75).

[GB05] Tovi Grossman and Ravin Balakrishnan. “The bubble cursor:
enhancing target acquisition by dynamic resizing of the cursor’s
activation area.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’05. Portland, Oregon, USA: ACM,
2005, pp. 281–290. (Cit. on p. 34).

[Gui87] Yves Guiard. “Asymmetric Division of Labor in Human Skilled
Bimanual Action: The Kinematic Chain as a Model.” In: J. Motor.
Behav. 19 (1987). Pp. 486–517. (Cit. on p. 31).

[Gus+08] Sean Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang
Irani. “Wedge: clutter-free visualization of off-screen locations.” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’08. Florence, Italy: ACM, 2008, pp. 787–796. (Cit. on
p. 11).

[HP09] Gerwin de Haan and Frits H. Post. “StateStream: a developer-
centric approach towards unifying interaction models and architec-
ture.” In: Proceedings of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems. EICS ’09. Pittsburgh, PA, USA: ACM,
2009, pp. 13–22. (Cit. on p. 45).

[Har+06] Björn Hartmann, Scott R. Klemmer, Michael Bernstein, Leith
Abdulla, Brandon Burr, Avi Robinson-Mosher, and Jennifer Gee.
“Reflective physical prototyping through integrated design, test, and
analysis.” In: Proceedings of the 19th annual ACM symposium on User
interface software and technology. UIST ’06. Montreux, Switzerland:
ACM, 2006, pp. 299–308. (Cit. on p. 75).

[Har+07] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R.
Klemmer. “Authoring sensor-based interactions by demonstration
with direct manipulation and pattern recognition.” In: Proceedings of
the ACM SIGCHI Conference on Human Factors in Computing Systems.
CHI ’07. San Jose, California, USA: ACM, 2007, pp. 145–154. (Cit. on
pp. 60, 75).

Bibliography 87

[HMB13] Björn Hartmann, Wendy E. Mackay, and Michel Beaudouin-Lafon.
“HydraScope: Creating Multi-Surface Meta-Applications Through
View Synchronization and Input Multiplexing.” In: Proceedings of
the International Symposium on Pervasive Displays. PerDis ’13. 2013, in
press. (Cit. on p. 51).

[HF11] Steven J. Henderson and Steven K. Feiner. “Augmented reality
in the psychomotor phase of a procedural task.” In: Proceedings of
the 2011 10th IEEE International Symposium on Mixed and Augmented
Reality. ISMAR ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 191–200. (Cit. on p. 26).

[HCS98] Ken Hinckley, Mary Czerwinski, and Mike Sinclair. “Interaction
and modeling techniques for desktop two-handed input.” In: Pro-
ceedings of the 11th annual ACM symposium on User interface software
and technology. UIST ’98. San Francisco, California, USA: ACM, 1998,
pp. 49–58. (Cit. on p. 42).

[Hin+05] Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, and Francois
Guimbretiere. “Design and analysis of delimiters for selection-
action pen gesture phrases in scriboli.” In: Proceedings of the SIGCHI
conference on Human factors in computing systems. CHI ’05. Portland,
Oregon, USA: ACM, 2005, pp. 451–460. (Cit. on p. 14).

[HB10] Christian Holz and Patrick Baudisch. “The generalized perceived
input point model and how to double touch accuracy by extracting
fingerprints.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’10. Atlanta, Georgia, USA: ACM,
2010, pp. 581–590. (Cit. on pp. 20, 40).

[HB11] Christian Holz and Patrick Baudisch. “Understanding touch.” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’11. Vancouver, BC, Canada: ACM, 2011, pp. 2501–2510.
(Cit. on p. 40).

[HL00] Jason I. Hong and James A. Landay. “SATIN: a toolkit for informal
ink-based applications.” In: Proceedings of the 13th annual ACM sym-
posium on User interface software and technology. UIST ’00. San Diego,
California, USA: ACM, 2000, pp. 63–72. (Cit. on pp. 41, 70).

[HDS11] Lode Hoste, Bruno Dumas, and Beat Signer. “Mudra: a unified
multimodal interaction framework.” In: Proceedings of the 13th inter-
national conference on multimodal interfaces. ICMI ’11. Alicante, Spain:
ACM, 2011, pp. 97–104. (Cit. on p. 41).

[HB99] Juan Pablo Hourcade and Benjamin B. Bederson. Architecture and
Implementation of a Java Package for Multiple Input Devices (MID). Tech.
rep. HCIL Technical Report No. 9908, 1999. (Cit. on p. 74).

[HMS05] Scott E. Hudson, Jennifer Mankoff, and Ian Smith. “Extensible
input handling in the subArctic toolkit.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’05. Portland,
Oregon, USA: ACM, 2005, pp. 381–390. (Cit. on pp. 42, 60).

[Hum+02] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean
Ahern, Peter D. Kirchner, and James T. Klosowski. “Chromium: a
stream-processing framework for interactive rendering on clusters.”
In: ACM Trans. Graph. 21.3 (2002). Pp. 693–702. (Cit. on p. 50).

88 Bibliography

[Iza+03] Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and
Mia Underwood. “Dynamo: a public interactive surface supporting
the cooperative sharing and exchange of media.” In: Proceedings of the
16th annual ACM symposium on User interface software and technology.
UIST ’03. Vancouver, Canada: ACM, 2003, pp. 159–168. (Cit. on p. 47).

[Jac85] R. J. K. Jacob. “A State Transition Diagram Language for Visual
Programming.” In: Computer 18.8 (Aug. 1985). Pp. 51–59. (Cit. on
p. 43).

[JDM99] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison.
“A software model and specification language for non-WIMP user
interfaces.” In: ACM Trans. Comput.-Hum. Interact. 6.1 (Mar. 1999).
Pp. 1–46. (Cit. on p. 45).

[Jeo+06] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh,
Julieta Aguilera, Andrew Johnson, and Jason Leigh. “High-performance
dynamic graphics streaming for scalable adaptive graphics environ-
ment.” In: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting. Tampa, Florida: ACM, 2006. (Cit. on p. 50).

[Joh10] Steven Johnson. Where Good Ideas Come From: The Natural History of
Innovation. Penguin Group US, 2010. (Cit. on pp. 5, 59, 61, 68, 77).

[Kal+05] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico
Costanza. “Tuio: A Protokol for Table-Top Tangible User Inter-
faces.” In: Proceedings of Gesture Workshop 2005. Gesture Workshop,
2005. (Cit. on pp. 38, 53, 99).

[Kar+06] Amy K. Karlson, George G. Robertson, Daniel C. Robbins, Mary P.
Czerwinski, and Greg R. Smith. “FaThumb: a facet-based interface
for mobile search.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’06. Montréal, Québec, Canada:
ACM, 2006, pp. 711–720. (Cit. on p. 20).

[KB07] Amy K. Karlson and Benjamin B. Bederson. “ThumbSpace: gener-
alized one-handed input for touchscreen-based mobile devices.” In:
Proceedings of the 11th IFIP TC 13 international conference on Human-
computer interaction. INTERACT’07. Rio de Janeiro, Brazil: Springer-
Verlag, 2007, pp. 324–338. (Cit. on pp. 20–22).

[KBC08] Amy K. Karlson, Benjamin B. Bederson, and Jose L. Contreras-
Vidal. “Understanding One Handed Use of Mobile Devices.” In:
Handbook of Research on User Interface Design and Evaluation for Mobile
Technology. Information Science Reference, 2008. (Cit. on pp. 3, 19).

[KMC12] Jun Kato, Sean McDirmid, and Xiang Cao. “DejaVu: integrated
support for developing interactive camera-based programs.” In: Pro-
ceedings of the 25th annual ACM symposium on User interface software
and technology. UIST ’12. Cambridge, Massachusetts, USA: ACM,
2012, pp. 189–196. (Cit. on pp. 60, 75).

[Kay89] Alan C. Kay. Predicting The Future. 1989. Retrieved from: http://www.

ecotopia.com/webpress/futures.htm (Accessed March 8, 2013). (Cit. on
p. 63).

[KCV10] Suzanne Kieffer, Adrien Coyette, and Jean Vanderdonckt. “User
interface design by sketching: a complexity analysis of widget rep-
resentations.” In: Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems. EICS ’10. Berlin, Germany:
ACM, 2010, pp. 57–66. (Cit. on p. 75).

http://www.ecotopia.com/webpress/futures.htm
http://www.ecotopia.com/webpress/futures.htm

Bibliography 89

[Kin+12a] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala.
“Proton++: a customizable declarative multitouch framework.” In:
Proceedings of the 25th annual ACM symposium on User interface software
and technology. UIST ’12. Cambridge, Massachusetts, USA: ACM,
2012, pp. 477–486. (Cit. on pp. 38, 41, 42, 67, 70).

[Kin+12b] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala.
“Proton: multitouch gestures as regular expressions.” In: Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing Systems.
CHI ’12. Austin, Texas, USA: ACM, 2012, pp. 2885–2894. (Cit. on
pp. 38, 60).

[KRR10] Werner A. König, Roman Rädle, and Harald Reiterer. “Interactive
Design of Multimodal User Interfaces - Reducing technical and
visual complexity.” In: Journal on Multimodal User Interfaces 3.3 (Feb.
2010). Pp. 197–213. (Cit. on pp. 41, 43).

[KB91] Gordon Kurtenbach and William Buxton. “Issues in combining
marking and direct manipulation techniques.” In: Proceedings of the
4th annual ACM symposium on User interface software and technology.
UIST ’91. Hilton Head, South Carolina, United States: ACM, 1991,
pp. 137–144. (Cit. on pp. 13, 35, 55, 71).

[KB93] Gordon Kurtenbach and William Buxton. “The limits of expert
performance using hierarchic marking menus.” In: Proceedings of the
INTERACT ’93 and CHI ’93 conference on Human factors in computing
systems. CHI ’93. Amsterdam, The Netherlands: ACM, 1993, pp. 482–
487. (Cit. on p. 13).

[LM95] James A. Landay and Brad A. Myers. “Interactive sketching for
the early stages of user interface design.” In: Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems. CHI
’95. Denver, Colorado, United States: ACM Press/Addison-Wesley
Publishing Co., 1995, pp. 43–50. (Cit. on p. 75).

[Lau+04] Laura Ann Laura Ann Petitto, Siobhan Holowka, Lauren E.
Sergio, Bronna Levy, and David J. Ostry. “Baby hands that move
to the rhythm of language: hearing babies acquiring sign languages
babble silently on the hands.” In: Cognition 93.1 (2004). Pp. 43–73.
(Cit. on p. 14).

[Law+09] Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean Vander-
donckt, and Benoit Macq. “An open source workbench for proto-
typing multimodal interactions based on off-the-shelf heterogeneous
components.” In: Proceedings of the 1st ACM SIGCHI symposium on
Engineering interactive computing systems. EICS ’09. Pittsburgh, PA,
USA: ACM, 2009, pp. 245–254. (Cit. on pp. 60, 75).

[Lec03] Eric Lecolinet. “A molecular architecture for creating advanced
GUIs.” In: Proceedings of the 16th annual ACM symposium on User
interface software and technology. UIST ’03. Vancouver, Canada: ACM,
2003, pp. 135–144. (Cit. on pp. 71, 74).

[Lee08] Johnny Chung Lee. “Hacking the Nintendo Wii Remote.” In: IEEE
Pervasive Computing 7.3 (July 2008). Pp. 39–45. (Cit. on p. 5).

[LZB98] Andrea Leganchuk, Shumin Zhai, and William Buxton. “Manual
and cognitive benefits of two-handed input: an experimental study.”
In: ACM Trans. Comput.-Hum. Interact. 5.4 (Dec. 1998). Pp. 326–359.
(Cit. on p. 30).

90 Bibliography

[Let+10] Catherine Letondal, Stephane Chatty, Greg Phillips, Fabien An-
dré, and Stephane Conversy. “Usability requirements for interaction-
oriented development tools.” In: Proceedings of the 22nd Annual Work-
shop of the Psychology of Programming Interest Group PPIG 2010, Sep
2010. Ed. by Joey Lawrance and Rachel Bellamy. Maria Paloma
Díaz Pérez and Mary Beth Rosson, Sept. 2010, pp. 12–26. (Cit. on
p. 73).

[Lie+06] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker
Wulf. “End-User Development: An Emerging Paradigm.” In: End
User Development. Ed. by Henry Lieberman, Fabio Paternò, and
Volker Wulf. Vol. 9. Human-Computer Interaction Series. Dordrecht:
Springer Netherlands, 2006. Chap. 1, pp. 1–8. (Cit. on p. 76).

[LST08] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. “The
anatomy of prototypes: Prototypes as filters, prototypes as manifes-
tations of design ideas.” In: ACM Trans. Comput.-Hum. Interact. 15.2
(July 2008). 7:1–7:27. (Cit. on p. 33).

[Liu12] Can Liu. “Exploring Mobile Augmented Reality Instructions to As-
sist Operating Physical Interfaces.” Master Thesis. RWTH Aachen
University, Jan. 2012. (Cit. on pp. 26, 27, 62).

[MM05] Hamish G. MacDougall and Steven T. Moore. “Marching to the
beat of the same drummer: the spontaneous tempo of human loco-
motion.” In: Journal of Applied Physiology 99.3 (2005). Pp. 1164–1173.
(Cit. on p. 14).

[Mac91] Wendy E. Mackay. “Triggers and barriers to customizing software.”
In: Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems. CHI ’91. New Orleans, Louisiana, United States:
ACM, 1991, pp. 153–160. (Cit. on p. 76).

[MF97] Wendy E. Mackay and Anne-Laure Fayard. “HCI, natural science
and design: a framework for triangulation across disciplines.” In:
Proceedings of the 2nd conference on Designing interactive systems: pro-
cesses, practices, methods, and techniques. DIS ’97. Amsterdam, The
Netherlands: ACM, 1997, pp. 223–234. (Cit. on pp. 4, 33).

[MF99] Wendy E. Mackay and Anne Laure Fayard. “Video brainstorming
and prototyping: techniques for participatory design.” In: CHI ’99
Extended Abstracts on Human Factors in Computing Systems. CHI EA
’99. Pittsburgh, Pennsylvania: ACM, 1999, pp. 118–119. (Cit. on p. 33).

[Mac+07] Wendy E. Mackay, Caroline Appert, Michel Beaudouin-Lafon,
Olivier Chapuis, Yangzhou Du, Jean-Daniel Fekete, and Yves Guiard.
“TouchStone: Exploratory Design of Experiments.” In: Proceedings of
the ACM SIGCHI Conference on Human Factors in Computing Systems.
CHI ’07’. ACM, Apr. 2007, pp. 1425–1434. (Cit. on pp. 39, 62).

[Mac08] Wendy E. Mackay. “From Gaia to HCI: On Multi-disciplinary De-
sign and Co-adaptation.” In: HCI Remixed, Reflections on Works That
Have Influenced the HCI Community. Ed. by Thomas Erickson and
David McDonald. MIT Press, 2008, pp. 247–251. (Cit. on p. 33).

[Mac92] I. Scott MacKenzie. “Fitts’ law as a research and design tool in
human-computer interaction.” In: Hum.-Comput. Interact. 7.1 (Mar.
1992). Pp. 91–139. (Cit. on pp. 4, 34).

Bibliography 91

[MLG10] Sylvain Malacria, Eric Lecolinet, and Yves Guiard. “Clutch-free
panning and integrated pan-zoom control on touch-sensitive sur-
faces: the cyclostar approach.” In: Proceedings of the 28th international
conference on Human factors in computing systems. CHI ’10. Atlanta,
Georgia, USA: ACM, 2010, pp. 2615–2624. (Cit. on p. 14).

[Mar+11] Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and
Saul Greenberg. “The proximity toolkit: prototyping proxemic in-
teractions in ubiquitous computing ecologies.” In: Proceedings of the
24th annual ACM symposium on User interface software and technology.
UIST ’11. Santa Barbara, California, USA: ACM, 2011, pp. 315–326.
(Cit. on p. 60).

[MAC99] Sébastien Maury, Sylvie Athénes, and Stéphane Chatty. “Rhyth-
mic menus: toward interaction based on rhythm.” In: ACM SIGCHI
Conference on Human Factors in Computing Systems Extended Abstracts.
CHI EA ’99. Pittsburgh, Pennsylvania: ACM, 1999, pp. 254–255. (Cit.
on p. 14).

[MA88] Joel McCormack and Paul Asente. “An overview of the X toolkit.”
In: Proceedings of the 1st annual ACM SIGGRAPH symposium on User
Interface Software. UIST ’88. Alberta, Canada: ACM, 1988, pp. 46–55.
(Cit. on pp. 41, 70).

[McC+06] Michael McCurdy, Christopher Connors, Guy Pyrzak, Bob Kanef-
sky, and Alonso Vera. “Breaking the fidelity barrier: an examination
of our current characterization of prototypes and an example of a
mixed-fidelity success.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’06. Montréal, Québec,
Canada: ACM, 2006, pp. 1233–1242. (Cit. on p. 33).

[Meh82] Nimish Mehta. “A Flexible Machine Interface.” M.A.Sc. Thesis.
Toronto: University of Toronto, Department of Electrical Engineering,
1982. (Cit. on p. 2).

[MVV11] Jérémie Melchior, Jean Vanderdonckt, and Peter Van Roy. “A
model-based approach for distributed user interfaces.” In: Proceed-
ings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems. EICS ’11. Pisa, Italy: ACM, 2011, pp. 11–20. (Cit.
on p. 51).

[Mes] Meso Group. vvvv : a multipurpose toolkit. http://vvvv.org/ (Accessed
February 10, 2013). (Cit. on p. 43).

[Moe02] Dirk Moelants. “Preferred tempo reconsidered.” In: Proceedings of
the 7th International Conference on Music Perception and Cognition. Ed.
by C Stevens, D Burnham, G McPherson, E Schubert, and J. A.
Renwick. Sydney: AMPS, 2002, pp. 580–583. (Cit. on p. 14).

[MH08] Tomer Moscovich and John F. Hughes. “Indirect mappings of multi-
touch input using one and two hands.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’08. Florence,
Italy: ACM, 2008, pp. 1275–1284. (Cit. on p. 30).

[MHP00] Brad Myers, Scott E. Hudson, and Randy Pausch. “Past, present,
and future of user interface software tools.” In: ACM Trans. Comput.-
Hum. Interact. 7.1 (Mar. 2000). Pp. 3–28. (Cit. on pp. 33, 62, 68, 70, 72,
74, 76).

http://vvvv.org/

92 Bibliography

[Mye+90] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, David S. Kos-
bie, Edward Pervin, Andrew Mickish, Brad Vander Zanden, and
Philippe Marchal. “Garnet: Comprehensive Support for Graphical,
Highly Interactive User Interfaces.” In: Computer 23.11 (Nov. 1990).
Pp. 71–85. (Cit. on pp. 42, 60).

[Mye91] Brad A. Myers. “Separating application code from toolkits: eliminat-
ing the spaghetti of call-backs.” In: Proceedings of the 4th annual ACM
symposium on User interface software and technology. UIST ’91. Hilton
Head, South Carolina, USA: ACM, 1991, pp. 211–220. (Cit. on pp. 2,
42, 60).

[Mye+97] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan
S. Ferrency, Andrew Faulring, Bruce D. Kyle, Andrew Mickish,
Alex Klimovitski, and Patrick Doane. “The Amulet Environment:
New Models for Effective User Interface Software Development.” In:
IEEE Trans. Softw. Eng. 23.6 (June 1997). Pp. 347–365. (Cit. on pp. 42,
60).

[Mye98] Brad A. Myers. “A Brief History of Human Computer Interaction
Technology.” In: ACM Interactions 5.2 (Mar. 1998). Pp. 44–54. (Cit. on
p. 2).

[Nac+06] Miguel A. Nacenta, Samer Sallam, Bernard Champoux, Sriram
Subramanian, and Carl Gutwin. “Perspective cursor: perspective-
based interaction for multi-display environments.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI
’06. Montréal, Québec, Canada: ACM, 2006, pp. 289–298. (Cit. on
p. 47).

[Nac+07] Miguel A. Nacenta, Satoshi Sakurai, Tokuo Yamaguchi, Yohei
Miki, Yuichi Itoh, Yoshifumi Kitamura, Sriram Subramanian, and
Carl Gutwin. “E-conic: a perspective-aware interface for multi-display
environments.” In: Proceedings of the 20th annual ACM symposium
on User interface software and technology. UIST ’07. Newport, Rhode
Island, USA: ACM, 2007, pp. 279–288. (Cit. on p. 47).

[Nam+09] Sungwon Nam, Byungil Jeong, Luc Renambot, Andrew Johnson,
Kelly Gaither, and Jason Leigh. “Remote visualization of large scale
data for ultra-high resolution display environments.” In: Proceedings
of the 2009 Workshop on Ultrascale Visualization. UltraVis ’09. Portland,
Oregon: ACM, 2009, pp. 42–44. (Cit. on p. 53).

[Nan12] Mathieu Nancel. “Designing and Combining Interaction Techniques
in Large Display Environments.” Ph.D. Thesis. Université Paris-Sud,
Dec. 2012. (Cit. on pp. 47, 57).

[Nav+06] David Navarre, Philippe Palanque, Pierre Dragicevic, and Rémi
Bastide. “An approach integrating two complementary model-based
environments for the construction of multimodal interactive applica-
tions.” In: Interact. Comput. 18.5 (Sept. 2006). Pp. 910–941. (Cit. on
p. 45).

[New+03] Mark W. Newman, James Lin, Jason I. Hong, and James A. Landay.
“DENIM: an informal web site design tool inspired by observations
of practice.” In: Hum.-Comput. Interact. 18.3 (Sept. 2003). Pp. 259–324.
(Cit. on p. 75).

Bibliography 93

[Ni+06] Tao Ni, Greg S. Schmidt, Oliver G. Staadt, Mark A. Livingston,
Robert Ball, and Richard May. “A Survey of Large High-Resolution
Display Technologies, Techniques, and Applications.” In: Proceedings
of the IEEE conference on Virtual Reality. VR ’06. IEEE, 2006, pp. 223–
236. (Cit. on p. 50).

[NR12] Donald A. Norman and Verganti Roberto. “Incremental and Rad-
ical Innovation: Design Research versus Technology and Meaning
Change.” Mar. 2012. Based on a talk presented at the Designing Plea-
surable Products and Interfaces conference in Milan, 2011. Retrieved
from: http://www.jnd.org/dn.mss/incremental_and_radi.html (Accessed
February 1, 2013). (Cit. on p. 5).

[OK05] Dan R. Olsen Jr. and Scott R. Klemmer. “The future of user interface
design tools.” In: ACM SIGCHI Conference on Human Factors in Com-
puting Systems Extended Abstracts. CHI EA ’05. Portland, OR, USA:
ACM, 2005, pp. 2134–2135. (Cit. on p. 67).

[Ols07] Dan R. Olsen Jr. “Evaluating user interface systems research.” In:
Proceedings of the 20th annual ACM symposium on User interface software
and technology. UIST ’07. Newport, Rhode Island, USA: ACM, 2007,
pp. 251–258. (Cit. on pp. 34, 39, 40, 42, 57, 59, 61, 63, 64, 72).

[PRM00] Jason Pascoe, Nick Ryan, and David Morse. “Using while moving:
HCI issues in fieldwork environments.” In: ACM Trans. Comput.-
Hum. Interact. 7.3 (Sept. 2000). Pp. 417–437. (Cit. on p. 20).

[PF93] Ken Perlin and David Fox. “Pad: an alternative approach to the
computer interface.” In: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’93. Anaheim,
CA: ACM, 1993, pp. 57–64. (Cit. on p. 23).

[PH08] Keith B. Perry and Juan Pablo Hourcade. “Evaluating one handed
thumb tapping on mobile touchscreen devices.” In: Proceedings of
graphics interface 2008. GI ’08. Windsor, Ontario, Canada: Canadian
Information Processing Society, 2008, pp. 57–64. (Cit. on p. 20).

[Pie05] Emmanuel Pietriga. “A Toolkit for Addressing HCI Issues in Visual
Language Environments.” In: Proceedings of the 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing. VLHCC ’05. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 145–152. (Cit. on
pp. 34, 41, 42, 51, 52, 67).

[PWS88] R. L. Potter, L. J. Weldon, and B. Shneiderman. “Improving
the accuracy of touch screens: an experimental evaluation of three
strategies.” In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’88. Washington, D.C., USA: ACM, 1988,
pp. 27–32. (Cit. on pp. 20–22, 40).

[QCD12] Philip Quinn, Andy Cockburn, and Jérôme Delamarche. “Ex-
amining the costs of multiple trajectory pointing techniques.” In:
International Journal of Human-Computer Studies (2012). to appear. (Cit.
on p. 12).

[RBB04] Gonzalo Ramos, Matthew Boulos, and Ravin Balakrishnan. “Pres-
sure widgets.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’04. Vienna, Austria: ACM, 2004,
pp. 487–494. (Cit. on p. 35).

[RB07] Gonzalo A. Ramos and Ravin Balakrishnan. “Pressure marks.” In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’07. San Jose, California, USA: ACM, 2007, pp. 1375–
1384. (Cit. on p. 35).

http://www.jnd.org/dn.mss/incremental_and_radi.html

94 Bibliography

[RC94] Ramana Rao and Stuart K. Card. “The table lens: merging graph-
ical and symbolic representations in an interactive focus + context
visualization for tabular information.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’94. Boston,
Massachusetts, USA: ACM, 1994, pp. 318–322. (Cit. on p. 20).

[Rek97] Jun Rekimoto. “Pick-and-drop: a direct manipulation technique for
multiple computer environments.” In: Proceedings of the 10th annual
ACM symposium on User interface software and technology. UIST ’97.
Banff, Alberta, Canada: ACM, 1997, pp. 31–39. (Cit. on p. 47).

[RS99] Jun Rekimoto and Masanori Saitoh. “Augmented surfaces: a spa-
tially continuous work space for hybrid computing environments.”
In: Proceedings of the SIGCHI conference on Human Factors in Comput-
ing Systems. CHI ’99. Pittsburgh, Pennsylvania, USA: ACM, 1999,
pp. 378–385. (Cit. on p. 47).

[RG96] Mark Roseman and Saul Greenberg. “Building real-time groupware
with GroupKit, a groupware toolkit.” In: ACM Trans. Comput.-Hum.
Interact. 3.1 (Mar. 1996). Pp. 66–106. (Cit. on p. 51).

[RSI96] Jim Rudd, Ken Stern, and Scott Isensee. “Low vs. high-fidelity
prototyping debate.” In: interactions 3.1 (Jan. 1996). Pp. 76–85. (Cit.
on p. 33).

[Sac08] Oliver Sacks. Musicophilia: Tales of Music and the Brain. 2nd ed. Vol. 1.
New York, USA: Vintage Books, 2008. (Cit. on p. 14).

[SV12] Ugo Sangiorgi and Jean Vanderdonckt. “GAMBIT: Addressing
multi-platform collaborative sketching with html5.” In: Proceedings of
the 4th ACM SIGCHI symposium on Engineering interactive computing
systems. EICS ’12. Copenhagen, Denmark: ACM, 2012, pp. 257–262.
(Cit. on p. 75).

[SPM04] Carsten Schwesig, Ivan Poupyrev, and Eijiro Mori. “Gummi: a
bendable computer.” In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’04. Vienna, Austria: ACM,
2004, pp. 263–270. (Cit. on p. 30).

[Sco+10] James Scott, Shahram Izadi, Leila Sadat Rezai, Dominika Ruszkowski,
Xiaojun Bi, and Ravin Balakrishnan. “RearType: text entry using
keys on the back of a device.” In: Proceedings of the 12th international
conference on Human computer interaction with mobile devices and ser-
vices. MobileHCI ’10. Lisbon, Portugal: ACM, 2010, pp. 171–180. (Cit.
on p. 30).

[SM89] McKay Moore Sohlberg and Catherine A. Mateer. Introduction to
Cognitive Rehabilitation: Theory and Practice. Guilford Press, 1989. (Cit.
on p. 25).

[Stu+06] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nico-
las Roussel. “User interface façades: towards fully adaptable user
interfaces.” In: Proceedings of the 19th annual ACM symposium on User
interface software and technology. UIST ’06. Montreux, Switzerland:
ACM, 2006, pp. 309–318. (Cit. on p. 64).

[Sut63] Ivan Edward Sutherland. “Sketchpad: A man-machine graphi-
cal communication system.” Ph.D. Dissertation. Cambridge, Mas-
sachusetts: Massachusetts Institute of Technology, Electrical Engi-
neering Department, Jan. 1963. (Cit. on p. 1).

Bibliography 95

[SL07] Christine Szentgyorgyi and Edward Lank. “Five-key text input
using rhythmic mappings.” In: Proceedings of the 9th international
conference on Multimodal interfaces. ICMI ’07. Nagoya, Aichi, Japan:
ACM, 2007, pp. 118–121. (Cit. on p. 14).

[Tan+03] Arthur Tang, Charles Owen, Frank Biocca, and Weimin Mou.
“Comparative effectiveness of augmented reality in object assembly.”
In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’03. Ft. Lauderdale, Florida, USA: ACM, 2003,
pp. 73–80. (Cit. on p. 26).

[Tay+01] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans
Weber, Jeffrey Juliano, and Aron T. Helser. “VRPN: a device-
independent, network-transparent VR peripheral system.” In: Pro-
ceedings of the ACM symposium on Virtual reality software and technology.
VRST ’01. Baniff, Alberta, Canada: ACM, 2001, pp. 55–61. (Cit. on
pp. 53, 99).

[TLM09] Theophanis Tsandilas, Catherine Letondal, and Wendy E. Mackay.
“Musink: composing music through augmented drawing.” In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’09. Boston, MA, USA: ACM, 2009, pp. 819–828. (Cit.
on p. 76).

[TG04] Edward Tse and Saul Greenberg. “Rapidly prototyping Single Dis-
play Groupware through the SDGToolkit.” In: Proceedings of the
fifth conference on Australasian user interface - Volume 28. AUIC ’04.
Dunedin, New Zealand: Australian Computer Society, Inc., 2004,
pp. 101–110. (Cit. on pp. 41, 51, 74).

[TP92] Sherry Turkle and Seymour Papert. “Epistemological pluralism
and the revaluation of the concrete.” In: Journal of Mathematical
Behavior 11.1 (1992). Pp. 3–33. (Cit. on p. 33).

[VCT12] Radu-Daniel Vatavu, Catalin-Marian Chera, and Wei-Tek Tsai. “Ges-
ture Profile for Web Services: An Event-Driven Architecture to Sup-
port Gestural Interfaces for Smart Environments.” In: Ambient Intel-
ligence. Ed. by Fabio Paternò, Boris Ruyter, Panos Markopoulos,
Carmen Santoro, Evert Loenen, and Kris Luyten. Vol. 7683. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 161–176. (Cit. on p. 72).

[VB07] Daniel Vogel and Patrick Baudisch. “Shift: a technique for operating
pen-based interfaces using touch.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’07. San Jose,
California, USA: ACM, 2007, pp. 657–666. (Cit. on pp. 20–22).

[WS03] Daniel Wagner and Dieter Schmalstieg. “First Steps Towards Hand-
held Augmented Reality.” In: Proceedings of the 7th IEEE International
Symposium on Wearable Computers. ISWC ’03. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 127–. (Cit. on p. 26).

[Wag12] Julie Wagner. “A Body-centric Framework for Generating and Eval-
uating Novel Interaction Techniques.” Ph.D. Thesis. Université Paris-
Sud, Dec. 2012. (Cit. on pp. 30, 32, 47, 57).

[Wei91] Mark Weiser. “The Computer for the 21st Century.” In: Scientific
American 265.3 (Jan. 1991). Pp. 66–75. (Cit. on pp. 2, 46).

96 Bibliography

[Wig+07] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell,
and Chia Shen. “Lucid touch: a see-through mobile device.” In:
Proceedings of the 20th annual ACM symposium on User interface software
and technology. UIST ’07. Newport, Rhode Island, USA: ACM, 2007,
pp. 269–278. (Cit. on p. 30).

[Wil+11] Max L. Wilson, Wendy E. Mackay, Ed Chi, Michael Bernstein,
Dan Russell, and Harold Thimbleby. “RepliCHI - CHI should
be replicating and validating results more: discuss.” In: CHI ’11
Extended Abstracts on Human Factors in Computing Systems. CHI EA
’11. Vancouver, BC, Canada: ACM, 2011, pp. 463–466. (Cit. on p. 61).

[Wob09] Jacob O. Wobbrock. “TapSongs: tapping rhythm-based passwords
on a single binary sensor.” In: Proceedings of the 22nd annual ACM
symposium on User interface software and technology. UIST ’09. Victoria,
BC, Canada: ACM, 2009, pp. 93–96. (Cit. on p. 14).

[Wob+09] Jacob O. Wobbrock, James Fogarty, Shih-Yen (Sean) Liu, Shunichi
Kimuro, and Susumu Harada. “The angle mouse: target-agnostic
dynamic gain adjustment based on angular deviation.” In: Proceed-
ings of the ACM SIGCHI Conference on Human Factors in Computing
Systems. CHI ’09. Boston, MA, USA: ACM, 2009, pp. 1401–1410. (Cit.
on pp. 10, 34).

[WF97] Matthew Wright and Adrian Freed. “Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers.” In: Interna-
tional Computer Music Conference. Thessaloniki, Hellas: International
Computer Music Association, 1997, pp. 101–104. (Cit. on pp. 53, 98).

[WB03] Mike Wu and Ravin Balakrishnan. “Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop displays.” In:
Proceedings of the 16th annual ACM symposium on User interface software
and technology. UIST ’03. Vancouver, Canada: ACM, 2003, pp. 193–202.
(Cit. on p. 30).

[Yat+08] Koji Yatani, Kurt Partridge, Marshall Bern, and Mark W. Newman.
“Escape: a target selection technique using visually-cued gestures.”
In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI ’08. Florence, Italy: ACM, 2008, pp. 285–294. (Cit. on
p. 21).

[ZDB12] Brian Ziebart, Anind Dey, and J. Andrew Bagnell. “Probabilistic
pointing target prediction via inverse optimal control.” In: Proceed-
ings of the 2012 ACM international conference on Intelligent User Inter-
faces. IUI ’12. Lisbon, Portugal: ACM, 2012, pp. 1–10. (Cit. on p. 10).

L I S T O F F I G U R E S

Figure 1.2 Story of my (professional) life 7

Figure 2.1 Cursor-wrapping Fitts’ law simulation 11

Figure 2.2 Torus Desktop dead-zone and feedback 11

Figure 2.3 Average movement time of Direct pointing, Cursor wrap-
ping and TorusDesktop as a function of direct pointing
distance 12

Figure 2.4 A 3-level Push Menu 13

Figure 2.5 Reproduction of rhythmic patterns 15

Figure 2.6 Memorization of rhythmic patterns 16

Figure 2.7 Investigating window clutter: Open vs. left-over windows 17

Figure 2.8 Gliimpse. Animating from markup code to rendered docu-
ments and vice-versa 18

Figure 2.9 Gliimpse. Animation of an HTML form 18

Figure 2.10 TapTap 21

Figure 2.11 MagStick 22

Figure 2.12 SpiraList & SnailList 23

Figure 2.13 Authoring Augmented Reality notes 27

Figure 2.14 Mobile augmented reality for setting physical controls 28

Figure 2.15 Mobile augmented reality experiment 29

Figure 2.16 Hand postures while holding a tablet device 31

Figure 2.17 Bimanual interaction on a multitouch tablet with BiPad 31

Figure 2.18 Gliimpse. Mappings between the code, its view, the docu-
ment view and its text version 38

Figure 3.1 Example FlowStates configuration 44

Figure 3.2 Basic FlowStates code construct 45

Figure 3.3 Tracking Menu implemented with FlowStates 46

Figure 3.4 The WILD Platform 48

Figure 3.5 CHI’13 Program Going WILD 52

Figure 3.6 Example jBricks configuration 53

Figure 3.7 The WILDInputServer 54

Figure 3.8 WILDInputServer Panning Configurations 56

Figure 3.9 WILDInputServer Plugins and Applications 57

Figure 4.1 The infinite loop of “Designeering Interaction” 69

Figure 4.2 SketchMachine!!! 76

Figure 4.3 The Adjacent Possible along the Mount Improbable 77

Figure A.1 Timeline of publications 108

97

98 acronyms

A C R O N Y M S

ACM Association for Computing Machinery (see http://www.acm.org/)

ACM SIGCHI ACM Special Interest Group on Computer-Human Interaction
(see http://www.sigchi.org/)

API Application Programming Interface

AR Augmented Reality

CAVE Cave Automatic Virtual Environment (see [Cru+92])

CHI ACM SIGCHI Conference on Human Factors in Computing Systems

CPU Central Processing Unit

CSS Cascading Style Sheets

CSCW Computer-Supported Cooperative Work

DOI Degree Of Interest

DOM Document Object Model

DIY Do It Yourself

F+C Focus + Context

FTIR Frustrated Total Internal Reflection

GUI Graphical User Interface

GPU Graphics Processing Unit

HCI Human Computer Interaction

HMD Head-Mounted Display

HTML HyperText Markup Language

IDE Integrated Development Environment

JVM Java Virtual Machine

LED Light-Emitting Diode

MIDI Musical Instrument Digital Interface

MVC Model-View-Controller

OOP Object Oriented Programming

OS Operating System

OSC Open Sound Control (see [WF97])

PbD Programming by Demonstration

PDA Personal Digital Assistant

RFID Radio-Frequency Identification

http://www.acm.org/
http://www.sigchi.org/

acronyms 99

RTF Rich Text Format

RPC Remote Procedure Call

SOA Service Oriented Architecture

TUIO Tangible User Interface Objects (see [Kal+05])

UI User Interface

UIST Annual ACM Symposium on User Interface Software and
Technology

VR Virtual Reality

VRPN Virtual Reality Peripheral Network (see [Tay+01])

WILD Wall-Sized Interaction with Large Datasets (in|situ|
high-resolution visualization platform project,
see http://www.lri.fr/~mbl/WILD/)

WIS WILDInputServer (the input and interaction management module
of jBricks, see section 3.2.3)

WIMP Windows Icons Menus Pointer, the standard computer GUI (term
attributed to Merzouga Wilberts in 1980)

http://www.lri.fr/~mbl/WILD/

Appendices

101

A
P U B L I C AT I O N S

a.1 full list of publications

In the field of Human-Computer Interaction, conferences are considered the primary method of
publication. Some of these conferences (ACM CHI, ACM UIST) are particularly selective and are
considered journal level work. In the following list, the names of major conferences are in bold.
Distinguished publications (best paper awards or nominations) are in gray boxes.

refereed international journals and magazines

[Bea+12] Michel Beaudouin-Lafon, Stéphane Huot, Mathieu Nancel, Wendy
Mackay, Emmanuel Pietriga, Romain Primet, Julie Wagner, Olivier
Chapuis, Clément Pillias, James R. Eagan, Tony Gjerlufsen, and
Clemens Klokmose. “Multi-surface Interaction in the WILD Room.”
In: IEEE Computer 45.4 (2012). Pp. 48–56. http://hal.inria.fr/docs/00/

68/78/25/PDF/WILD-IEEEComputer-authorversion.pdf. (Cit. on pp. 47, 48, 58).

refereed international conferences

[Wag+13] Julie Wagner, Mathieu Nancel, Sean Gustafson, Stéphane
Huot, and Wendy E. Mackay. “A Body-centric Design Space for
Multi-surface Interaction.” In: Proceedings of the 31st international
conference on Human factors in computing systems. CHI ’13.
Paris, France: ACM, 2013, 10 pages, to appear. Honorable Mention.
http://hal.inria.fr/hal-00789169/PDF/BodyScape-Hal.pdf. (Cit. on pp. 4,
109).

[Gho+12] Emilien Ghomi, Guillaume Faure, Stéphane Huot, Olivier
Chapuis, and Michel Beaudouin-Lafon. “Using Rhythmic
Patterns as an Input Method.” In: Proceedings of the 30th
international conference on Human factors in computing systems.
CHI ’12. Austin, Texas, USA: ACM, 2012, pp. 1253–1262. Best Paper.
http://hal.archives-ouvertes.fr/docs/00/66/39/73/PDF/CHI12-ewe-halv1.

pdf. (Cit. on pp. 14, 16, 109).

[Liu+12] Can Liu, Stéphane Huot, Jonathan Diehl, Wendy E. Mackay, and
Michel Beaudouin-Lafon. “Evaluating the Benefits of Real-time
Feedback in Mobile Augmented Reality with Hand-held Devices.”
In: Proceedings of the 30th international conference on Human
factors in computing systems. CHI ’12. Austin, Texas, USA: ACM,
2012, pp. 2973–2976. Honorable Mention. http://hal.inria.fr/hal-

00663974/PDF/ARFeedbackA.pdf. (Cit. on p. 29).

103

http://hal.inria.fr/docs/00/68/78/25/PDF/WILD-IEEEComputer-authorversion.pdf
http://hal.inria.fr/docs/00/68/78/25/PDF/WILD-IEEEComputer-authorversion.pdf
http://hal.inria.fr/hal-00789169/PDF/BodyScape-Hal.pdf
http://hal.archives-ouvertes.fr/docs/00/66/39/73/PDF/CHI12-ewe-halv1.pdf
http://hal.archives-ouvertes.fr/docs/00/66/39/73/PDF/CHI12-ewe-halv1.pdf
http://hal.inria.fr/hal-00663974/PDF/ARFeedbackA.pdf
http://hal.inria.fr/hal-00663974/PDF/ARFeedbackA.pdf

104 publications

[WHM12] Julie Wagner, Stéphane Huot, and Wendy E. Mackay. “BiTouch and
BiPad: Designing Bimanual Interaction for Hand-held Tablets.” In:
Proceedings of the 30th international conference on Human factors
in computing systems. CHI ’12. Austin, Texas, USA: ACM, 2012,
pp. 2317–2326. http://hal.inria.fr/hal- 00663972/PDF/bipadA.pdf. (Cit.
on pp. xiii, 30, 32, 109).

[DHC11] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. “Gli-
impse: Animating from Markup Code to Rendered Documents and
Vice-Versa.” In: Proceedings of the 24th ACM Symposium on User
Interface Software and Technology. UIST 2011. Santa-Barbara, CA,
USA: ACM, 2011, pp. 257–262. http://hal.inria.fr/docs/00/62/62/59/

PDF/GlimpseA.pdf. (Cit. on pp. 18, 37, 109).

[HCD11] Stéphane Huot, Olivier Chapuis, and Pierre Dragicevic. “Torus-
Desktop: Pointing via the Backdoor is Sometimes Shorter.” In: Pro-
ceedings of the 29th international conference on Human factors in
computing systems. CHI ’11. Vancouver, CA: ACM, 2011, pp. 829–
838. http://hal.archives-ouvertes.fr/docs/00/59/12/95/PDF/CHI11-torus-

avf.pdf. (Cit. on pp. 12, 35, 109).

[Pie+11] Emmanuel Pietriga, Stéphane Huot, Mathieu Nancel, and Romain
Primet. “Rapid Development of User Interfaces on Cluster-Driven
Wall Displays with jBricks.” In: Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing systems. EICS ’11. Pisa,
Italy: ACM, 2011, pp. 185–190. http://hal.inria.fr/docs/00/58/54/79/PDF/
jbricks-eics11.pdf. (Cit. on pp. 47, 51, 52, 57, 109).

[CHF10a] Fanny Chevalier, Stéphane Huot, and Jean-Daniel Fekete. “Visu-
alisation de mesures agrégées pour l’estimation de la qualité des
articles Wikipedia.” In: Proceedings of EGC 2010: Conférence Inter-
nationale Francophone sur l’Extraction et la Gestion des Connaissances,
Revue des Nouvelles Technologies de l’Information RNTI-E-19. EGC 2010.
Hammamet, Tunisia: Cépaduès-Éditions, Jan. 2010, pp. 351–362. http:
//hal.inria.fr/docs/00/55/06/97/PDF/WikipediaVIZ-EGC2010.pdf.

[CHF10b] Fanny Chevalier, Stéphane Huot, and Jean-Daniel Fekete. “Wik-
ipediaViz: Conveying Article Quality for Casual Wikipedia Readers.”
In: Proceedings of IEEE Pacific Visualization Symposium. PacificVis ’10.
Taipei, Taïwan: IEEE, Mar. 2010, pp. 215–222. http://hal.inria.fr/docs/
00/55/06/98/PDF/WikipediaViz-PacificVis2010.pdf.

[RHL08] Anne Roudaut, Stéphane Huot, and Eric Lecolinet. “TapTap and
MagStick: Improving One-Handed Target Acquisition on Small Touch-
screens.” In: Proceedings of the 9th International Working Conference
on Advanced Visual Interfaces. AVI ’08. ACM, May 2008, pp. 146–
153. http://hal.inria.fr/docs/00/55/06/94/PDF/TapTap-AVI08.pdf. (Cit. on
pp. 21, 22, 40, 108).

[HL07b] Stéphane Huot and Eric Lecolinet. “Focus+Context Visualization
Techniques for Displaying Large Lists with Multiple Points of In-
terest on Small Tactile Screens.” In: Proceedings of 11th IFIP TC13
International Conference on Human-Computer Interaction. Interact
2007. Springer Verlag, Lecture Notes in Computer Science, Sept. 2007,
pp. 219–233. http : / / hal . inria . fr / docs / 00 / 55 / 05 / 98 / PDF / SnaiList -

Interact2007.pdf. (Cit. on pp. 24, 25, 108).

http://hal.inria.fr/hal-00663972/PDF/bipadA.pdf
http://hal.inria.fr/docs/00/62/62/59/PDF/GlimpseA.pdf
http://hal.inria.fr/docs/00/62/62/59/PDF/GlimpseA.pdf
http://hal.archives-ouvertes.fr/docs/00/59/12/95/PDF/CHI11-torus-avf.pdf
http://hal.archives-ouvertes.fr/docs/00/59/12/95/PDF/CHI11-torus-avf.pdf
http://hal.inria.fr/docs/00/58/54/79/PDF/jbricks-eics11.pdf
http://hal.inria.fr/docs/00/58/54/79/PDF/jbricks-eics11.pdf
http://hal.inria.fr/docs/00/55/06/97/PDF/WikipediaVIZ-EGC2010.pdf
http://hal.inria.fr/docs/00/55/06/97/PDF/WikipediaVIZ-EGC2010.pdf
http://hal.inria.fr/docs/00/55/06/98/PDF/WikipediaViz-PacificVis2010.pdf
http://hal.inria.fr/docs/00/55/06/98/PDF/WikipediaViz-PacificVis2010.pdf
http://hal.inria.fr/docs/00/55/06/94/PDF/TapTap-AVI08.pdf
http://hal.inria.fr/docs/00/55/05/98/PDF/SnaiList-Interact2007.pdf
http://hal.inria.fr/docs/00/55/05/98/PDF/SnaiList-Interact2007.pdf

Refereed Domestic Conferences 105

[HL06] Stéphane Huot and Eric Lecolinet. “SpiraList: A Compact Visu-
alization Technique for One-Handed Interaction with Large Lists
on Mobile Devices.” In: Proceedings of the 4th Nordic Conference on
Human-Computer Interaction, NordiCHI 2006. NordiCHI 2006. Nordic
HCI organizations. Oslo, Norway: ACM, Oct. 2006, pp. 445–448. http:
//hal.inria.fr/docs/00/55/06/00/PDF/SpiraList-NordiCHI2006.pdf. (Cit. on
p. 24).

[Huo+04a] Stéphane Huot, Cédric Dumas, Pierre Dragicevic, Jean-Daniel Fekete,
and Gérard Hégron. “The MaggLite Post-WIMP Toolkit: Draw It,
Connect It and Run It.” In: Proceedings of ACM Symposium on User
Interface Software and Technology, UIST 2004. Vol. 5(2). CHI Letters.
Santa Fe, NM: ACM, Oct. 2004, pp. 257–266. http://hal.inria.fr/docs/
00/55/05/95/PDF/MaggLite-UIST2004.pdf. (Cit. on pp. 41, 43, 51, 55, 57, 60,
75).

[HDH03] Stéphane Huot, Cédric Dumas, and Gérard Hégron. “Toward Cre-
ative 3D Modeling: an Architects’ Sketches Study.” In: Proceedings
of 9th IFIP TC13 International Conference on Human-Computer
Interaction. Interact ’03. Zurich, Switzerland: IOS Press, Sept. 2003,
pp. 785–788. http : / / hal . inria . fr / docs / 00 / 55 / 05 / 91 / PDF / Architects -

Sketches-Interact2003.pdf.

[Bou+02] Didier Boucard, Stéphane Huot, Christian Colin, Daniel Siret, and
Gérard Hégron. “An Image-Based and Knowledge-Based system
for efficient architectural and urban modeling.” In: Proceedings of the
international conference ACADIA. Los Angeles, CA, USA, Oct. 2002,
pp. 231–240.

[DH02] Pierre Dragicevic and Stéphane Huot. “SpiraClock: a continuous
and non-intrusive display for upcoming events.” In: extended ab-
stracts on Human factors in computer systems. CHI ’02. Minneapo-
lis, MN, USA: ACM Press, 2002, pp. 604–605. http://hal.inria.fr/docs/
00/55/05/99/PDF/SpiraClock-CHI2002.pdf.

[Sos+02] Alexey Sosnov, Stéphane Huot, Pierre Macé, and Gérard Hégron.
“Rapid Incremental Architectural Modeling from Imprecise Perspec-
tive Sketches and Geometric Constraints.” In: Proceedings of the inter-
national conference Graphicon. Linz, Autriche, 2002.

refereed domestic conferences

[WMH12] Julie Wagner, Wendy E. Mackay, and Stéphane Huot. “Left-over
Windows Cause Window Clutter... But What Causes Left-over Win-
dows?” In: Ergo IHM 2012: Proceedings of the 24th French Speaking
Conference on Human-Computer Interaction. Biarritz, France: ACM,
International Conference Proceedings Series, Oct. 2012, pp. 47–50.
http://hal.inria.fr/docs/00/77/63/01/PDF/WMLisa-hal.pdf. (Cit. on p. 17).

[App+09] Caroline Appert, Stéphane Huot, Pierre Dragicevic, and Mi-
chel Beaudouin-Lafon. “FlowStates: Prototypage d’applications
interactives avec des flots de données et des machines à
états.” In: Proceedings of IHM 2009, 21ème conférence francophone
sur l’Interaction Homme-Machine. ACM, International Conference
Proceedings Series, Oct. 2009, pp. 119–128. Best Paper. http://hal.

inria.fr/docs/00/53/85/98/PDF/FlowStates.pdf. (Cit. on pp. 43, 44, 109).

http://hal.inria.fr/docs/00/55/06/00/PDF/SpiraList-NordiCHI2006.pdf
http://hal.inria.fr/docs/00/55/06/00/PDF/SpiraList-NordiCHI2006.pdf
http://hal.inria.fr/docs/00/55/05/95/PDF/MaggLite-UIST2004.pdf
http://hal.inria.fr/docs/00/55/05/95/PDF/MaggLite-UIST2004.pdf
http://hal.inria.fr/docs/00/55/05/91/PDF/Architects-Sketches-Interact2003.pdf
http://hal.inria.fr/docs/00/55/05/91/PDF/Architects-Sketches-Interact2003.pdf
http://hal.inria.fr/docs/00/55/05/99/PDF/SpiraClock-CHI2002.pdf
http://hal.inria.fr/docs/00/55/05/99/PDF/SpiraClock-CHI2002.pdf
http://hal.inria.fr/docs/00/77/63/01/PDF/WMLisa-hal.pdf
http://hal.inria.fr/docs/00/53/85/98/PDF/FlowStates.pdf
http://hal.inria.fr/docs/00/53/85/98/PDF/FlowStates.pdf

106 publications

[NBH09] Mathieu Nancel, Michel Beaudouin-Lafon, and Stéphane Huot.
“Un espace de conception fondé sur une analyse morphologique
des techniques de menus.” In: Proceedings of IHM 2009, 21ème confé-
rence francophone sur l’Interaction Homme-Machine. ACM, International
Conference Proceedings Series, Oct. 2009, pp. 13–22. http://hal.inria.
fr/docs/00/55/05/94/PDF/Design_space_menus-IHM2009.pdf. (Cit. on pp. 4,
13).

[HL07a] Stéphane Huot and Eric Lecolinet. “ArchMenu et ThumbMenu
: Contrôler son dispositif mobile "sur le pouce".” In: Proceedings
of IHM 2007, 19ème conférence francophone sur l’Interaction Homme-
Machine. ACM, International Conference Proceedings Series, Nov.
2007, pp. 107–110. http : / / hal . inria . fr / docs / 00 / 55 / 05 / 93 / PDF /

ArchThumbMenu-IHM2007.pdf.

[HDD06] Stéphane Huot, Pierre Dragicevic, and Cédric Dumas. “Flexibi-
lité et modularité pour la conception d’interactions: Le modèle
d’architecture logicielle des Graphes Combinés.” In: Actes de la
18ème conférence francophone sur l’Interaction Homme-Machine, IHM’06.
AFIHM. Montreal, Canada: ACM, Apr. 2006, pp. 43–50. http://hal.

inria.fr/docs/00/55/05/96/PDF/MixedGraphs-IHM2006.pdf. (Cit. on p. 41).

[Huo+04b] Stéphane Huot, Cédric Dumas, Pierre Dragicevic, and Gérard Hé-
gron. “Conception et utilisation d’interactions avancées avec la boîte
à outils MaggLite.” In: Actes de la 16ème conférence francophone sur
l’Interaction Homme-Machine, IHM 2004. AFIHM. Namur, Belgique:
ACM Press, Aug. 2004, pp. 177–178. Demonstration.

[HDH04] Stéphane Huot, Cédric Dumas, and Gérard Hégron. “Svalabard:
Une table à dessin virtuelle pour la modélisation 3D.” In: Actes de
la 16ème conférence francophone sur l’Interaction Homme-Machine, IHM
2004. AFIHM. Namur, Belgique: ACM Press, Aug. 2004, pp. 85–92.
http://hal.inria.fr/docs/00/55/06/91/PDF/Svalabard-IHM2004.pdf.

[HD02] Stéphane Huot and Cédric Dumas. “Vers des modeleurs 3D créatifs:
Étude de dessins d’architectes.” In: Actes de la 14ème conférence Fran-
cophone sur l’Interaction Homme-Machine, IHM 2002. AFIHM. Poitiers,
France: ACM Press, Nov. 2002, pp. 267–270.

workshops

[Liu+11] Can Liu, Jonathan Diehl, Stéphane Huot, and Jan Borchers. “Mo-
bile Augmented Note-taking to Support Operating Physical De-
vices.” In: Mobile HCI 2011 – Workshop on Mobile Augmented Reality:
Design Issues and Opportunities. Aug. 2011. http://hal.inria.fr/inria-

00626260/PDF/Final_submission.pdf. (Cit. on p. 26).

[Gho+10] Emilien Ghomi, Olivier Bau, Wendy Mackay, and Stéphane Huot.
“Conception et apprentissage des interactions tactiles: le cas des
postures multi-doigts.” In: FITG ’10: French workshop on tactile and
gestural interaction. June 2010. http://fitg10.lille.inria.fr/workshop-

data/proposals/ghomi-et-al.pdf.

http://hal.inria.fr/docs/00/55/05/94/PDF/Design_space_menus-IHM2009.pdf
http://hal.inria.fr/docs/00/55/05/94/PDF/Design_space_menus-IHM2009.pdf
http://hal.inria.fr/docs/00/55/05/93/PDF/ArchThumbMenu-IHM2007.pdf
http://hal.inria.fr/docs/00/55/05/93/PDF/ArchThumbMenu-IHM2007.pdf
http://hal.inria.fr/docs/00/55/05/96/PDF/MixedGraphs-IHM2006.pdf
http://hal.inria.fr/docs/00/55/05/96/PDF/MixedGraphs-IHM2006.pdf
http://hal.inria.fr/docs/00/55/06/91/PDF/Svalabard-IHM2004.pdf
http://hal.inria.fr/inria-00626260/PDF/Final_submission.pdf
http://hal.inria.fr/inria-00626260/PDF/Final_submission.pdf
http://fitg10.lille.inria.fr/workshop-data/proposals/ghomi-et-al.pdf
http://fitg10.lille.inria.fr/workshop-data/proposals/ghomi-et-al.pdf

Thesis 107

thesis

[Huo05] Stéphane Huot. “Une nouvelle approche pour la conception créa-
tive: De l’interprétation du dessin à main levée au prototypage
d’interactions non-standard.” Ph.D. Dissertation (thèse de doctorat).
Université de Nantes, École Nationale Supérieure des Techniques
Industrielles et des Mines de Nantes, July 2005. http://tel.archives-

ouvertes.fr/docs/00/04/84/43/PDF/tel-00010210.pdf. (Cit. on pp. 41, 67).

[Huo00] Stéphane Huot. “Reconstruction de bâtiments 3D à partir d’images.”
Master Dissertation (mémoire de DEA). Université de Nantes, École
Nationale Supérieure des Techniques Industrielles et des Mines de
Nantes, Sept. 2000.

other publications

[Raf+12] Bruno Raffin, Hannah Carbonnier, Jérôme Esnault, Jean-Christophe
Lombardo, Rémi Felix, Thierry Duval, Alain Chauffaut, Georges
Dumont, Ronan Gaugne, Valérie Gouranton, François Faure, Jéré-
mie Allard, Romain Primet, Stéphane Huot, Yvonne Jung, Ulrich
Bockholt, Johannes Behr, Karsten Schwenk, and Gerrit Voss. “The
VCoRE Project: First Steps Towards Building a Next-Generation
Visual Computing Platform.” In: 7èmes Journées de l’Association Fran-
çaise de Réalité Virtuelle (French Association for Virtual Reality). AFRV
’12. 2012.

[Bea+11] Michel Beaudoin-Lafon, Emmanuel Pietriga, Wendy Mackay, Sté-
phane Huot, Clément Pillias, and Romain Primet. “131 millions de
pixel qui font le mur.” In: Plein Sud Spécial Recherche 2010-2011. 2011,
pp. 124–131.

[HNB08] Stéphane Huot, Mathieu Nancel, and Michel Beaudouin-Lafon.
PushMenu: Extending Marking Menus for Pressure-Enabled Input De-
vices. Research Report 1502. LRI, Université Paris-Sud, France, 2008.
http://hal.inria.fr/docs/00/55/05/97/PDF/PushMenu-RR2008.pdf. (Cit. on
p. 13).

[HC02] Stéphane Huot and Christian Colin. “MArINa : reconstruction de
bâtiments 3D à partir d’images.” In: Colloque Modélisation Multimodale
appliquée à la reconstruction d’environnements architecturaux et urbains.
Bordeaux, France, 2002.

[CH01] Christian Colin and Stéphane Huot. “Photomodélisation à l’aide
de la géométrie projective.” In: Actes des journées du Groupe de Travail
Modélisation Géométrique. Dijon, France, 2001.

[HC01] Stéphane Huot and Christian Colin. MArINa: 3D reconstruction from
images using formal projective geometry. Research Report 01/1/INFO.
École des Mines de Nantes, Jan. 2001.

[Hég+00] Gérard Hégron, Daniel Siret, Christian Colin, Pierre Macé, Sté-
phane Huot, Emmanuel Monin, and Didier Boucard. “Une nou-
velle approche informatique de la modélisation architecturale : la
restitution de la place Ludovise de Louis.” In: Colloque Victor Louis et
son temps. Paris, France, Dec. 2000.

http://tel.archives-ouvertes.fr/docs/00/04/84/43/PDF/tel-00010210.pdf
http://tel.archives-ouvertes.fr/docs/00/04/84/43/PDF/tel-00010210.pdf
http://hal.inria.fr/docs/00/55/05/97/PDF/PushMenu-RR2008.pdf

108 publications

a.2 selected publications (2005–2012)

This section contains 9 publications that give an overview of my work since I
defended my Ph.D. in 2005. The timeline in Figure A.1 shows those publications
in context.

IHM
NordiCHI*

2006

ACM AVI

2008

IFIP Interact
IHM*

2007

IEEE PacificVis
EGC

2010

IHM
IHM
IHM
IHM

2009

ACM CHI*
ACM CHI
IEEE Computer
IHM

ACM CHI*
ACM CHI
ACM CHI*
ACM CHI
ACM CHI*
ACM CHI
ACM CHI*

2012

ACM CHI

ACM EICSACM EICS
ACM UIST

2011 2013

ACM CHI
IEEE Computer

ACM CHI

Best paper

Honorable mention

ACM AVI International Working Conference on Advanced Visual Interfaces

ACM CHI SIGCHI conference on Human Factors in computing systems

ACM EICS SIGCHI symposium on Engineering interactive computing systems

ACM UIST Symposium on User Interface Software and Technology

IFIP Interact IFIP TC13 Conference on Human-Computer Interaction

IEEE Computer Special issue on Beyond the Keyboard

IEEE PacificVis IEEE Pacific Visualization Symposium

NordiCHI Nordic forum for Human-Computer Interaction research (ACM proceedings)

IHM Francophone conference for Human-Computer Interaction (ACM proceedings)

EGC Francophone conference for Knowledge Extraction and Management

Figure A.1: Selected publications (in bold) are available in this document. Other
publications can be downloaded from the publisher’s Digital Library or
the HAL-INRIA open archive: http://hal.inria.fr/aut/Stéphane+Huot/.
Publications marked with a * are short papers (refereed, and archived in
proceedings).

p. 110 Stéphane Huot and Eric Lecolinet. “Focus+Context Visualization Tech-
niques for Displaying Large Lists with Multiple Points of Interest on Small
Tactile Screens.” In: Proceedings of 11th IFIP TC13 International Conference
on Human-Computer Interaction. Interact 2007. Springer Verlag, Lecture
Notes in Computer Science, Sept. 2007, pp. 219–233. http://hal.inria.fr/

docs/00/55/05/98/PDF/SnaiList-Interact2007.pdf

p. 124 Anne Roudaut, Stéphane Huot, and Eric Lecolinet. “TapTap and Mag-
Stick: Improving One-Handed Target Acquisition on Small Touch-screens.”
In: Proceedings of the 9th International Working Conference on Advanced
Visual Interfaces. AVI ’08. ACM, May 2008, pp. 146–153. http://hal.inria.fr/
docs/00/55/06/94/PDF/TapTap-AVI08.pdf

http://hal.inria.fr/aut/St�phane+Huot/
http://hal.inria.fr/docs/00/55/05/98/PDF/SnaiList-Interact2007.pdf
http://hal.inria.fr/docs/00/55/05/98/PDF/SnaiList-Interact2007.pdf
http://hal.inria.fr/docs/00/55/06/94/PDF/TapTap-AVI08.pdf
http://hal.inria.fr/docs/00/55/06/94/PDF/TapTap-AVI08.pdf

A.2 selected publications (2005–2012) 109

p. 132

Caroline Appert, Stéphane Huot, Pierre Dragicevic, and Michel
Beaudouin-Lafon. “FlowStates: Prototypage d’applications interactives
avec des flots de données et des machines à états.” In: Proceedings of IHM
2009, 21ème conférence francophone sur l’Interaction Homme-Machine. ACM,
International Conference Proceedings Series, Oct. 2009, pp. 119–128. Best
Paper. http://hal.inria.fr/docs/00/53/85/98/PDF/FlowStates.pdf

p. 143 Stéphane Huot, Olivier Chapuis, and Pierre Dragicevic. “TorusDesktop:
Pointing via the Backdoor is Sometimes Shorter.” In: Proceedings of the 29th
international conference on Human factors in computing systems. CHI ’11.
Vancouver, CA: ACM, 2011, pp. 829–838. http://hal.archives-ouvertes.fr/docs/
00/59/12/95/PDF/CHI11-torus-avf.pdf

p. 153 Emmanuel Pietriga, Stéphane Huot, Mathieu Nancel, and Romain Primet.
“Rapid Development of User Interfaces on Cluster-Driven Wall Displays
with jBricks.” In: Proceedings of the 3rd ACM SIGCHI symposium on En-
gineering interactive computing systems. EICS ’11. Pisa, Italy: ACM, 2011,
pp. 185–190. http://hal.inria.fr/docs/00/58/54/79/PDF/jbricks-eics11.pdf

p. 159 Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. “Gliimpse: An-
imating from Markup Code to Rendered Documents and Vice-Versa.” In:
Proceedings of the 24th ACM Symposium on User Interface Software and
Technology. UIST 2011. Santa-Barbara, CA, USA: ACM, 2011, pp. 257–262.
http://hal.inria.fr/docs/00/62/62/59/PDF/GlimpseA.pdf

p. 165 Julie Wagner, Stéphane Huot, and Wendy E. Mackay. “BiTouch and BiPad:
Designing Bimanual Interaction for Hand-held Tablets.” In: Proceedings of the
30th international conference on Human factors in computing systems. CHI
’12. Austin, Texas, USA: ACM, 2012, pp. 2317–2326. http://hal.inria.fr/hal-

00663972/PDF/bipadA.pdf

p. 175

Emilien Ghomi, Guillaume Faure, Stéphane Huot, Olivier Chapuis,
and Michel Beaudouin-Lafon. “Using Rhythmic Patterns as an Input
Method.” In: Proceedings of the 30th international conference on Human
factors in computing systems. CHI ’12. Austin, Texas, USA: ACM, 2012,
pp. 1253–1262. Best Paper. http://hal.archives-ouvertes.fr/docs/00/66/39/73/

PDF/CHI12-ewe-halv1.pdf

p. 185

Julie Wagner, Mathieu Nancel, Sean Gustafson, Stéphane Huot, and
Wendy E. Mackay. “A Body-centric Design Space for Multi-surface
Interaction.” In: Proceedings of the 31st international conference on Human
factors in computing systems. CHI ’13. Paris, France: ACM, 2013, 10

pages, to appear. Honorable Mention. http://hal.inria.fr/hal-00789169/PDF/

BodyScape-Hal.pdf

http://hal.inria.fr/docs/00/53/85/98/PDF/FlowStates.pdf
http://hal.archives-ouvertes.fr/docs/00/59/12/95/PDF/CHI11-torus-avf.pdf
http://hal.archives-ouvertes.fr/docs/00/59/12/95/PDF/CHI11-torus-avf.pdf
http://hal.inria.fr/docs/00/58/54/79/PDF/jbricks-eics11.pdf
http://hal.inria.fr/docs/00/62/62/59/PDF/GlimpseA.pdf
http://hal.inria.fr/hal-00663972/PDF/bipadA.pdf
http://hal.inria.fr/hal-00663972/PDF/bipadA.pdf
http://hal.archives-ouvertes.fr/docs/00/66/39/73/PDF/CHI12-ewe-halv1.pdf
http://hal.archives-ouvertes.fr/docs/00/66/39/73/PDF/CHI12-ewe-halv1.pdf
http://hal.inria.fr/hal-00789169/PDF/BodyScape-Hal.pdf
http://hal.inria.fr/hal-00789169/PDF/BodyScape-Hal.pdf

Focus+Context Visualization Techniques
for Displaying Large Lists with Multiple Points

of Interest on Small Tactile Screens

Stéphane Huot1,2, and Eric Lecolinet1

1 GET/ENST – CNRS UMR 5141, 46 rue Barrault, 75013 Paris, France

2 LRI (CNRS) & INRIA Futurs, Bât. 490, Univ. Paris-Sud, 91405 Orsay, France
Stephane.Huot@lri.fr, Eric.Lecolinet@enst.fr

Abstract. This paper presents a focus+context visualization and interaction
technique for displaying large lists on handheld devices. This technique has
been specifically designed to fit the constraints of small tactile screens. Thanks
to its spiral layout, it provides a global view of large lists on a limited amount
of screen real-estate. It has also been designed to allow direct interaction with
fingers. This technique proposes an alternative to multi-focus visualization,
called “augmented context”, where several objects of interest can be pointed up
simultaneously. We propose two implementations of this approach that either
use spatial or temporal composition. We conducted a controlled experiment that
compares our approach to standard scrollable lists for a search task on a PDA
phone. Results show that our technique significantly reduces the error rate
(about 3.7 times lower) without loss of performance.

Keywords: Mobile interfaces, focus+context visualization, spiral layout, finger
interaction, one-handed interaction.

1 Introduction

During the last years, mobile devices have evolved from cell phones to handheld
computers, introducing new usages, but also challenging new problems. Whereas
hardware buttons were efficient to manage most of basic phones functionalities,
modern handheld devices (PDA, PDA-Phones, etc.) can manage more and more data
and include new functions that require more efficient interaction. However, most
applications for handheld devices still rely on traditional GUI paradigms that have
been developed for desktop computers. This model does not fit well on small devices
because of their limited screen size and input capabilities. In fact, interacting with
large quantities of data with small devices is still a challenging problem that is
aggravated when several objects of interest must be highlighted simultaneously. This
case is related to multi-focus visualization, but with the additional constraint that a
very limited amount of screen real-estate can be used to represent multiple points of
interest. Finally, the fact that handheld devices should be usable in mobility
conditions is another key factor. Most applications for tactile screen devices require
using a stylus, a way of interacting that is not very well suited for mobile interaction.

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

Author manuscript, published in "Interact 2007, 11th International Conference on Human-Computer Interaction (2007) 219-233"

110 publications

The next section describes some limitations of graphical representations and
interaction techniques that have been proposed so far. Section 3 introduces some
general principles we propose to solve these limitations. They have been implemented
in two ways that are presented in the same section. The following sections include an
experimental evaluation, related work and the conclusion and perspectives.

2 Challenges of Mobile Devices

2.1 Stylus Interaction

Stylus interaction is not very well suited for handheld devices for several reasons. It
requires users to pull out the stylus, an operation that may be uneasy in mobility
conditions (besides, users must be careful not to lose the stylus). Using a stylus also
makes it impossible to interact with only one hand and it requires interaction to be
performed very precisely by clicking on tiny widgets (thus reducing performance
according to Fitts’ Law [8]). This causes pointing errors, especially when the user is
moving, and users may find this interaction style unpleasant because it requires too
much attention [19]. Despite these limitations, most existing GUIs on mobile devices
make use of tiny WIMP widgets and require using a stylus.

Ideally, the user should be able to interact directly with fingers by using only one
hand while performing another activity [15]. But “thumb interaction” arouses several
problems:

• The small size of touch screens limits tapping efficiency, especially when there
are many UI objects on the screen. Conversely, the large contact area between
the finger and the tactile screen makes tapping imprecise.

• Finger interaction causes screen occlusion.
• Some screen regions may be hard to reach, especially when the thumb is used.

To solve these problems, we propose an interaction technique based on a “Touch-
Drag-Lift” strategy. Instead of directly tapping targets on the screen, the user
manipulates a shifted cursor in a continuous manner. This technique, which is
presented in section 4, limits screen occlusion while enhancing pointing precision.

2.2 Compact and Multi-focus Representations on Small Screens

The most common strategy for displaying a large amount of data on small screens
consists in using scrollable viewports that reveal a subpart of the data. But viewports
have several annoying drawbacks, especially on small screens. First, they are not well
adapted for multi-focus representation as they rely on clipping. Clipping prevents
highlighting a point of interest that is not currently located in the viewport (although
some approaches, such as [3], show marks on scrollbars to indicate where interesting
data could be found). As viewports hide most of the data, they provide very limited
contextual information to users. This is especially true on small screens, where few
items can be displayed (as shown in Fig. 5d). Focus+context (F+C) visualization
techniques partially fit these constraints with a visual layout that combines:

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 111

• A focus area, where the data of most interest is displayed at full size or with
full details,

• A context area, which is a peripheral zone where elements are displayed at
reduced size or in a simplified way.

Depending on the techniques, the difference in representing elements in the focus
and the context areas can be purely geometrical or make use of the semantics of the
data [11], as semantic zooming [20].

F+C techniques enable to represent much more elements simultaneously than
representations based on viewports. Elements that have a high degree of interest at a
given time are displayed with a size that is large enough to make them more readable.
Such techniques provide effective solutions to compensate the lack of screen real-
estate on small displays. However, they generally do not suffice to solve the multi-
focus problem when it is necessary to highlight elements that are located anywhere in
the representation. This ability is crucial for applications that need to notify alerts or
useful dynamical information about the elements they display. Some F+C techniques
provide several focal points [23,24] but do not solve our problem efficiently because
elements that must be highlighted may stay in the context zone. They are also likely
to use too much space as the number of highlighted points increases.

3 New Techniques for Displaying Lists on Small Screens

3.1 Spiral Representation and Augmented Context

Fig. 1. Spiral sectors and DOI zones

The list visualization techniques we propose use a spiral layout divided into sectors
to display items (Fig. 1). In contrast with linear clipped lists, this compact layout
makes it possible to show a large number of items. However, all items can not be
shown if their number exceeds a certain limit (which is the number of sectors in the
spiral). Moreover, items located in the innermost revolutions cannot be displayed with
full details because their text labels would be too large. We thus combined this spiral
representation with a focus+context strategy to increase the length of displayable lists
in a limited amount of screen real-estate. It is interesting to notice that a tabular layout
could be even more space efficient than a spiral representation. However, its 2D
nature would not make it very well suited for representing lists, especially when F+C

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

112 publications

visualization techniques are used. Besides, a spiral layout is well adapted to thumb
interaction because it is contained in a circular area that is easy to reach when holding
the device in one hand.

F+C visualization techniques generally use geometrical distortions to display
objects with a high degree of interest (DOI) at a larger scale in the focus area (like
FishEye techniques [9]). In our case, such distortions would make textual data
illegible, especially on low resolution handheld screens. We favored a semantic
approach [20] where the graphical representation depends on data characteristics. The
DOI of an item depends on its location in the spiral, on the spelling of its name and its
neighbors’ names, and on its intrinsic characteristics (as for instance, the requirement
that it must remain visible). The visibility function does not involve geometrical
distortions but controls if the label of this item is shown and how many letters are
displayed (their number depends on the position of the item relatively to the focus and
context zones). The label of an item located in the outermost revolution (the focus
zone) is fully visible. Conversely, only the first letters of item labels are shown in the
innermost revolutions (the context zone) where 3 letters are shown, then 2 and then
only 1 (Fig. 1).

Item visibility in the context zone also depends on the spelling of labels. Items
which labels start with the same letters are collapsed together in order to use less
space. They can be expanded by moving them interactively in the focus zone.
However, certain items conveying important information can remain always visible,
whatever their location in the spiral. We call this principle “augmented context” as it
allows to highlight objects of interest in the contextual view. Thanks to this property,
there is no need to use intrusive or space consuming interaction techniques such as
pop-ups or a dedicated label zone. Visual artifacts such as colors, blinking effects,
special marks can also be used to provide various information about these items.

The next subsections describe two variants of the principles proposed so far. The
first variant is founded on a purely spatial approach while the second makes use of a
temporal approach. A preliminary version of the first variant was presented in [12].

3.2 A Spatial Focus+Context Strategy: SpiraList

This technique is based on a spatial strategy that follows a focus+context paradigm.
Items are displayed in alphabetical order on the spiral layout in such a way that the
first visible item and the last one are contiguous in the list (Fig. 2a). The focus area is
located on the bottom of the outermost revolution so that the labels are fully visible on
a handheld screen in portrait mode (in landscape mode, the focus appears at the right
of the spiral). The selected item (“Piotr” on Fig. 2a) appears in the middle of the
focus zone. The rest of the spiral contains the context area. According to the
techniques presented in the previous subsection, item labels are progressively clipped
and grouped while advancing inside the spiral. To avoid text overlapping, the labels
are rotated according to their position in the spiral. Some visual cues are used to
improve the representation: labels that start with a different letter than the previous
label in the list are displayed in bold font. Similarly, colored sectors indicate items
that are never collapsed because they convey some useful information (for instance a
group call or an email if items represent persons).

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 113

Fig. 2. SpiraList: a screenshot (a) and a picture of SpiraList in action (b).

Moving the cursor over items triggers a tooltip that shows their complete labels
(Fig. 2a). Once the cursor reaches the item the user is looking for (or the group of
items that contains it) he can move this item to the focus area just by releasing the
finger. A fast animation is then performed to help the user to understand how the list
is reorganized. If the desired item is grouped with other ones, the same action expands
the group and moves corresponding items to the focus (or close to it if the group
contains too many items). Another selection is then necessary to select the appropriate
item. Alternatively, the list can be “scrolled” inside of the spiral by dragging the blue
arrows located on its right hand side (Fig. 2a). This technique is useful to select items
that are already located in the focus area, or to get information on their neighbors.

A noticeable characteristic with our technique lies in the way of changing the
focus. Instead of most other focus+context techniques, the focus area always remains
at the same place but the data moves to appear in the focus zone. This design tries to
better take into account the form factor of handheld devices (Fig. 2b). Because of the
limited available space and the rectangular shape of the screen, it is advantageous to
display details in a fixed area below the spiral: this makes it possible to use the full
screen width to display the spiral.

3.3 A Temporal Focus+Context Strategy: SnailList

A preliminary pilot study has shown that the SpiraList technique was well appreciated
by users and considered to be time efficient in their subjective evaluations. However,
actual measurements gave slightly disappointing results for lists containing more than
100 items. While this technique provides an efficient solution for displaying data at
arbitrary locations in a global view, it is most suited for lists that do not exceed this
size. These results lead us to analyze how to improve this initial design to obtain
better performance for larger lists (we considered lists containing up to 500 items in
the experiments).

The most obvious problem was that the automatic grouping algorithm used in the
context zone was not efficient enough for large lists. This is because most items are
likely to be collapsed in this case, thus reducing the chances of selecting the
appropriate item with a single click. Moreover, the number of items that are collapsed
together can be quite large if they start with a frequently used letter. The desired item
may then appear quite far from the focus zone, thus requiring a second visual search
to find it. It can even remain collapsed with other items, thus requiring further user

a b

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

114 publications

interaction. Besides, all the revolutions of the spiral are filled up with items when
large lists are used. This may cause information overload and degrade visual search
performance. Finally, we also identified text rotation as a factor that could reduce
performance. Some previous work on tabletop displays [26] has shown that the effect
of text orientation was somewhat overestimated in former work performed in the field
of perception [16]. However, this effect may be significant in a searching task that
requires scanning many elements with different orientations.

Fig. 3. SnailList: (a) context, (b) intermediate view and (c) focus.

The new proposed technique, called SnailList, is based on a so-called “temporal”
strategy. In contrasts with the previous technique it does not provide a focus and a
context zone with a variable level of detail according to the location in the spiral.
Instead, the context zone appears first in the innermost part of the spiral and is always
shown at the same location (Fig. 3a). This zone contains all alphabetical letters and
the objects of attention that must remain visible, like the “Pio” item in Fig. 3a
(according to our augmented context principle). The level of detail is the same for all
items (only one letter appears) and none of them are collapsed. The user must select
one of them to make the focus to appear. If the chosen item is an alphabetical shortcut
the list of all items starting with this letter appears on the spiral (Fig. 3b). This new
list is displayed at the end of the context zone and it can be seen as an intermediate
level of detail between context and focus. The three first letters of the items labels are
displayed without text rotation. The user must then find the desired item and click on
it to select this element. This makes it to appear with full details in the focus area, at
the top of the spiral as shown in Fig. 3c.

The main difference with the former technique is that it deals with three

representations, corresponding to three different levels of detail (context, intermediate
and focus) that appear successively in time. Hence, the level of detail depends on time
(i.e. the number of successive selections) rather than spatial location and it does not
vary progressively with the revolution depth. This reduces the number of items that
are displayed simultaneously, and thus, the number and the difficulty of visual
searches. Therefore, searching an item follows an incremental alphabetical search
scheme. The first search consists in finding the first letter of the desired item in the
context zone. As it is always displayed in the same way, users may learn the
approximate positions of letters after some practice time. The second visual search
takes more time because the user must find the appropriate element in a list that has
variable length and content, and that may contain items with the same three first

a c b

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 115

letters (the full label must then be read in the tooltip). However, as the content of this
list is filtered by the selected first letter, the number of items that the user must scan is
noticeably smaller than with the first technique.

This intermediate view is not large enough if the list contains too many elements
that start with the same letter (45 items by default). The number of visible items could
be increased by augmenting the number of revolutions but this would decrease font
size and make labels harder to read. Fortunately, this case seldom occurs except for
very large lists or badly balanced ones. Alternate solutions could consist in using the
same grouping strategy as in SpiraList or in improving filtering by adding
supplementary alphabetical items in the context zone (e.g. “Aa” for accessing items
that starts with “A” to “Al” and “Am” for remaining items).

4 Interacting with Fingers

The visualization techniques proposed so far have also been designed to fit the need
of one-handed finger interaction, a very useful feature in mobile usage [15,19]. As
explained in section 2, finger interaction (and more especially thumb interaction)
brings two annoying problems: imprecise tapping and occlusion.

Imprecision. Imprecise tapping is due to the large contact area between the finger
and the screen. It is thus difficult for the user to figure out which object is going to be
selected. A solution can consist in using the touch screen as a relative input device.
The position of a cursor in the screen space is then controlled by the movements of
the finger in the motor space. Imprecision mostly affects the absolute location of press
gestures. Drag gestures allow controlling the relative shifting of the cursor much more
precisely. They are also less likely to be triggered accidentally than tapping [21].

Our interaction technique is based on this idea but still preserves some kind of
absolute positioning. It follows a “touch-drag-lift” paradigm, which is related to the
“take-off” technique [22]. Touching the screen anywhere with the thumb makes the
cursor to appear above this location. The user can then drag this cursor all over the
screen. Finally, lifting the thumb performs an interaction that depends of the last
position of the cursor (over a list item, in an action triggering zone, etc.). Cursor
moves are stabilized to withdraw the lack of precision of touch-screens: as continuous
interaction with a finger involves multiple moving contact points and can lead to
erratic and vibrating cursor jumps, the cursor trajectory is smoothed by means of a
real-time adaptive low-pass filter that is optimized to avoid lag and does not slow
down the cursor.

This technique makes it possible to achieve very good accuracy, even in the case of

displaying dense information. It is also quite fast as it combines absolute (but
imprecise) positioning with a relative (but precise) correction of this position.

Finger Occlusion. A fixed (but user adjustable) vertical offset is applied to the cursor
as a simple but efficient way to avoid fingertip occlusion. An adaptive horizontal
offset is also calculated to improve access to the left and right borders of the screen. It
is computed according to the equation in Fig. 4:

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

116 publications

Fig. 4. Adaptive horizontal offset function.

In this equation, x is the non-corrected position along the horizontal axis, W the
width of the screen and λ the strength of the offset. This offset grows as the cursor
goes away from the center of the screen as shown on Fig. 4 (right). The λ parameter
controls the offset around the central position. An experimental value of 80 gave good
results: the offset is then unnoticeable around the center of the screen and augments
slightly when the cursor reaches the edges.

5 Experiment

We conducted an experiment to compare the efficiency of SnailList (SN) and
standard Scrollable Lists (SC) for finding items in one-handed interaction conditions.

5.1 Experimental Setup

Subjects. 10 unpaid subjects, aged from 24 to 40 (7 males and 3 females) served in
the experiment. 4 of them are daily users of handheld devices (PDA or PDA-Phones),
3 are occasional users and 3 had never used one. One of them is left-handed. At the
beginning of each session, the two techniques were explained to the participant during
10 minutes and s/he performed 10 training tasks with each technique.

Apparatus. We used a QTEK S200 PDA (TI 200MHz CPU and 320x240 tactile
screen). The program, written in C#, implements the SnailList widget and an
instrumented version of the standard WM 5.0 Contacts application. It automatically
logs actions performed by the subject (taps, lifts, items fly over or selection, etc.),
errors and the time needed to complete a trial.

Task. The task performed by the participants consisted in retrieving contacts from an
address book in a mobility situation. They had to operate with the thumb of the hand
that carries the device. However, to limit subjects’ weariness, they were seated and
could lean their arm (but not their hand) on a table or on their legs.

At the beginning of each trial, the name of the item to find was presented to the
subject in the same way as it appears in the contact list (Name then First name). When
s/he was ready, the subject started the trial by tapping the “Start” button (Fig. 5a).
The name remained displayed during the whole trial at the top of the list (Fig. 5c&d).

When using SC (Fig. 5d), the user can use the scrollbar and the shortcut buttons
above the list. These buttons make it possible to scroll the list automatically at certain
alphabetical positions. When s/he finds the correct contact, s/he just has to tap on it to
validate the trial. With SN (Fig. 5c), the user can display different parts of the list by
lifting the cursor over the appropriate alphabetical item in the context zone. When
s/he finds the desired contact, s/he must lift the cursor over it to validate the trial.

W/2

0
+

-

offset

x()
λ

δ
*

2
3

W

Wx
x

−
=

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 117

Fig. 5. Experiment: start of a trial (a), error form (b), SnailList (c) and Scrollable List (d).

When an erroneous contact is selected, an error notification appears (Fig. 5b) and
the user is invited to close it to pursue the trial. When the right item is found, a new
trial starts and the subject continues the experiment until all trials are performed.

5.2 Hypothesis and Experiment Model

Our hypotheses are:
Hypothesis 1: SnailList (SN) has equivalent or better performance than standard

Scrollable Lists (SL) for retrieving items.
Hypothesis 2: SnailList (SN) generates fewer errors than Scrollable Lists (SC).

We chose three different sizes (100, 250 and 500 items) to compare the

performances of the techniques. This choice was based on observations informally
gathered by colleagues working on mobile phone usage. 100 items was observed to be
an appropriate number for ordinary users, 250 for professionals that use mobile
phones frequently and 500 as an upper limit for such usage. Those conditions involve
2 independent variables: Techniques (SC and SN) and List Size (100-250-500):

2 techniques (SN and SC) x 3 list sizes (100, 250 and 500 items) = 6 tasks

After a training of 10 trials with each technique (with 250 item lists), each subject
performed 15 trials for every task. We grouped the tasks in 3 blocks of 30 trials, one
block for each list size with the two technique conditions, in balanced order. Inside
each block, subjects performed successively the 15 trials with the 2 techniques.

1 block of 30 trials x 3 list sizes = 90 trials per subject

We built several dummy contact lists using randomly chosen French names. As
both techniques display lists in alphabetical order, we tried to minimize the effect of
the alphabetical balance of the lists on experimental results. For each technique, the
index of difficulty (ID) for searching a given item depends on Nl (the number of items
that start with letter l) and on Rit (the rank of the item in the sub-list). When using SC
to find an item that starts with letter l, a high value of Nl is likely to increase scanning
and scrolling times (scrolling time depends on Rit). For SN, a high value of Nl
augments the visual density and a high value of Rit augments the scanning time. To
ensure that experiment results would not be biased by this balance effect, the same
lists were used for each condition for a given subject and the 15 trials were organized
in such a way that Nl and Rit were the same for each technique.

a b d c

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

118 publications

To summarize, our experimental design has 2 independent variables (Technique
and List Size) and 2 dependent variables: Trial Completion Time and Number of
Errors. Finally, we also asked the participants to answer a short questionnaire. We
asked them which of the 2 techniques they preferred (and why) and which technique
seemed to be more efficient and errorless.

5.3 Results and Discussion

We performed a repeated measures ANOVA on the Completion Time and found no
significant main effects for Technique (F(1,9) = 0.69, p=0.4164). As shown in Fig. 6a,
mean performance time are close for the 2 techniques when considering global
conditions (list sizes). This result validates our first hypothesis when considering the 3
sizes of lists together (SN performs equally well as SC).

Fig. 6. Mean Time and Errors by Technique (a) and Mean Time by Technique and List Size (b)

We found a significant main effect on Completion Time for list size (F(2,18) = 12.43,
p < 0.001). Paired t-tests indicated that the 100 items and 250 items size conditions
are faster than the 500 items condition when considering both techniques (t(9) =
2.3892, p < 0.1 and t(9) = 2.4886, p < 0.05). When restricting to the SC technique,
paired t-tests indicated that 100 and 250 items conditions are faster than 500 items
condition (t(9) = 1.7485, p < 0.05 and t(9) = 2.3169, p < 0.1), whereas for the SN
technique the difference is not significant (t(9) = 1.6292, p < 0.1 and t(9) = 1.0828, p <
0.2). This tendency is visible in the line graph of Fig. 6b.

Even if there is no significant interaction effect of Technique*Size, those results
suggest that the completion time for retrieving an item with SnailList augments
slightly when the list size increase whereas the completion time augments more
abruptly with the standard Scrollable List. These results are not significant enough to
formally validate the fact that our technique outperforms standard Scrollable Lists for
very large lists, but they seem to indicate that SnailList is especially robust to scaling
(increasing list size) for what concerns performance.

We performed a repeated measures ANOVA on the Number of Errors and found a
significant main effect for Technique (F(1,9) = 18.74, p < 0.001), without significant
interaction effects for Technique*Size. T-test confirmed that the SC technique
produced significantly more errors than the SN technique (t(9) = 4.1778, p = 0.0001).
This result validates our second hypothesis that SnailList produces fewer errors than
standard Scrollable List in mobility situations. In fact, the mean of errors with SN

a b

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 119

(when considering all list sizes) is 4 times less than with SC. The graph in Fig. 7a
shows that this ratio is close to 7 in the case of 500 item lists.

Fig. 7. Mean of errors (a) and Percentage of faulty trials (b) by Technique and by List Size

If we consider a trial to be erroneous if at least one error occurred during it, we
obtain a percentage of 20.1% faulty trials for Scrollable List against 5.4% with
SnailList. This makes SnailList 3.7 times more accurate than Scrollable List. Fig. 7b
shows that this percentage is almost constant for Scrollable Lists when the size of the
list increases, while it is almost proportional to the list size when SnailList is used.
This result suggests that the design of SnailList make its index of difficulty mainly
dependent on the list size. In fact, errors with SnailList are mainly due to confusion
between adjacent items with close labels and this case is likely to occur more
frequently for large lists than for small ones. Conversely, the index of difficulty of
Scrollable Lists is almost constant and at a high value in mobility situation for all list
sizes. We attribute this result to the imprecision of tapping when performed with
fingers (we noticed that users accidentally validated items whereas they wanted to
scroll or to click on a button).

In subjective evaluations, most of the participants were convinced that they
completed tasks faster with SnailList and with fewer mistakes than with Scrollable
List (9 of 10). These estimations correspond to reality for errors, but not for
completion time (performances was mostly similar for both techniques). 9 of 10
subjects said that they preferred using SnailList over the scrollable list. The novelty of
the technique aside, they argued that its design made it well-adapted to finger
interaction on a small screen. They also highlighted the fact that SnailList was less
frustrating to use because they made less errors than with the scrollable list.

6 Related Work

Designing interactions techniques for mobility requires taking into account devices
form-factor constraints and users’ tasks together. Recent studies that focused on this
topic [15,19] showed that one-handed mobile interaction is preferable because it is
less distracting for the user (a principle called “Minimal Attention User Interfaces” in
[19]). These studies have also emphasized the use of the thumb as a good way for
interacting in such conditions. Other approaches consist of augmenting handheld

a b

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

120 publications

devices with alternative input modes, like in physical embodied techniques [10].
However, thumb interaction is more feasible and well-adapted to currently available
devices that provide a tactile screen.

In AppLens and LaunchTile [13], the authors introduced one-handed interaction
techniques for controlling mobile device applications. These interactions rely on
discrete zooming and gestures performed with the thumb. However, these techniques
do not have the same purpose and have not been designed to display large quantities
of data as the ones we propose in this paper. In FaThumb [14], the same authors
considered this problem and proposed an efficient one-handed data seeking technique.
But this approach, which can be seen as an alternative to textual queries, is not
intended to solve the visualization problems we presented in this paper.

This spiral layout was first introduced in information visualization and extensively
studied by Carlis and Konstan in [6]. They took advantage of the concentric layout of
the Archimedean spiral for the visualization and interpretation of serial and periodic
data. The same idea is used in SpiraClock [7], with a spiral that is augmented by an
analog clock to provide a non intrusive display for upcoming temporal events.
RankSpiral [25] also uses spiral layout to display large results of multiple search
engines. This last approach is the most similar to our but it was designed for desktop
PCs and does not take into account the display and input constraints of small devices.

In [6], Carlis and Konstan suggested the idea of extending the spiral layout with a
focus+context scroll mechanism. We considered this idea as a good way for
displaying more items in the spiral. Focus+context methods can be used to improve
the overall visibility of large lists [4,17], but only a few items are readable because of
their focus-dependant geometrical zoom, especially when a small screen is used. The
compact display of our approach achieves the same level of visibility. But its non-
geometrical strategy, which is somewhat related to semantic zooming, overcomes the
legibility problem that arises with F+C techniques based on geometrical zooming. In
[18], one of the problems addressed by the authors is close to ours but on standard
displays: displaying large binary trees with several points of interest. They had shown
that Pan & Zoom techniques outperform F+C techniques for navigating in this case.
However their techniques rely on geometrical deformations that can have a strong
impact on interaction performance and deals with 2D localization problems (as in
[1]). Those conditions are quite different than ours that deal with 1D linear data on
small screen, without geometrical deformations.

Various advanced new interaction techniques have been proposed for touch screens
in recent studies (such as [2]) but they are not specifically designed for handhelds.
Our work extends the “Take-off” technique [22] in the case of mobile devices. In
particular, our adaptive horizontal cursor offset, that could be annoying on large touch
screens [2], gives promising results on small screens.

7 Conclusion and Future Work

We have presented SpiraList and SnailList, two new visualization and interaction
techniques for manipulating large lists on handheld devices. These techniques provide
(a) one-handed operation using the thumb, a feature that is especially well suited for
mobile interaction; (b) focus+context visualization and an augmented representation

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 121

of context that allows to display objects of interest permanently. An experimental
comparison of standard scrollable lists and SnailList on a PDA phone has shown that
this new technique significantly reduces the error rate (to about 3.7 times lower)
without loss of performance when interacting with the thumb.

The proposed technique for finger and thumb interaction improves the “Take-off”
method [22] and allows precise interaction even when many small objects are
displayed on the screen. It is based on a differentiation between the visual space and
the motor space of the touch screen device. An interesting extension would consist in
studying how methods that perform advanced control/display ratio adaptation, such as
semantic pointing [5], could be integrated in our technique to improve selection.

We are now aiming at improving the performance time of the proposed technique.
Items could for instance be filtered according to their second and third letters by
selecting the alphabetical items located in the center of the spiral multiple times. This
successive dichotomy approach would reduce the number of items displayed in the
peripheral zone and could improve search time. Finally, we also plan to perform
further experiments with more participants to obtain a more detailed comparison of
the considered techniques for large lists.

Acknowledgments. This work has been done in collaboration with Guillaume Dorbes
and Bruno Legat from Alcatel-Lucent R&D. We want to thank them for their useful
advices and their help in evaluating SpiraList and SnailList. Many thanks to the
people that accepted to participate in our experiment and also to Gilles Bailly and
Anne Roudaut for their useful help while conducting it.

References

1. Baudisch, P., Rosenholtz, R.: Halo: A Technique for Visualizing Off-Screen Locations.
In: Proc. Of CHI’2003 (Fort Lauderdale, FL, USA), ACM, New York (2003) 481–488

2. Benko, H., Wilson, D. A., Baudisch, P.: Precise Selection Techniques for Multi-Touch
Screens. In: Proc. of CHI’2006 (Montréal, CA), ACM, New York (2006) 1263–1272

3. Bederson, B.B., Clamage, A., Czerwinski, M. P., Robertson, G. G.: DateLens: A
fisheye calendar interface for PDAs. In: ACM Transactions on Computer-Human
Interaction (TOCHI), ACM, New-York (2004), 11(1):90–119

4. Bederson, B. B.: Fisheye Menus. In: Proc. of UIST 2000 (San Diego, USA), ACM,
New York (2000) 217–226

5. Blanch, R., Guiard, Y., Beaudouin-Lafon, M.: Semantic pointing: improving target
acquisition with control-display ratio adaptation. In: Proc. of CHI’2004 (Vienna,
Austria), ACM, New York (2004) 519–526

6. Carlis, J.V., Konstan, J.A.: Interactive Visualization of Serial Periodic Data. In: Proc. of
UIST 98 (San Francisco, USA), ACM, New York (1998) 29–38

7. Dragicevic, P., Huot, S.: SpiraClock: A Continuous and Non-Intrusive Display for
Upcoming Events. In: Extended Abstracts of CHI'02 (Minneapolis, USA), ACM, New
York (2002) 604–605

8. Fitts, P.M., The information capacity of the human motor system in controlling the
amplitude of movement. In: Journal of Experimental Psychology, APA, Washington
(1954), 47(6):381–391

9. Furnas, G.: Generalized Fisheye Views. In: Proc. of CHI’86 (Boston, USA), ACM,
New York (1986) 16–23

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

122 publications

10. Harrison, B.L., Fishkin, K.P., Gujar, A., Mochon, C., Want, R.: Squeeze me, hold me,
tilt me! An exploration of manipulative user interfaces. In: Proc. of CHI’98 (Los
Angeles, USA), ACM, New York (1986) 17–24

11. Herman, I., Melançon, G., Marshall, M.S.: Graph Visualization and Navigation in
Information Visualisation: a Survey. In: IEEE Transactions on Visualization and
Computer Graphics, IEEE (2000), 6(1):24–43

12. Huot, S., Lecolinet, E.: SpiraList: A Compact Visualization Technique for One-Handed
Interaction with Large Lists on Mobile Devices. In: Proc. of NordiCHI’06 (Oslo,
Norway), ACM, New York (2006) 445–448

13. Karlson, A. K., Bederson B. B., SanGiovanni, J.: AppLens and LaunchTile: Two
Designs for One-Handed Thumb Use on Small Devices. In: Proc. of CHI’2005
(Portland, USA), ACM, New York (2005) 201–210

14. Karlson, A.K., Robertson, G.G., Robbins, D.C., Czerwinski, M.P., Smith, G.R.:
FaThumb: a facet-based interface for mobile search. In: Proc. of CHI’2006 (Montréal,
Canada), ACM, New York (2006) 711–720

15. Karlson, A., Bederson B. B., Contreras-Vidal, J.: Studies in One-Handed Mobile
Design: Habit, Desire and Agility, Tech. Report 2006-02, HCIL, Washington (2006)

16. Koriat, A., Norman, J.: Reading Rotated Words. In : Journal of Experimental
Psychology: Human Perception and Performance, APA, Washington (1985),
11(4):490–508

17. Lecolinet, E., Nguyen, D.: Focus+context visualization of zoomable hierarchical lists.
In: Proc. of French-Speaking Conference on Human-Computer Interaction (IHM 2006)
(Montréal, CA), ACM, New York (2006) 195–198

18. Nekrasovski, D., Bodnar, A., McGrenere, J., Guimbretière, F., Munzner, T.: An
evaluation of pan & zoom and rubber sheet navigation with and without an overview.
In: Proc. of CHI’06 (Montréal Canada), ACM, New York (2006) 11–20

19. Pascoe, J., Ryan, N., Morse, D.: Using while moving: HCI issues in fieldwork
environments. In: ACM Transactions on Computer-Human Interaction (TOCHI),
ACM, New York (2000) , 7(3):417–437

20. Perlin, K., Fox, D.: Pad: an alternative approach to the computer interface. In: Proc. Of
SIGGRAPH '93, ACM, New York (1993) 57–64

21. Pirhonen, A., Brewster, S., and Holguin, C.: Gestural and audio metaphors as a means
of control for mobile devices. In: Proc. of CHI’02 (Minneapolis, USA), ACM, New
York (2002) 291–298

22. Potter, R.L., Weldon, L.J., Shneiderman, B.: Improving the Accuracy of Touchscreens:
An Experimental Evaluation of Three Strategies. In: Proc. of CHI’88 (Washington,
USA), ACM, New York (1988) 27–32

23. Sarkar, M., Snibbe, S. S., Tversky, O. J., Reiss, S. P.: Stretching the rubber sheet: a
metaphor for viewing large layouts on small screens. In: Proc. of UIST 93 (Atlanta,
USA), ACM, New York (1993) 81–91

24. Shipman, F. M., Marshall, C. C., LeMere, M.: Beyond Location: Hypertext
Workspaces and Non-Linear Views. In: Proc. of Hypertext’99 (Darmstadt, Germany),
ACM, New York (1999) 121–130

25. Spoerri, A.: RankSpiral: Toward Enhancing Search Results Visualizations. In: Proc. Of
InfoVis 2004 (Austin, USA), IEEE (2004) 18–19

26. Wigdor, D., Balakrishnan, R.: Empirical investigation into the effect of orientation on
text readability in tabletop displays. In: Proc. of ECSCW 2005 (Paris, France), Springer
(2005) 205–224

in
ria

-0
05

50
59

8,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

A.2 selected publications (2005–2012) 123

TapTap and MagStick: Improving One-Handed Target
Acquisition on Small Touch-screens

Anne Roudaut1 Stéphane Huot2 Eric Lecolinet1
Anne.Roudaut@enst.fr, Stephane.Huot@lri.fr, Eric.Lecolinet@enst.fr

1TELECOM ParisTech, CNRS LTCI
46 rue Barrault

75013, Paris, France

2LRI – Univ. Paris-Sud & CNRS, INRIA
F-91405 Orsay

France

ABSTRACT
We present the design and evaluation of TapTap and MagStick,
two thumb interaction techniques for target acquisition on mobile
devices with small touch-screens. These two techniques address
all the issues raised by the selection of targets with the thumb on
small tactile screens: screen accessibility, visual occlusion and
accuracy. A controlled experiment shows that TapTap and
MagStick allow the selection of targets in all areas of the screen in
a fast and accurate way. They were found to be faster than four
previous techniques except Direct Touch which, although faster, is
too error prone. They also provided the best error rate of all tested
techniques. Finally the paper also provides a comprehensive study
of various techniques for thumb based touch-screen target selection.

Categories and Subject Descriptors
H.5.2. User Interfaces: Input Devices and Strategies, Interaction
Styles, Screen Design; D.2.2 User Interfaces

General Terms
Design, Human Factors

Keywords
Mobile devices, one-handed interaction, thumb interaction, touch-
screens, interaction techniques.

1. INTRODUCTION
Many mobile devices are now fitted with touch-screens that
enable us to interact directly with our fingers. However, most
graphical interfaces still require users to click on small widgets by
using a stylus. As highlighted in [7, 10], this interaction style is
not the best way to interact with small devices in a mobile
context: it requires too much attention (especially if the user is
moving) and forces users to use both hands (one hand holding the
device while the other manipulates the stylus). Ideally, mobile
interaction should just require one hand, with the thumb being
used for selecting objects. In fact, direct selection on the screen is

intuitive and fast, and using only one hand is central as users may
perform several simultaneous tasks.

However, direct thumb interaction on small touch-screens raises
several issues: a) hand and thumb morphology makes it difficult to
reach the corners of the screen; b) the thumb may occlude large
parts of the screen that can contain the desired target; c) the
relatively large contact zone between the fingertip and the tactile
screen makes selection ambiguous, especially in applications that
require users to click on tiny widgets for triggering actions.
Despite these issues, this Direct Touch technique is still the most
widely used.

Figure 1. TapTap and MagStick

Alternate techniques have been proposed to improve accuracy and
eliminate visual occlusion, but they make the interaction slower
and more complex. In this paper, we first present a thorough
analysis of the properties of the techniques published so far. We
then introduce two novel interaction techniques, TapTap and
MagStick (Fig. 1) that solve the problems raised by our analysis
(screen accessibility, visual occlusion and accuracy). Finally, we
performed a controlled experiment which proved that our two
techniques outperform the ones proposed previously (Direct
Touch, Offset Cursor [11], Shift [14] and Thumbspace [6]).

2. RELATED WORK
Research on thumb interaction with mobile devices is a relatively
recent field. The state of the art thus still largely relies upon
research on interaction with regular touch-screens. In spite of
recent innovations, the issues of reaching far targets, visual
occlusion and accuracy are not yet completely solved.

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0

Author manuscript, published in "AVI'08, the 9th International Working Conference on Advanced Visual Interfaces (2008) 146-153"
 DOI : 10.1145/1385569.1385594

124 publications

Target accessibility. The borders of the screen are more difficult
to reach [6], especially with the thumb because the morphology of
the hand constrains thumb movements. This will degrade
interaction in the screen areas that are farthest from the natural
thumb extent (i.e. the top and left border for a right-handed user).
Besides, thumb movements may also be hampered near borders
because of the thickness of the device’s edges around the screen.
Visual occlusion. When interacting, the finger hides a part of the
screen and can even totally occlude small targets. This problem is
more pronounced when interacting with one hand because the
thumb pivots around the thumb joint and can hide half the screen.
Accuracy. A study [9] showed that 9.2 mm is the minimum size
for targets to be easily accessible with the thumb. Some mobile
devices, such as the iPhone or the HTC Touch, rely on a limited
set of large buttons. But, this approach reduces the number of
targets because of the lack of screen estate and is thus
inappropriate for many applications. Besides, the exact location of
the pointer tends to be imprecise because of the large contact
surface between the thumb and the screen. As current touch-
screen hardware technology computes the barycenter of the
multiple contact points, small variations in the way of pressing the
thumb can provoke jerky movements of the pointer.
In the following, we group the existing attempts to solve those
issues in three categories depending on how they handle input:

"tapping", "dragging" and "hybrid" techniques.

2.1 Tapping Techniques
Tapping techniques capture the position of the pointer when the
thumb touches the screen. The most widely used technique on
regular or small touch-screens, Direct Touch, relies on this
intuitive principle. The user must tap the screen precisely at the
location where the target is displayed. This technique is fast but it
is also very error prone for selecting small targets because, as
mentioned previously, the location of the contact point is hard to
anticipate. Finally, Direct Touch does not tackle the problem of
targets located at the borders of the screen.

2.2 Dragging Techniques
Dragging techniques come from the take-off paradigm [11] which
consists in pressing the screen, dragging a cursor, and lifting the
finger to validate the selection. The former technique, Offset
Cursor [11,13], was designed to avoid finger occlusion on large
touch-screens and to solve the accuracy problem of Direct Touch.
A cursor is always displayed at a fixed distance above the contact
point to help the user reaching the topmost locations of the screen.
Offset Cursor was shown to induce far fewer errors [11, 13] than
Direct Touch, but it is also significantly slower. In [14], Vogel et
al. noticed that users often overshoot or undershoot targets. They
assumed that it is difficult for the users to estimate the offset
distance and that a lengthy adjustment of the cursor, called net
correction distance, is thus necessary to acquire targets.
Another point is that Offset Cursor does not cover the entire
extent of the screen. As the cursor is always located at the same
distance from the top of the finger, targets at the bottom of the
screen remain unreachable. Moreover, the thickness of screen
edges makes it difficult to select targets located near the corners.
An adaptative horizontal offset has been proposed in [5] to
improve Offset Cursor: this offset is null at the center of the
screen and grows smoothly towards the left and right borders.
This technique makes it easier to reach items that are close to the
left and right borders, but requires slightly more training.

Thumbspace [6] has been designed to improve access to the
borders and corners of the screen. It uses an on-demand "radar
view" that the user can trigger at the center of the screen.
Interacting directly on this radar view allows the user to reach all
locations on the screen. Thumbspace thus works as an absolute
positioning touchpad superimposed on the standard touch-screen.
A drawback of this approach is that the thumb is above the cursor
in some areas of the screen, thus causing an occlusion. To get
around this issue, the authors proposed to use Thumbspace for
targets that are difficult to reach and Direct Touch for near targets.
Thumbspace also relies on Object Pointing [3]. The original
feature of this interaction technique is that the cursor never visits
empty regions and jumps from one target to another, according to
the direction of the pointer. Thumbspace uses this strategy with a
triggering threshold of 10 pixels to avoid jerky cursor movements.
The screen is subdivided into "proxy" areas which are associated
to a unique target. This way of "tiling" makes unused background
areas active and thus provides more motor space for selecting each
target. However, this approach may lose in efficiency when many
targets are present on the screen or if they are close to each other.

2.3 Hybrid Techniques
Shift [13] attempts to decrease the selection time of Offset Cursor
by a hybrid approach: a coarse Direct Touch on the target can be
followed by a precise cursor adjustment if needed. Touching the
screen triggers a callout that shows a copy of the occluded area in
a non-occluded area. The actual selection point (under the finger)
is represented by a cursor in the callout, and the user adjusts its
position to fine tune selection before releasing his finger. This
technique reduces the net correction distance and selection time
as the user touches the screen directly on the target. Besides, the
callout only appears when needed, after a delay that depends on
the target size (the larger the target, the longer the delay). This
strategy should improve selection time as the callout is only used
for fine-tuning small target selections. However, Shift does not
completely solve the screen coverage problem as it requires users
to put their fingers close to the target location. Finally, the
experiment that was presented in [13] was performed by using
both hands to manipulate the device.

2.4 Summary
Direct Touch is the fastest technique proposed so far. However, it
remains unusable in most real-life applications because of its high
error rate. Some alternatives, inspired by the take-off paradigm
[11], have been proposed. However, even if they solve the
accuracy problem of Direct Touch, the other issues of thumb
interaction remain unaddressed. Offset Cursor avoids occlusion
and increases accuracy but it limits access to targets at the bottom
of the screen and it is not very well suited for reaching targets in
the right and left corners (this problem can however be solved by
using an adaptive horizontal offset). Thumbspace was specifically
designed to address this accessibility problem in the corners, but it
does not prevent occlusions in the center of the screen. Finally,
Shift which was evaluated by using both hands, does not fully
address the corner accessibility issue of the thumb as users must
tap close to the desired targets. To sum up, as illustrated in Table
1, efficient solutions have been proposed to solve the problems
involved with thumb interaction individually, but none of the
existing techniques address them all together. This is the
challenge we met by designing TapTap and MagStick, two new
interaction techniques that we introduce in the next sections.

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
A.2 selected publications (2005–2012) 125

 DDiirreecctt TToouucchh OOffffsseett CCuurrssoorr AAddaappttiivvee OOffffsseett TThhuummbbssppaaccee SShhiifftt TTaappTTaapp MMaaggSSttiicckk

OOvveerrvviieeww

TTaarrggeett
AAcccceessssiibbiilliittyy

Grayed areas are difficult to reach – Hatched areas are impossible to reach
TThhuummbb

OOcccclluussiioonn Everywhere None None
Center (if same

relative and
absolute positions)

On top left None None

PPooiinnttiinngg
AAccccuurraaccyy Coarse

Medium (net
correction

distance time)

Medium (net
correction

distance time)

Fine (facilitated by
Object Pointing)

Medium (small
targets) and coarse

(large targets)

One coarse and
one fine (increase

target size)

Fine (facilitated by
Semantic Pointing)

Table1. Comparison of the features of one-handed interaction techniques

3. TAPTAP AND MAGSTICK
TapTap and MagStick are specifically designed for interacting
with the thumb on small touch-screens. Both techniques address
the issues of thumb interaction that we previously pointed up.
Their respective designs result from a twofold strategy: TapTap
was conceived as an improvement of Direct Touch and solves its
accuracy and accessibility problems and MagStick is an
improvement of Offset Cursor and other techniques based on the
take-off principle. A video demonstration can be viewed at
http://www.anneroudaut.fr

3.1 TapTap
TapTap comes from a simple idea: if a single tap is not efficient
for selecting a small target accurately, a second tap should suffice
to disambiguate the selection. More precisely, the first tap defines
an area of interest on the screen (Fig. 2a); this area is then
magnified and displayed as a popup on the center of the screen
(Fig. 2b); the second tap selects the desired target in the popup
(Fig. 2c) (or cancels the selection if an empty space is selected).
Selection is by design more precise because the selecting tap takes

place on a magnified view of the area of interest where the targets
are large enough to be easily selected with the thumb. TapTap
also improves accessibility in screen border areas. Not only does

the first tap not need to be performed on the desired target (it must
only be performed reasonably close to this target), but also the
magnified view pops up in the center of the screen. Targets that are

close to the borders in the original view thus appear in a location that

is much easier to reach in the magnified view.

Figure 2. TapTap Design

TapTap is thus based on a temporal multiplexing strategy where
the first tap serves to specify the focus area in the original view so
that this focus will be displayed at a scale that makes it possible to
select the target precisely. Although based on zooming, this
strategy has some interesting characteristics that make it different
from usual multi-scale approaches. First, there is no interactive
control of the zooming factor nor of the amount of XY panning as
they are automatically adjusted. Interaction is very fast and works

practically like a quasi-mode: the first tap enters the selection
mode and makes the zoomed view appear, while the second tap
closes this view and leaves the selection mode.
The zooming factor was chosen in order to take into account the
size constraints of small touch-screens on mobile devices.
Besides, in an attempt to satisfy contradictory constraints, the
view and the targets are not zoomed in with the same factor.
On the one hand the focus zone that is selected by the initial tap
must be relatively large so that it contains the desired target even
if the tap location is (reasonably) far from the target. A size of 80
x 120 pixels was empirically chosen (for a QVGA screen of 240 x
320 pixels). This makes it possible to tap as far as 40 pixels
horizontally and 60 pixels vertically from the desired target, a
distance that is sufficient to prevent almost all errors in the first tap.
On the other hand, the relatively large size of the focus zone
constrains the zooming factor that can be applied in the magnified
view because of the small size of the QVGA screen. Moreover,
the whole screen real estate can not be used because of the
accessibility problem (the areas close to the borders are difficult to
reach with the thumb). As a consequence, the focus area is only
magnified by a factor of 2 in the pop up (its size is thus 160 x 240
pixels) and placed in the center of the screen (Fig. 2). It is hence
located in the most favorable area of the screen for interacting [6].
However, this zooming factor may be insufficient for making
common targets large enough to be selected precisely. According
to [9] targets should be at least 9,2mm large for making thumb
selection easy. But many mobile applications have targets as small
as 3 mm [14,12]. In order to ensure sufficient size, targets are
zoomed in by a factor of 3 instead of a factor of 2 for the rest of
the focus view. Ours observations showed this choice to be
effective: users had no difficulties in selecting 9mm targets (i.e.
3mm targets magnified 3 times) and they were not disoriented by
this dual zooming factor (in fact none of them noticed this feature).

3.2 MagStick
Dragging techniques are more accurate than Direct Touch but they
are significantly slower and do not solve all screen accessibility
issue. MagStick solves these problems by providing a telescopic
stick that controls a "magnetized" cursor. The telescopic stick can
reach any target on the screen while the magnetization of the
cursor (which can be seen as form of semantic pointing [8])
speeds up the adjustment of the cursor to the target location.
Finally, the offset distance of the cursor is not constant, but
dynamically adjusted by the user in a highly predictable way.

 a) b) c)

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
126 publications

MagStick works as follows: 1) when the user presses the screen,
he defines a reference point (Fig. 3a); 2) by dragging his thumb he
makes a two-part stick appear (Fig. 3b): the two parts emanate
from the reference point and end at the current position of the
thumb and the location of the cursor; 3) as both parts always have
the same length and (initially) the same direction, the user can
control the location of the cursor by dragging his thumb
continuously on the screen (changing the size of one part of he
stick automatically changes the size of its other part); 4) targets
attract the cursor as if it was "magnetized", with the effect of
bending the stick as shown in Fig. 3c); 5) finally the user releases
the thumb to select the target that is currently below the cursor (or
to cancel if an empty space is selected)

Figure 3. MagStick Design

A key feature of this technique, which was inspired by games
such as electronic billiards, is that the cursor moves in the opposite
direction of the fingertip. This strategy is especially efficient for
avoiding visual occlusions as the thumb must be moved away from
the desired target: not only the thumb will not hide the target but a

large part of its visual context will be made visible.
Another important feature of MagStick is that its symmetrical
design allows the user to easily predict the movement to perform.
An important drawback of Offset Cursor is that most users, with
the exception of very well-trained ones, can not know the exact
location of the cursor until they touch the screen. They must thus
wait for the cursor to appear before starting to adjust its position
finely. Conversely, as the two parts of the stick are of equal
length, this problem does not exist with MagStick. The user can
predict how far he will have to move his finger before touching
the screen as this distance is equal to the distance between the
target and the reference point.
Magnetization, which derives from Semantic Pointing [2], also
contributes to speed up the selection task. Each target has a
proximity area that attracts the cursor and "bends" the stick. When
the cursor enters a proximity area, it is attracted to the center of
the corresponding target. This feature makes fine positioning
unnecessary but also avoids "empty selection" errors that would
otherwise occur when the user overshoots or undershoots the
desired target. Conversely, when the user moves the stick (and the
cursor) away from a target area, the magnification effect vanishes
and the two parts of the stick become aligned again until the
cursor is attracted by another target. A possible refinement would
be to assign different attraction powers to targets, as proposed in
the original Semantic Pointing technique. It could facilitate the
selection of targets that are very frequently used, or, conversely,
to prevent the accidental activation of dangerous commands.
However, this feature should be carefully tested in the context of
thumb interaction where cursor movements are necessarily more
imprecise than when using a mouse on a desktop.

4. PROPERTIES OF THE TECHNIQUES
This section compares the properties and the respective
advantages of our techniques. In particular, it shows that they
provide efficient solutions to the three problems presented in the
‘related work’ section: target accessibility, visual occlusion and
accuracy. We also investigate the compatibility of our techniques
with dragging gestures and other target sizes and layouts.

4.1 Target accessibility
TapTap and MagStick can select targets anywhere on the screen
although they use different principles. TapTap uses a two-step
zooming strategy where the user specifies a focus of interest that
is then displayed at a larger scale in the center of the screen. The
first tap does not need to be very close to the target and the second
tap is always performed in the most favorable area of the screen.
Conversely, MagStick relies on a space-shifting strategy by
providing a "telescopic arm" that reaches targets close to the
borders. As with TapTap, MagStick makes it possible to perform
the dragging gesture in the most favorable area of the screen, but
it leaves freedom to the user to interact by following two different
strategies. The first one consists in touching the screen very close
to the target in order to minimize the length of the dragging
gesture. Another strategy is to systematically start the dragging
gesture from the center of the screen. Any target can then be
selected, either by placing the thumb below the target if it is in the
upper part of the screen, or above the target if it is in its lower
part. This strategy was in fact used by most of our participants
during the evaluations. Another of its advantages is that it allows
the user to hold the mobile device firmly with the hand that
performs the interaction. The thumb joint is then located in the
middle of the right border of the screen (for a right hand user) and
the center of gravity of the handheld device is roughly above the
center of the hand. This position is safe and convenient because it
prevents the risk of dropping the device accidentally. The user then
moves his thumb upward or downwards when the target is exactly
located beneath the natural position of the thumb joint, but this

case seldom occurs and does not require cumbersome hand
movements.

4.2 Visual occlusion
The zooming strategy of TapTap prevents visual occlusion by
design: as targets are magnified by a x3 ratio, they are large
enough not to be completely hidden by the thumb.
The design of MagStick also ensures that visual occlusion can not
occur as the thumb moves away from the desired target. Both the
target and the focus of attention are clearly visible. It also prevents
occlusion in the thumb joint area as shown in Fig. 4 for the same
reason as explained in the previous section: the thumb is naturally
located in the middle of the screen and can easily be slightly
shifted up or down when needed.

Figure 4. No occlusion on the thumb joint with MagStick

 a) b) c)

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
A.2 selected publications (2005–2012) 127

4.3 Accuracy without reducing speed
Both techniques attempt to "circumvent" the constraints of the
Fitts’ Law for a homogeneous 2D space in different manners.
TapTap relies on a multi-scale space (that can be seen as a
generalization of magnification tools as those proposed in [8,15]).
As shown by Guiard et al. [4] multi-scale spaces significantly
increase the range of indexes of difficulty that users can handle
and Fitts’ Law applies uniformly over this range. TapTap makes it
possible to decrease the index of difficulty through zooming (that
is to say a translation on the scale axis of the space-scale
diagram). The two taps required by TapTap are thus performed
faster than two "standard" successive taps (this assumption was
confirmed by experimental data): The size of the "target" is
increased, and the distance between the thumb and the target
decreased in both steps of the interaction (the "target" being a
zone of interest in the first case, and an actual but magnified and
centered target in the second case). This property also increases
accuracy and allows the user to view TapTap as a double click
with a fast spatial readjustment between the two taps. As detailed
in the experiment section, this effect was striking when conducting
the evaluation: users did not give the impression that they were

performing two successive taps but rather a compound gesture.
Similarly, MagStick relies on Semantic Pointing, a technique that
distorts the motor space and thus artificially reduces the pointing
distance. This technique also avoids the cursor leaving the target
when the thumb is slightly, and involuntarily, moved. As stated
above, the input signal provided by current touch-screen
technology is somewhat imprecise and instable when interacting
with the thumb. Although filtered by a low pass filter to remove
outliers and smooth the input curve [13,14] this signal is still far
from being perfectly reliable. Besides, the user may also
involuntarily move his thumb when he releases it and thus miss
the target. Magnetization solves both problems.
Finally, the ability to predict the movement before starting the
gesture is probably another key feature for making the selection
faster. The property relies on the fact that both parts of the stick
always have the same length. Using a variable gain, as in [1],
sounds appealing but could decrease performance in our case
because this important property would be lost. This was confirmed
by preliminary experiments we made when designing MagStick.

4.4 Other properties
Real mobile computer operations are combination of different
interaction techniques, such as pointing or dragging. In our
experiments, we focus on pointing with small and randomly laid
out targets. In this section, we present some other interesting
properties of TapTap and MagStick. More precisely, we
investigate how our techniques work with different kinds of
targets (size and layout) and their compatibility with other
interaction styles.
Large targets. Although targets can hardly be much smaller, and
still easily visible, than those we considered (3mm, a size found in
many mobile applications [14,12]), they can however be much
larger. MagStick then operates as Direct Touch: as the cursor
appears below the thumb when it is pressed on the screen, the user
can just release it without performing any movement to select the
target. TapTap can be replaced by Direct Touch for large targets.
This can be made explicit by a visual cue. But choosing target
sizes in a consistent way may suffice (for instance targets with
only 2 or 3 different heights). Selecting targets in two different
ways may not be a real problem after some training: a) people do

that all the time when using desktops (documents must be double-
clicked, while other buttons are, generally, simple-clicked); b) a
small inactivation delay could be used in such a way that a second
click on a large button (or the view it generates) would have no
effect. Hence, a useless second tap would never produce an
unexpected result.
Lists and Groups. Aligned or grouped targets are often common
in real applications: this case typically occurs in menus, lists, tool
boxes, tabbed panes, etc. While TapTap performance is likely to
be similarly high whatever the layout, the specific design of
MagStick can provide interesting features in this case. It makes it
for instance possible to access items organized as lists or trees by
moving the thumb away and keeping it approximately at the same
location of the screen. This could be very useful for browsing a
menu system without having to perform multiple target selections.
Besides, as the thumb can be placed rather far away from the
target, this would noticeably reduce occlusion and would thus
make it possible to display more contextual information.
Dragging gestures. TapTap does not interfere with interaction
styles based on dragging gestures as it only requires users to tap
the screen. A target can be moved by dragging the thumb on the
screen instead of releasing it immediately after the second tap (the
popup does not cause visual occlusion because it disappears when
the user starts the second tap by pressing the screen). This way of
dragging objects is in fact quite similar to the usual one except
that the target is not beneath the cursor but remotely controlled by
the movements of the thumb. The target moves in the global view
according to the movement of the thumb from the position of the
second tap. In order to move the target anywhere on the screen,
this movement is multiplied by a constant gain of 2. In addition,
TapTap also makes it possible to pan the entire view by dragging
on its "background". An image, a map or a page could for instance
be panned in this way.
MagStick also has interesting properties regarding this criterion.
First, it allows an object to be dragged, although in a slightly less
usual way than with TapTap. Instead of releasing the thumb
immediately when the proper target is reached, the user must wait
for a small temporal delay. The target is then implicitly selected
and can be moved by dragging the finger.
To sum up, we have seen in this section that TapTap and
MagStick address all the issues raise by one-handed interaction,
and that they can be applied in different kinds of application
without preventing the use of other interaction styles. The next
section shows the effectiveness of TapTap and MagStick through
a controlled experiment that compares them with the main
techniques proposed so far.

5. EXPERIMENTAL EVALUATION
We conducted a controlled experiment to compare TapTap and
MagStick with the main techniques published before: Direct
Touch, Offset Cursor [11], Thumbspace [6] and Shift [14]. Since
the previous techniques principally explored the pointing task, our
experimentation focuses on this problem of pointing only.
According to the design of our techniques and the properties that
were previously described, our hypotheses are that:
H1: TapTap and MagStick are the fastest techniques after Direct

Touch.
H2: TapTap and MagStick are the techniques with the lowest

error rate
H3: TapTap and MagStick are efficient for accessing targets

anywhere on the screen.

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
128 publications

5.1 Task
The task consisted in performing series of target selections with
the six techniques. Participants were asked to hold the device with
their dominant hand and to use their thumb. Several targets were
displayed on the screen and one of them was to be selected. The
participants were instructed to perform the selection as quickly
and accurately as possible. Before each trial, the user presses a
"Next trial" button and a city map appears with a set of 16 targets.
They are displayed in blue color, except for the one to be selected
that is in red. The blue targets are distractors in order to improve
the realism of the target acquisition task. The color of the target
changes to green when the cursor flies over it (except for tapping
techniques such as Direct Touch and TapTap). The trial ends
when the user lifts his thumb from the screen, whether he succeeds
or not the selection. A sound indicates the result of the acquisition.

5.2 Apparatus and participants
The techniques have been implemented in C# (with the .Net
Compact Framework) and operate on the Windows Mobile 5.0
OS. Experiments have been performed on a HTC P3600 PDA-
phone with a QVGA (320x240) touch-screen. Twelve volunteers
(1 female), ranging in age from 23 to 47 years, were recruited
from our institution and received a handful of candies for their
participation. All of them were using a mobile device with a
touch-screen for the first time. Two subjects were left-handed and
we mirrored their results so that each user used their dominant
hand to perform the experimentation.

5.3 Experimental conditions
The efficiency of the interaction techniques involved in this
experimentation is likely to depend on the location of the target.
Karlson et al. took this aspect into account in their experiment [6].
They subdivided the screen into 12 areas arranged as a regular
matrix. We used a different subdivision pattern, with 8 zones of
the same surface area (Fig. 5a represents the 12 areas for a right-
handed person), which provides a clear separation between the
areas located at the center of the screen and those close to the
borders, which may degrade performance. This analysis of the
screen areas is important because it can have strong implications
on the design of interactive applications.
To reduce the task time for our participants, we only considered
one target size of 3 mm, because this value was reported to be the
actual minimal widget size in mobile applications [14,12].
Besides, Vogel also reported in [14] that Direct Touch and Shift
outperforms other techniques for targets larger than 18 pixels. The
study thus focuses on small targets, as they constitute a more
difficult case and are commonly found in mobile applications. The
proximity areas for the MagStick magnetize effect measure 10.8mm.
A minor enhancement was made on Offset Cursor because its
original design makes it impossible to reach targets on the bottom
of the screen. So that this technique is not at disadvantage, the
user can make the cursor appear below the thumb position
(negative offset mode) by pressing a hardware button before
touching the screen. The analysis of the experimental data
confirmed that this improvement did not affect the results (the
performance is not significantly different in the ‘down’ area than
in "easy to reach" areas such as ‘up’ and ‘Center’). Hence all
targets can be selected by using any of the 6 tested techniques.
During the task, Time, errors and thumb movements were
recorded. At the end, the subjects answered a questionnaire to
give their opinion and satisfaction about all techniques (6
variables were measured on a 5 pt. Likert scale).

Figure 5. a) Targets layout b) Target Area subdivision

5.4 Experimental design
A repeated measures within-subject design was conducted. The
independent variables are Techniques (Direct Touch, Offset
Cursor, Thumbspace, Shift, TapTap and MagStick) and Target
Area (8 areas shown in Fig. 4a). The presentation of Technique
was circularly counterbalanced among participants. All of them
performed 16 selections twice in all the 8 Target Areas. Target
Areas were ordered in a sequence circularly counterbalanced for
each technique. This sequence aims at balancing the regions that
are easy or hard to reach. Finally, at the beginning of each
technique, subjects performed 10 practicing trials. In summary,
the design was: 6 Techniques x 8 Target Areas x 2 blocks = 96
selections (15-20 minutes) per participant.

5.5 Results
Repeated measures analysis of variance showed that the order of
presentation of the techniques had no significant effect on
selection time or error rate.

5.5.1 Selection time
Task time was measured from the moment the user released the
"Next trial" button to the moment his thumb was lifted up from
the screen. Trials with selection errors were excluded from the
selection time analysis. We performed a 6 x 8 (Technique, Target
Area) within subject analysis of variance. We found significant
main effects for Technique (F5,55=14.59, p<.001) and Technique x
Target Area interaction (F35,268=2.31, p<.001). Post hoc multiple
means comparison tests allowed us to rank the techniques as
follows: Direct Touch (1177.8 ms) and TapTap (1547.4 ms) (no
significant results between them), MagStick (2037.6 ms), Shift
(3046 ms) and Offset Cursor (3562.7 ms) (no significant results
between them), and the slowest, Thumbspace (3897.3 ms). The
results show that: TapTap is about to 2.3 times faster than Offset
Cursor, 2 times faster than Shift, and almost 2.5 times faster than
Thumbspace; MagStick is about 1.7 times faster than Offset
Cursor, 1.5 faster than Shift and 1.9 faster than Thumbspace.
These results, illustrated in Fig. 6, are all significant. We found
that Direct Touch was the fastest, but (as described in the error
result) the quantity of data collected is small compared to the
other techniques. We can considerate Direct Touch "out of range"
because a technique that produces so many errors is of course very
frustrating for users, and can not be compared in this experiment
with the other techniques that all provide better results.

Figure 6. Mean time (ms) for Technique
Bars represent 95% confidence interval.

 a) b)

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
A.2 selected publications (2005–2012) 129

The analysis of the Technique x Target Area interaction showed
that Target Area has no significant effect on selection with
TapTap and MagStick. There is a significant effect for Offset
Cursor, which is less efficient in the ‘joint’ area (see Fig.4)
(2246.2 ms mean difference) and in the ‘opposite’ area (1250 ms
mean difference) than in other zones. A similar effect was found
for Shift in the ‘up’ (2445.6 ms mean difference) and ‘opposite’
(936.8 ms mean difference) areas. These results confirm our
observations during the experimentation sessions where we
noticed that users often hide the target with their thumb in these
two areas. Some other significant effects were also found with
Thumbspace, which performed better on the borders of the screen
than in the center area (1381.9 ms of difference on average). This
result corroborates the assumptions of the authors [6].
In summary, without considering Direct Touch, TapTap is the
fastest and MagStick the second. The border areas are reached
faster with MagStick than with the hybrid and the dragging
techniques. Not only is MagStick quite efficient for reaching the
edges, but it also does not impair interaction in the center of the
screen (as Thumbspace does). TapTap is particularly fast and
consistent across screen areas.

5.5.2 Error rate
The error rate measurement aggregates both empty and wrong
target selections. We performed a 6 x 8 (Technique, Target Area)
within subject analysis of variance on the aggregated number of
errors. Error rate was significantly affected by Technique
(F5,55=45.91, p <.001) and Technique x Target Area interaction
(F35,268 = 1.74, p<.001). Post hoc multiple means comparison tests
showed that TapTap (6.7%) has the lowest error rate and Direct
Touch (59.9%) the highest in comparison to all other techniques
(Fig. 6). No significant results were found in comparing the other
techniques (i.e. Offset Cursor (16.1%), Shift (17.1), MagStick
(10.4%) and Thumbspace (18.7%)). We can notice that the error
rate of Direct Touch is considerably high. The error rate of
TapTap is about 2.5 (and 1.6 for MagStick) times smaller than for
Offset Cursor, Shift and Thumbspace.

Figure 7. Mean Error rate for Technique
Bars represent 95% confidence interval.

The only significant result about Technique x Target Area
interaction is mainly due to Direct Touch. Considering its high
error rate and dissatisfaction of our participants with it, we will
not discuss on these results. By considering empty and wrong
selections separately (they were previously merged), we found
that Thumbspace only produces wrong selections while the other
techniques induce mostly empty selections. In fact these results
are not surprising because by design Thumbspace "tiles" the
space. This approach, which could be efficient because the target
is then larger in the motor space, have also the disadvantage of
causing more wrong errors that are much more costly than empty
selections (canceling an action triggered by a wrong selection may
be time-consuming and frustrating).

In summary, TapTap has the lowest error rate and Direct Touch
the highest. All the "dragging" techniques and Shift have
approximately the same error rates, except that Thumbspace errors
are only wrong selections.

5.5.3 Subjective preferences
With the post-study questionnaire, participants ranked the six
techniques as follows: TapTap, MagStick, Shift, Offset Cursor,
Thumbspace and the most disliked Direct Touch. Their opinions
about the speed, accuracy, pleasantness, simplicity, learning and
fun are illustrated in Fig. 8. TapTap is the most liked technique for
all criterions, except for ‘fun’ where it is placed second. Tapping
approaches (TapTap and Direct Touch) are ranked first for the
‘speed‘ assessment and users estimated that TapTap performs
faster than Direct Touch, even if quantitative results showed the
contrary. Direct Touch is disliked for the ‘accuracy’,
‘pleasantness’ and ‘fun’ criteria. Results for dragging approaches
have a similar shape, with MagStick and Offset Cursor generally
above Shift and Thumbspace. MagStick is judged slightly inferior
for ‘learnability’ but ranked first for ‘fun’.

Figure 8. Questionnaire results (means).

5.6 Discussion
The results of our experimentation confirm our hypotheses.
TapTap has the lowest error rate (H2) of all techniques and it is
the fastest technique after Direct Touch (H1). In fact, it would be
even faster than Direct Touch in the case of real usage. As Direct
Touch is very error prone, many selections will have to be
performed again. The average time needed to select a target is
thus significantly higher than the time to correct selections given
in the previous section. This average time can be estimated by
considering that the selection task will take at least twice as much
time in the case of wrong selections as the target must then be
selected again (in fact it will take more time because a wrong
selection may launch an undesired application that the user will
have to close). According to this hypothesis, Direct Touch would
require an estimated average time of 2002 ms while TapTap
would only need 1676 ms as it produces much fewer errors.
Another interesting point is that the single tap of Direct Touch
takes more time (1177.8 ms) than each tap of TapTap (803.3 ms
for the first tap and 744.1 ms for the second tap). These results
confirm the validity of the design hypotheses presented in section
3. Besides, users seem to perform the second tap slightly faster, an
effect that may come from the fact that the magnified area is centred
and the target thus pretty close to the natural position of the thumb.
Our results also validate the hypotheses that MagStick is faster
(H1) than other techniques (TapTap and Direct Touch except, but
Direct Touch is too error prone to be really usable, as stated
before) and that it produces fewer errors (H2) than other

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
130 publications

techniques (TapTap except again). Another interesting
observation is that the time to press the screen is slightly faster for
MagStick (844.2 ms) than for other dragging techniques (1140,6
ms for Offset Cursor, 958,7 ms for Shift and 935,8 ms for
Thumbspace). This may be explained by the fact that users tend to
place their thumb systematically in the centre of the screen
without spending time to adjust the position of the thumb. Once
they touch the screen (approximately) at its center they then move
the thumb for the same distance as the distance between the center
and the target. As the execution time of MagStick is also faster
than for other dragging techniques, we hypothesize that the users
make an estimation of this distance before touching the screen
(only one participant among the twelve has made errors due to a
wrong positioning of the thumb).
The rapidity of MagStick may also be explained by Semantic
pointing. However this mechanism depends on target density, and
should be carefully tested in this context. Our first experiments with
a high target density (32 instead of 16 targets of 3mm randomly
displayed), shows that MagStick performance is then equivalent to
those of Shift and Offset Cursor (while TapTap efficiency is
almost the same for both densities). To increase the performance of

MagStick, we plan to implement a density-dependent approach that

dynamically adapts the strength of the magnetizing effect according

to the position of the cursor and its local context on the screen.
Our experimentation also shows that the selection time and the
number of errors do not depend on screen areas when using
TapTap and MagStick (H3). Conversely, Thumbspace is less
efficient in central areas (as also demonstrated in [6]), Shift
impairs interaction in the top and left corners because of visual
occlusion, and Offset Cursor degrades performance in all screen
corners. TapTap and MagStick both provide efficient solutions to
these issues as they help users to reach any target in a short and
constant time, whatever its location on the screen. MagStick
performed well in border areas without decreasing efficiency in
the center. Finally, MagStick tends to concentrate most thumb
movements in the center as shown in Fig. 9. It also provides a
comfortable grip for user interaction in mobility conditions and it
is well-adapted to thumb morphologic capabilities.

Figure 9. Thumb gesture traces.

6. CONCLUSION AND FUTURE WORK
We have presented TapTap and MagStick, two new interaction
techniques that improve target acquisition on small touch-screens
for mobile devices. TapTap is based on time-multiplexing through
an automatic two-step zooming strategy. MagStick relies on
magnetization, a variant of semantic zooming and also makes it
possible to predict thumb movements and thus to reduce the net
correction distance. Our experiments showed that both techniques
are faster and produce fewer errors than the current state of the art.

They also cover the other issues raised by thumb interaction on
small touch-screens such as visual occlusion and target
accessibility in all parts of the screen. They are also both
compatible with interaction techniques relying on dragging
gestures. Finally, this paper also offers a significant benefit by
presenting a thorough analysis of the techniques published so far.
In future work, we plan to adapt our techniques to constraints that
depend on the application context (higher target densities, specific
target layouts such as lists or trees…) and to perform further
evaluations to evaluate their efficiency under these conditions.

7. ACKNOWLEDGMENTS
This work has been done in collaboration with Bruno Aidant,
Bruno Legat and Johann Daigremont from Alcatel-Lucent that we
thank for their useful advices. We also thank Yves Guiard for his
precious help for statistical analysis and all the participants for
their pleasant contributions.

8. REFERENCES
1 Albinsson, P. and Zhai, S. 2003. High precision touch screen

interaction. Proc. CHI’03. 105-112. 2003.
2 Blanch, R., Guiard, Y., Beaudouin-Lafon, M. Semantic

pointing: improving target acquisition with control-display
ratio adaptation. Proc. CHI’04. 519-526. 2004.

3 Guiard, Y., Blanch, R., Beaudouin-Lafon, M. Object
pointing: a complement to bitmap pointing in GUIs. Proc.
Graphics interface 2004.Vol. 62. 9-16. 2004.

4 Guiard, Y., Beaudouin-Lafon, M. (2004). Target Acquisition
in Multi-Scale Electronic Worlds. International Journal of
Human-Computer Studies, 61, 875-905.

5 Huot, S., Lecolinet, E. Focus+Context Visualization
Techniques for Displaying Large Lists with Multiple Points
of Interest on Small Tactile Screens. Proc. Interact’07.

6 Karlson, A., Bederson, B. ThumbSpace: Generalized One-
Handed Input for Touchscreen-Based Mobile Devices. Proc.
Interact’07.324-338.2007.

7 Karlson, A., Bederson, B., Contreras-Vidal, J. Understanding
on User Interface Design and Evaluation for Mobile
Technology, Idea Group, 2007.

8 Mankoff, J., Hudson, S. E., and Abowd, G. Interaction
techniques for ambiguity resolution in recognition-based
interfaces. Proc. UIST’00. 11-20. 2000.

9 Parhi, P., Karlson, A., Bederson, B. Target Size Study for
One-Handed Thumb Use on Small Touchscreen Devices.
Proc. MobileHCI’06. 203-210. 2006.

10 Pascoe, J., Ryan, N., Morse, D. Using while moving: HCI
issues in fieldwork environments. ACM Trans. Comput.-
Hum. Interact. 7(3):417-437. 2000.

11 Potter, R., Weldon, L., Shneiderman, B. Improving the
Accuracy of Touchscreens: An Experimental Evaluation of
Three Strategies. Proc. CHI’88. 27-32. 1988.

12 Ren, X. and Moriya, S. Improving selection performance on
pen-based systems: a study of pen-based interaction for
selection tasks. ACM TOCHI. 7(3).384-416. 2000.

13 Sears, A., Shneiderman, B. High precision touchscreens:
design strategies and comparisons with a mouse. Int. J. Man-
Mach. Stud. 34(4):593-613. 1991.

14 Vogel, D. and Baudisch, P. 2007. Shift: a technique for
operating pen-based interfaces using touch. Proc. CHI'07.
657-666. 2007.

15 Grossman, T., Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor's activation area. Proc.CHI’05. 281-290. 2005.

in
ria

-0
05

50
69

4,
 v

er
si

on
 1

 -
29

 D
ec

 2
01

0
A.2 selected publications (2005–2012) 131

FlowStates: Prototypage d’applications interactives
avec des flots de données et des machines à états

Caroline Appert1,2 Stéphane Huot1,2 Pierre Dragicevic2 Michel Beaudouin-Lafon1,2

1LRI - Univ. Paris-Sud & CNRS 2INRIA
Bât. 490, F-91405 Orsay, France Bât. 490, F-91405 Orsay, France

{appert,huot,dragice,mbl}@lri.fr

RESUME
Cet article présente FLOWSTATES, une boı̂te à outils com-
patible avec Java Swing qui associe deux modèles de ges-
tion des événements : les flots de données et les machines
à états. Le modèle à flot de données permet de facilement
interfacer des périphériques non standard et de reconfi-
gurer les interactions en fonction des périphériques dis-
ponibles, tandis que les machines à états permettent de
réaliser aisément des interactions complexes. À travers
des exemples, l’article illustre la puissance et l’expressi-
vité de cette approche hybride et la flexibilité qui résulte
du choix explicite de ne pas fixer les limites entre les rôles
de chaque modèle.

MOTS CLES : Boı̂te à outils, flot de données, machine à
états

ABSTRACT
This article introduces FLOWSTATES, a user interface
toolkit compatible with Java Swing that combines two
models for managing events : dataflow and state machines.
The dataflow model makes it easy to support non-standard
input devices and to reconfigure interactions according to
the available devices, while state machines support the
programming of complex interactions. The article illus-
trates the power and expressivity of this hybrid approach
and the flexibility afforded by the explicit decision to not
set strict limits between the roles of each model.

CATEGORIES AND SUBJECT DESCRIPTORS: H5.m.
Information interfaces and presentation (e.g., HCI) : Mis-
cellaneous.

GENERAL TERMS: Languages, Design.

KEYWORDS: User interface toolkit, dataflow, state ma-
chine

INTRODUCTION

La gestion des entrées dans les interfaces graphiques
est un problème notoirement complexe. La plupart des
boı̂tes à outils d’interface actuelles utilisent le modèle des
fonctions de rappel (“callbacks”) qui sont appelées lors-
qu’un événement se produit. Ce modèle est parfois mis
en oeuvre sous la forme d’une délégation dans les lan-
gages à objets, comme par exemple avec les “listeners” de
Java. Un autre modèle qui a été largement exploré est ce-
lui des machines à états, fondées sur des automates à états
finis dont le langage d’entrée est le vocabulaire de types
d’événements disponibles. Cette approche a par exemple
été récemment intégrée à la boı̂te à outils Java Swing
avec l’extension SWINGSTATES [3]. D’autres modèles uti-
lisent des automates plus élaborés comme les machines à
états hiérarchiques [6] ou les réseaux de Petri [28]. Un
troisième modèle considère les événements comme des
signaux qui se propagent selon un flot de données, para-
digme issu des langages et modèles réactifs. La boı̂te à
outils ICON [14] en est un bon exemple.

Chacun de ces modèles comporte des avantages et des in-
convénients selon les types d’événements qui sont traités,
selon le type de techniques d’interaction à implémenter,
selon le niveau d’abstraction des événements manipulés,
selon le degré de dynamicité souhaité, etc. Jusqu’à présent,
à de rares exceptions près [22, 28, 13], la plupart des boı̂tes
à outils ont utilisé un seul de ces modèles, obligeant le
programmeur à s’accomoder de ses limitations.

Cet article présente FLOWSTATES, une boı̂te à outil qui
combine ICON et SWINGSTATES et associe ainsi flot
de données, machines à états et graphe de scène. Les
événements de bas niveau sont d’abord traités par ICON,
ce qui permet de facilement interfacer des périphériques
non standard et de reconfigurer les interactions en fonc-
tion des périphériques disponibles. Les modules ICON qui
s’interfacent normalement avec l’application [14] ou un
graphe de scène [21] sont connectés à SWINGSTATES :
les signaux d’entrée de ces modules sont transformés en
événements abstraits traités par les machines à états de
SWINGSTATES. Ceci permet de facilement réaliser des in-
teractions complexes, qui sont souvent décrites dans la

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0
Manuscrit auteur, publié dans "International Conference of the Association Francophone d'Interaction Homme-Machine,

Grenoble : France (2009)"
 DOI : 10.1145/1629826.1629845

132 publications

littérature par des automates. Les machines à états agissent
à leur tour sur le graphe de scène et le noyau applicatif via
les actions associées aux transitions.

Cette organisation en trois couches (dispositifs d’entrée,
logique d’interaction et actions sur les objets de l’applica-
tion) résulte de notre expérience de ces différents modèles
et de leur adéquation respective à différents niveaux d’abs-
traction lors du traitement des événements. Les différents
styles de spécification (langage visuel pour ICON et lan-
gage impératif pour SWINGSTATES) reflètent également
des besoins différents : la gestion des périphériques d’en-
trée est hautement variable alors que la logique de l’inter-
action (également appelée dialogue) est plus figée et plus
fortement couplée au noyau applicatif [1]. Cependant les
limites entre les modèles ne sont pas fixées, de telle sorte
que le programmeur garde un contrôle total sur l’utilisa-
tion qu’il fait de chaque modèle. En outre, les machines
à états peuvent réinjecter des événements vers le flot de
données et être déconnectées du noyau applicatif, ce qui
permet de s’affranchir des limites du modèle à couches et
de combiner les techniques d’interaction à la manière du
modèle de l’interaction instrumentale [5].

Dans la suite de cet article, nous passons en revue les
différents types de boı̂tes à outils d’interface. Nous présen-
tons ensuite FLOWSTATES et donnons un aperçu de son
pouvoir d’expression à travers des exemples de proto-
typage d’interactions avancées. Enfin, nous discutons et
mettons en évidence les différences entre notre approche
et les précédents travaux d’intégration de modèles de ma-
chines à états et de flots de données.

APPROCHES POUR PROGRAMMER L’INTERACTION
De nombreux travaux de recherche ont eu pour objet de
rendre la programmation de l’interaction avancée possible
et plus facile. Nous donnons ici un aperçu des systèmes à
écouteurs d’événements classiques et de leurs évolutions,
des systèmes à états et des systèmes à flots de données.

L’approche basée sur les écouteurs d’événements
C’est l’approche que le programmeur doit suivre avec
les boı̂tes à outils largement utilisées comme Java Swing
ou Gtk. La construction d’une interface avec ces boı̂tes
à outils se résume à un assemblage de composants gra-
phiques (“widgets”) dont les liens internes et les liens
avec les périphériques d’entrée se font à l’aide d’écouteurs
d’événements. Ce type d’application interactive est connu
pour être difficile à modifier et à maintenir [25]. Cet
état de fait a motivé le développement de boı̂tes à outils
expérimentales avec une gestion des entrées plus flexible.
Deux contributions importantes dans ce domaine sont sub-
Arctic [20] et Garnet/Amulet [26, 27]. La force de subArc-
tic est de rendre plus transparente la politique d’aiguillage
des événements AWT et de permettre la redéfinition de
celle-ci par le programmeur. Quant aux boı̂tes à outils Gar-
net/Amulet, elles introduisent le concept d’interacteur, un
objet qui intercepte les événements et les transforme en

opérations sur un objet graphique. Garnet/Amulet propose
6 interacteurs prédéfinis qui reposent sur des machines
à états très simples de type “press-drag-relase” mais
ne fournit pas de support permettant la programmation
d’autres types d’interacteurs. Dans ces deux exemples, le
vocabulaire d’interaction n’est pas vraiment enrichi et les
moyens de l’enrichir ne sont pas transparents pour le pro-
grammeur d’interfaces.

L’approche dirigée par les états
Contrairement au modèle d’écouteurs dans lequel chaque
type d’événement doit spécifier sa fonction de rappel, cer-
tains modèles sont centrés autour des états du système in-
teractif et ne considèrent que les événements ayant une
sémantique dans ces états. Le formalisme des machines à
états, basé sur les automates à états finis, a fait ses preuves
quant à sa capacité à décrire intelligiblement des interac-
tions complexes “sur le papier” [8, 19]. La boı̂te à outils
SWINGSTATES intègre cette structure de contrôle directe-
ment dans le langage Java, afin de faciliter son adoption
par les programmeurs d’applications interactives.

Les deux principales limites des machines à états sont
l’explosion potentielle du nombre d’états et une gestion li-
mitée du parallélisme. Certains travaux ont donc considéré
des formalismes plus complexes comme la boı̂te à outils
hsmTk [6] qui propose des machines à états hiérarchiques
dans le langage C++ ou encore l’environnement Pet-
Shop [28] qui permet de spécifier la logique de l’inter-
action par des réseaux de Petri. Mais si la puissance de
ces formalismes a été démontrée pour modéliser des in-
teractions complexes, les machines à états simples comme
celles de SWINGSTATES ont l’avantage d’être rapides à
maı̂triser. Notre expérience avec des étudiants de Mas-
ter a d’ailleurs montré que des développeurs non aguerris
étaient capables d’utiliser ce formalisme pour décrire une
grande variété de techniques publiées dans la littérature
en IHM ces dernières années [3]. En outre, le parallélisme
peut être décrit en exécutant simultanément plusieurs ma-
chines à états et/ou en les faisant communiquer [3].

L’approche à flot de données
Dans les systèmes à flot de données, chaque change-
ment de valeur déclenche immédiatement le recalcul des
valeurs qui en dépendent. Ils sont couramment utilisés
dans les domaines du traitement d’images, de vidéos et
du son [11, 24], ainsi que pour le prototypage d’inter-
faces 3D [32, 12]. Auparavant confinée à ces domaines,
cette approche est de plus en plus appliquée au prototy-
page d’interfaces homme-machines avancées [14, 4, 23].
L’un de ces systèmes, ICON, a été couplé avec un modèle
de graphe de scène [21], permettant ainsi de décrire non
plus seulement des traitements de données mais aussi des
techniques d’interaction comportant du graphisme riche.
La boı̂te à outils Qt propose également une extension
au langage C++ pour proposer une gestion des écouteurs
d’événements selon une logique flot de données. Un ob-
jet source peut émettre des signaux alors qu’un objet cible

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

A.2 selected publications (2005–2012) 133

peut déclarer des slots d’entrée avec des fonctions de rap-
pel qui seront exécutées chaque fois que le slot d’entrée
correspondant recevra un signal. La connection entre si-
gnal et slot doit être déclarée à l’objet application.

Les flots de données ont plusieurs avantages : ils peuvent
être hautement modulaires (les calculs peuvent être en-
capsulés dans des briques indépendantes), ils permettent
de décrire des traitements séquentiels et parallèles avec la
même facilité, et ils se prêtent bien à la programmation
visuelle. Le principe d’ICON est d’exploiter cette flexi-
bilité pour rendre les applications interactives plus faci-
lement configurables et personnalisables en fonction des
périphériques d’entrée disponibles. Par exemple, une ap-
plication de dessin peut facilement être livrée avec une
configuration standard de type souris-clavier, une confi-
guration exploitant le canal de pression des tablettes gra-
phiques, et une configuration d’accessibilité reposant sur
la reconnaissance vocale. Ces configurations peuvent en-
suite être personnalisées par des utilisateurs experts en
fonction de leurs besoins et préférences personnelles,
ou dans le but d’exploiter au mieux leur configuration
matérielle (par exemple, exploiter l’orientation du stylet
fournie par certaines tablettes graphiques). Les configu-
rations d’entrée d’ICON peuvent être vues comme des
spécifications InTml [15]. Toutefois, elles sont éditables
et exécutables par le moteur réactif d’ICON alors que
InTml reste une spécification XML purement descriptive
des composants d’une interface de réalité virtuelle.

Malgré sa flexibilité, l’approche à flots de données a un
inconvénient majeur : les comportements décrits avec ce
paradigme peuvent devenir visuellement très complexes,
en particulier si les interactions comportent beaucoup
de contrôle (traitements conditionnels et modes). C’est
pourquoi FLOWSTATES adopte une approche hybride qui
couple flot de données et machines à états. Les autres so-
lutions hybrides existantes seront discutées et comparées
à FLOWSTATES à la fin de cet article.

SWINGSTATES ET ICON : RAPPELS

Les articles [3] et [14] décrivent respectivement les boı̂tes
à outils SWINGSTATES et ICON en détail. Nous ne rappe-
lons ici que les éléments nécessaires à cet article.

SwingStates

Une des particularités de SWINGSTATES est l’introduc-
tion des machines à états comme structure de contrôle
pour programmer l’interaction en Java. La figure 1 met
en parallèle la représentation graphique d’une machine à
états permettant de faire du déplacement de formes gra-
phiques par “drag-and-drop” et son code SWINGSTATES.
La machine à états est une classe Java dont les champs
sont les états de la machine (en gras). Ces états sont aussi
des classes, et leurs champs sont les transitions sortantes
de l’état (en italique). Les transitions sont à leur tour des
classes.

 drag

 1 StateMachine sm = new StateMachine() {
 2 SMShape dragged = null;
 3
 4 public State start = new State() {
 5 Transition dragOn =
 6 new PressOnShape(BUTTON1, ">> drag") {
 7 public void action() { dragged = getShape(); }
 8 };
 9 };
10
11 public State drag = new State() {
12 Transition drag =
13 new Drag(BUTTON1) {
14 public void action() { move(dragged); }
15 };
16 Transition dragOff =
17 new Release(BUTTON1, ">> start") {
18 };
19 };
20 };

 start

PressOnShape() /
dragged = pickedShape

Release()

Drag() /
move(dragged)

FIGURE 1 : Illustration de la syntaxe de SWINGSTATES
pour programmer une machine à états.

Event

TimeOutEventOnPosition

EventOnShape

Animation*

MouseOnPosition

Click,
Press,
Release,
Drag,
Enter,
Leave,
etc.

MouseOnShape

ClickOnShape,
PressOnShape,
ReleaseOnShape,
DragOnShape,
EnterOnShape,
LeaveOnShape,
etc.

EventOnTag

ClickOnTag,
PressOnTag,
ReleaseOnTag,
DragOnTag,
EnterOnTag,
LeaveOnTag,
etc.

KeyTransition

KeyPress,
KeyType,
KeyRelease.

MouseOnTag

AnimationStarted,
AnimationStopped,
AnimationResumed,
AnimationSuspended.

FIGURE 2 : Les classes de transitions disponibles dans
SWINGSTATES.

SWINGSTATES propose un ensemble de classes de transi-
tions qui sont déclenchées par différents types d’événem-
ents. Par exemple, la transition Drag (Fig.1, lignes 12-13)
est déclenchée par un déplacement de la souris avec le
bouton (gauche ici) appuyé. Le constructeur d’une classe
de transition comporte un argument textuel optionnel qui
indique l’état d’arrivée. Par exemple, la transition DragOff
(Fig.1, lignes 16-17) mène vers l’état start).

Comme illustré sur la figure 2, SWINGSTATES propose
un ensemble de classes de transitions qui tire profit de
son modèle de dessin structuré pour offrir un plus grand
pouvoir d’expression que Java AWT en intégrant en par-
ticulier des mécanismes de sélection avancés au niveau
de la boı̂te à outils (“picking”). En effet, pour chaque
événement positionnel (click, par exemple), SWINGSTATES
propose 3 classes de transition qui permettent de s’abon-
ner à des événements de ce type survenant : sur une
forme graphique particulière (ClickOnShape), sur toutes
les formes graphiques portant une certaine étiquette ou
tag (ClickOnTag), ou survenant n’importe où (Click). Bien

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

134 publications

que cette approche soit plus flexible pour le traitement
des événements, SWINGSTATES repose sur le système
d’événements AWT et ne permet donc pas de gérer
les périphériques d’entrée non standard. Une première
extension pour la gestion d’entrées avancées avait été
développée en utilisant la librairie jInput 1. Mais elle ne
permet qu’une connexion directe aux canaux physiques
détectés par jInput, sans représentation structurée des
périphériques, ni possibilité d’adaptation des données ou
de configuration dynamique.

L’architecture de SWINGSTATES reste pourtant ouverte à
une gestion plus large des événements grâce à des transi-
tions génériques (Event, EventOnPosition, EventOnShape
et EventOnTag) qui répondent à des événements virtuels.
Le programmeur peut spécifier la classe d’événements ca-
pables de déclencher une telle transition dans le construc-
teur de cette dernière. Par exemple, l’extrait de code ci-
dessous montre la définition d’une classe d’événements
de type Zoom (ligne 1) et une transition qui répond à ce
type d’événements (ligne 14) :
1 public class Zoom extends VirtualPositionEvent {
2 private double zoomFactor;
3 public Zoom(Point2D zCenter, double zFactor) {
4 super(zCenter);
5 zoomFactor = zFactor;
6 }
7 public double getZoomFactor() {
8 return zoomFactor;
9 }

10 }
11

12 CStateMachine interaction = new CStateMachine() {
13 ...
14 Transition t = new EventOnPosition(Zoom.class) {
15 public void action() {
16 Zoom event = (Zoom)getEvent();
17 zoomBy(event.getPoint(),
18 event.getZoomFactor());
19 }
20 };
21 ...
22 };

ICon
ICON repose sur un modèle à flots de données dont les
briques, appelées dispositifs, sont une généralisation des
dispositifs d’entrée : ils peuvent produire des valeurs de
sortie mais peuvent aussi en recevoir (Figure 3, en bas).
Ces valeurs sont émises sur des slots de sortie et reçues
sur des slots d’entrée. Dans le langage visuel d’ICON, ces
slots varient selon leur type (cercles pour les booléens, tri-
angles pour les entiers, etc.) et peuvent être organisés de
façon hiérarchique pour représenter des types structurés.

Une configuration d’entrée est un flot de données qui
relie des périphériques à un noyau applicatif (Figure 3,
en haut). Les configurations d’entrée sont construites en
interconnectant des dispositifs dans l’éditeur graphique.
Pour cela, ICON fournit des dispositifs système (qui décriv-
ent des ressources matérielles comme les périphériques
d’entrée) et des dispositifs utilitaires (allant de simples
opérateurs booléens jusqu’à des techniques d’interaction

1. https://jinput.dev.java.net/

Configuration d'entrée

Dispositifs
Système

Dispositifs
utilitaires

Dispositifs
d'application

Slots de
sortie

Slots
d'entrée

FIGURE 3 : Configuration d’entrée dans ICON.

comme des “toolglass” ou des interpréteurs de gestes, en
passant par des retours graphiques tels que des curseurs).
De son côté, le programmeur doit concevoir les dispositifs
d’application qui vont contrôler les fonctionnalités ou les
objets de son application.

Comparé au modèle événementiel standard, ce modèle
rend la description de l’interaction en entrée plus explicite,
plus fine, et plus facilement reconfigurable (y compris
pendant l’exécution du programme). Il est aussi beaucoup
plus facile à étendre. En effet, avec une boı̂te à outils clas-
sique, prendre en charge un nouveau périphérique d’entrée
ou une nouvelle technique d’interaction nécessite de : 1)
définir un nouveau type d’événement lié au périphérique ;
2) modifier et adapter le mécanisme de propagation des
événements ; 3) étendre les objets qui doivent réagir à ces
événements. Avec ICON, il suffit de créer un dispositif qui
encapsule le nouveau périphérique ou la nouvelle interac-
tion, et externaliser son interface sous la forme de slots
d’entrée et/ou de sortie. Le périphérique ou la technique
d’interaction peuvent alors être réutilisés dans de nom-
breuses configurations d’entrée.

Enfin, avec ICON, le noyau applicatif et les techniques
d’interaction ne sont plus câblés à des périphériques
d’entrée spécifiques. Il leur suffit de déclarer les canaux
d’entrée dont ils ont besoin pour fonctionner. C’est, entre
autres, cette propriété dont nous avons tiré parti pour l’as-
sociation entre SWINGSTATES et ICON, comme nous le
décrivons dans la section suivante.

FLOWSTATES
Cette section illustre, via des scénarios, l’utilisation de
FLOWSTATES et en détaille les mécanismes sous-jacents.

Contrôle de machines SwingStates avec ICon
Bob est étudiant en Master IHM. Dans le cadre d’un pro-
jet de cours, il doit prototyper un éditeur de dessin prenant
en charge les opérations de déplacement et de changement
d’échelle (pan et zoom). Il n’a pas encore fait le choix des
techniques de navigation qu’il désire rendre disponibles

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

A.2 selected publications (2005–2012) 135

public class Zoom extends IConEvent {
 protected double dZ;
 public void setSlotDZ(double dz) { dZ = dz; }
 public double getSlotDZ() { return dZ; }
 public boolean occurs() { return dZ > 0; }
}

new IConStateMachine(”zoom”, canvas) {
 State idle = new State() {
 Transition zoom = new Event(Zoom.class) { ... };
 };
}
new IConStateMachine(”pan”, canvas) {
 State idle = new State() {
 Transition pan = new Event(Pan.class) { ... };
 };
}

public Pan extends IConEvent {
 private double dX;
 private double dY;
 public double getSlotDeltaX() { return dX; }
 public double getSlotDeltaY() { return dY; }
 public void setSlotDeltaX(double dx) { dX = dx; }
 public void setSlotDeltaY(double dy) { dY = dy; }
}

MACHINE À ÉTATS
'ZOOM'

MACHINE À ÉTATS
'PAN'

ÉVÈNEMENT
'ZOOM'

ÉVÈNEMENT
'PAN'

DISPOSITIF
'ZOOM'

DISPOSITIF
'PAN'

FIGURE 4 : Le programme SWINGSTATES (partie
supérieure) permettant de générer les périphériques lo-
giques ICON (partie inférieure)

pour l’utilisateur final. Il commence donc par program-
mer des interactions avec SWINGSTATES en utilisant des
événements virtuels de Pan et de Zoom (figure 4).

Bob instancie d’abord deux machines à états de type
IConStateMachine, une pour le pan et une pour le zoom.
Il déclare ensuite les classes d’événements Pan et Zoom
de type IConEvent (qui étend la classe VirtualEvent de
SWINGSTATES). Dans chacune de ces deux classes, il
déclare les données qui composent l’événement en ajou-
tant des méthodes spécifiques pour y accéder et les modi-
fier. Par exemple, un événement Zoom comporte un réel
dZ qui correspond au changement d’échelle à appliquer.
Dans la classe Zoom, Bob déclare donc un champ dZ et
les méthodes getSlotDZ et setSlotDZ.

FLOWSTATES transforme automatiquement chaque ma-
chine à états en dispositif ICON selon le mécanisme sui-
vant : à l’instanciation d’une machine, les transitions sont
explorées afin de découvrir les événements de type ICo-
nEvent. Pour chaque type d’événement, FLOWSTATES
crée un groupe de slots d’entrée contenant un slot par
couple (getSlot ?,setSlot ?) déclaré dans l’événement.
Par exemple, un événement Pan est représenté par un
groupe de slots nommé Pan et composé de deux slots réels
DeltaX et DeltaY (figure 4). Au moment de l’exécution, à
chaque fois qu’un slot d’entrée recevra un nouveau signal
au niveau d’ICON, un événement sera crée et envoyé à la
machine à états. La génération dynamique des événements
se fait par des mécanismes d’introspection, qui instancient
et initialisent les objets événement via leurs accesseurs.

FIGURE 5 : Navigation multi-échelle bimanuelle. Le
Pan est contrôlé par une souris dédiée, et le Zoom est
contrôlé par des gestes verticaux sur un Trackpad.

Par défaut, un événement est créé si au moins l’un des
slots qui le composent reçoit un signal et si tous les
slots ont été initialisés. Des conditions supplémentaires
peuvent être spécifiées en surchargeant la méthode occurs
de la classe d’événement correspondante. Par exemple,
il est possible d’imposer qu’un événement Zoom ne soit
généré que lorsque la valeur du champ dZ est strictement
positive. Pour construire des conditions plus complexes,
FLOWSTATES fournit aussi des mécanismes permettant
d’effectuer des tests sur les slots associés, pour déterminer
notamment quels slots ont été mis à jour.

Lorsque Bob lance son programme, il voit dans l’éditeur
graphique d’ICON ses deux machines à états sous la forme
de deux dispositifs (figure 4). Il peut alors brancher ses
machines à états sur les entrées physiques qu’il désire,
sachant qu’il n’est pas contraint par le système et peut
directement commencer à explorer des techniques non-
standard. Inspiré par l’article qu’il a étudié en cours sur
l’efficacité d’une configuration bimanuelle pour la na-
vigation multi-échelle [7] et disposant d’un ordinateur
portable équipé d’un trackpad ainsi que de deux sou-
ris, Bob décide alors de tester une configuration à deux
mains : le trackpad servira au zoom, une des deux souris
sera dédiée au pan, et l’autre souris contrôlera le poin-
teur système. Il couple donc le changement de Zoom aux
gestes verticaux sur son trackpad, et le changement de
Pan aux déplacements d’une des deux souris (Figure 5).
Sur cette figure, le dispositif utilitaire d’ICON “pow” (qui
réalise l’opération in1in2) est utilisé pour transformer des
déplacements en changements d’échelle relatifs selon la
formule dZ = 1.1scrollY .

Nous avons vu dans ce premier exemple les principes de
base du contrôle d’une machine à états SWINGSTATES
avec un dispositif ICON et l’approche déclarative qui
en résulte : le programmeur déclare les événements de
haut niveau dont il a besoin pour contrôler les interac-
tions plutôt que de programmer l’interaction autour des
événements qui lui sont imposés par le modèle et la boı̂te
à outils (en général très fortement liés aux périphériques
d’entrée standard). Il peut ensuite spécifier comment sont
émis ces événements par des configurations d’entrée ICON.

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

136 publications

a b

FIGURE 6 : Un tracking menu pour les changements
d’échelle et les déplacements

Une machine plus complète : le Tracking Menu
Bob est maintenant satisfait de sa configuration bima-
nuelle, mais réalise que tout le monde ne partage pas sa
configuration matérielle. Il décide donc de programmer
un tracking menu [16] au cas où seulement un seul dis-
positif de pointage est présent. Un tracking menu est un
menu circulaire initialement destiné à être utilisé avec un
stylet. Une fois activé, il reste toujours visible et suit le
curseur tant que le stylet reste proche de la surface de la ta-
blette (mode ’tracking’). Une commande est sélectionnée
au moment où le stylet touche la surface, et un paramètre
peut être ensuite ajusté à la manière d’un control menu
[31]. La figure 6a montre le rendu graphique du menu tan-
dis que la partie droite de la figure 7, extraite de l’article
de Fitzmaurice et al. [16], décrit le comportement de ce
menu. Le rendu graphique a été programmé avec le graphe
de scène de SWINGSTATES et ne sera pas détaillé ici.

La partie gauche de la figure 7 montre le code que Bob
a écrit pour reproduire la machine à états de droite.
Comme pour les machines habituellement manipulées
dans SWINGSTATES, les conditions de déclenchement des
transitions sont réparties entre le type de transition, les
arguments passés à cette transition et, le cas échéant, la
garde.

Il y a deux grandes familles de transitions disponibles dans
FLOWSTATES, Switch et Event, qui permettent de décrire
respectivement les changements de mode et les entrées
continues. Jusqu’ici nous n’avons utilisé que des transi-
tions de type Event. Un exemple de transition de type
Switch est donné Fig.7, ligne 11 : la transition stopTra-
cking est déclenchée à chaque fois que le stylet s’éloigne
de la surface de la tablette, ce qui correspond à la réception
d’un événement InRange dont le booléen on est passé
à faux. De manière générale, une transition Switch at-
tend en constructeur une classe d’événements qui hérite
de SwitchEvent et contient un champ on. En fonction du
deuxième argument passé au constructeur (SWITCH ON
ou SWITCH OFF), la transition sera déclenchée à chaque
fois que le champ on de l’événement passe à vrai ou à
faux. Comme pour n’importe quel champ d’événement, la
sémantique de on est indéfinie : elle dépendra de ce qui
lui sera connecté dans ICON.

Nous avons déjà vu précédemment que des événements

pouvaient être déclenchés sur des formes graphiques par-
ticulières (en utilisant par exemple la classe ClickOn-
Shape). Ceci est également vrai pour les Switch. De
manière générale, chaque type de transition possède quatre
variantes : une variante absolue, et trois variantes position-
nelles suffixées par OnPosition, OnShape et OnTag.
Les transitions positionnelles attendent en argument une
classe d’événements qui contient au minimum les champs
x et y, interprétés comme une position dans la scène gra-
phique. Ceci permet notamment au développeur de s’af-
franchir de la gestion du picking graphique.

Dans notre exemple, le picking graphique est requis parce
que les comportements diffèrent selon l’endroit où les
événements surviennent. Par exemple, le menu doit pas-
ser en mode tracking lorsque le stylet s’approche de la
tablette (événement InRange), et il doit être repositionné
si le stylet sort du menu. Ce comportement est spécifié
Fig.7, lignes 5-6 : la transition startTrackingInMenu ne
sera déclenchée que si l’événement survient au-dessus
du menu (toutes les formes du tracking menu portent un
tag MenuItem), alors que la transition startTrackingOut-
Menu sera déclenchée quelle que soit sa position. Des
conditions plus fines peuvent également être décrites avec
des gardes. Par exemple, une garde permet de reposition-
ner le menu lorsque le pointeur se trouve à l’extérieur de
celui-ci dans l’état tracking (Fig.7, lignes 17-21).

Notons pour finir que notre automate utilise seulement
deux classes d’événements : InRange pour le passage de
l’état outOfRange vers l’état tracking, et Control pour le
passage de l’état tracking vers l’état touching. Lorsque la
même classe d’événements apparaı̂t dans plusieurs transi-
tions, FLOWSTATES ne crée qu’un seul groupe de slots
sur le dispositif ICON (Figure 8). Par exemple, le type
d’événements Control, utilisé par plusieurs transitions
pour modéliser l’entrée dans le mode control et l’in-
terprétation des événements positionnels jusqu’à la sortie
du mode (Fig.7, lignes 12-13, 25-26 et 27), ne se retrouve
qu’une fois dans le dispositif ICON. Cette convention de
nommage permet de spécifier que des transitions sont liées
entre elles en termes de logique d’interaction.

Connexion de deux machines
Bob ayant écrit la machine à états du tracking menu, il
lui reste à la connecter avec les machines de navigation
pan et zoom décrites précédemment. Pour ce faire, il peut
utiliser les mécanismes déjà présents dans SWINGSTATES
en faisant émettre des événements Pan et Zoom par la
machine du menu, qui seront écoutés par les machines de
navigation (une machine peut émettre des événements en
utilisant sa méthode fireEvent). L’extrait de code suivant
abonne les machines de navigation à la machine du tra-
cking menu :

1 smTrackingMenu.addStateMachineListener(smPan);
2 smTrackingMenu.addStateMachineListener(smZoom);

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

A.2 selected publications (2005–2012) 137

 1 IConStateMachine smTrackingMenu = new IConStateMachine("trackingMenu", canvas) {
 2 MenuItem currentItem;
 3
 4 State outOfRange = new State() {
 5 Transition startTrackingInMenu = new SwitchOnTag(MenuItem.class, InRange.class, SWITCH_ON, ">> tracking") { };
 6 Transition startTrackingOutMenu = new SwitchOnPosition(InRange.class, SWITCH_ON, ">> tracking") {
 7 public void action() { menu.showMenu(getPoint()); }
 8 };
 9 };
10 State tracking = new State() {
11 Transition stopTracking = new Switch(InRange.class, SWITCH_OFF, ">> outOfRange") { };
12 Transition startControl =
13 new SwitchOnTag(MenuItem.class, Control.class, SWITCH_ON, ">> touching") {
14 public void action() { currentItem = (MenuItem)getTag(); }
15 };
16 Transition moveOutMenu = new EventOnPosition(InRange.class) {
17 public boolean guard () {
18 double d = menu.getCurrentPosition().distance(getPoint());
19 return d > menu.getRadius();
20 }
21 public void action() { /* compute dx, dy */ menu.moveBy(dx, dy); }
22 };
23 };
24 State touching = new State() {
25 Transition stopControl =
26 new SwitchOnPosition(Control.class, SWITCH_OFF, ">> tracking") { };
27 Transition control = new EventOnPosition(Control.class) {
28 public void action() { /* perform action associated with current menu item */ }
29 };
30 };
31 };

// classes d’événements
public class InRange extends IConPositionSwitchEvent { }
public class Control extends IConPositionSwitchEvent { }

FIGURE 7 : L’automate décrivant le comportement d’un tracking menu (extrait de [16]), et le code SWINGSTATES correspon-
dant.

InRange
Control

Pan
Zoom Pan

SMtrackingMenu SMPanSMZoom

Zoom
SwingStates

Événements

ICon

FIGURE 8 : Connecter les machines via leur
représentation en périphériques logiques. Bien que le tra-
cking menu soit prévu pour être utilisé avec une tablette,
les entrées utilisées ici sont la souris et la touche espace
du clavier pour simuler la proximité du stylet.

Mais FLOWSTATES permet aussi de transformer le menu
en un dispositif utilitaire ICON qui pourra être intégré dans
le flot de données via le configurateur graphique (Figure
8). Pour cela, Bob surcharge dans un premier temps la
méthode getOutputTypes de la machine afin qu’elle re-
tourne le tableau des types d’événements générés par la
machine (lignes 2-4 dans le code qui suit). Ainsi, FLOW-
STATES peut créer les groupes de slots de sortie adéquats
sur le dispositif ICON de la machine (figure 8).

Ensuite, Bob doit écrire le code pour que la machine
à états émette des événements de type Pan ou Zoom
au cours de l’interaction, c’est-à-dire lors des transitions
control de l’état touching pour notre exemple du tracking
menu. Il va utiliser pour cela la méthode fireEvent qui
va permettre à FLOWSTATES de mettre à jour les slots

de sortie correspondants du dispositif (lignes 9-21 dans le
code qui suit). Il est alors possible de connecter la sortie
du tracking menu aux interactions Pan et Zoom décrites
précédemment, comme l’illustre la figure 8.

1 smTrackingMenu = new IConStateMachine([...]) {
2 public Class[] getOutputTypes() {
3 return new Class[] {Pan.class, Zoom.class};
4 }
5 State touching = new State() {
6 [...]
7 Transition control = new EventOnPosition(
8 Control.class) {
9 public void action() {

10 if (currentItem.getName().equals("zoom")) {
11 Zoom event = new Zoom();
12 [...]
13 fireEvent(event);
14 } else {
15 if(currentItem.getName().equals("pan")) {
16 Pan event = new Pan();
17 [...]
18 fireEvent(event);
19 }
20 }
21 }
22 };
23 };
24 };

Réalisation d’une technique d’interaction générique
Bob est satisfait de son tracking menu et pense que
d’autres utilisateurs d’ICON pourraient en profiter. Ce-
pendant, sa technique est peu réutilisable dans l’état ac-
tuel : les sorties ont été spécialisées pour être dirigées
vers les techniques Pan et Zoom. En effet, les valeurs
d’entrées sont adaptées dans le code de la machine à états
pour produire les bonnes valeur de sorties (conversion des
déplacements et calcul du facteur de zoom aux lignes 12
et 17 du code précédent qui ont été masquées pour plus de

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

138 publications

 1 IConStateMachine zuiAdapter =
 2 new IConStateMachine (”ZUIAdapter”, canvas) {
 3 public Class<? extends OutSlotEvent>[] getOutputTypes() {
 4 return new Class[] {Pan.class, Zoom.class};
 5 }
 6 State idle = new State() {
 7 double zoomMin = 0.01;
 8 double deltaZ = Math.pow(zoomMin, 1/getCanvas().getWidth());
 9 Transition cmd = new EventOnPosition(CommandMove.class) {
10 public void action() {
11 CommandMove event = (CommandMove) getEvent();
12 if (event.getSlotCommand().equals("zoom")) {
13 Zoom zEvent = new Zoom();
14 double deltaX = event.getSlotDeltaX();
15 zEvent.setSlotX(event.getSlotStartX());
16 zEvent.setSlotY(event.getSlotStartY());
17 if (deltaX > 0)
18 zEvent.setSlotdZ(Math.pow(deltaZ, deltaX));
19 else
20 zEvent.setSlotdZ(1.0/Math.pow(deltaZ, -deltaX));
21 fireEvent(zEvent);
22 } else if (event.getSlotCommand().equals("pan")) {
23 Pan pEvent = new Pan();
24 pEvent.setSlotDeltaX((int)event.getSlotDeltaX());
25 pEvent.setSlotDeltaY((int)event.getSlotDeltaY());
26 fireEvent(pEvent);
27 } }
28 };};
29 };

a-

b-

c-

FIGURE 9 : Les machines à états comme adaptateurs
ICon

lisibilité). Ce mécanisme peut cependant être généralisé
afin de proposer un instrument “tracking menu générique”
qui pourra être branché via ICON à des objets du do-
maine proposant d’autres opérations que les déplacements
et changements d’échelle selon les principes de l’interac-
tion instrumentale [5].

Bob modifie alors légèrement le code de la machine
du tracking menu afin que cette dernière n’envoie plus
que des événements de la classe générique Command-
Move pendant la phase de contrôle de la commande.
Un événement CommandMove est composé des champs
génériques suivants : DeltaX et DeltaY (déplacement),
Command (l’intitulé de la commande), StartX et StartY
(la position au moment de la sélection de la commande) et
X et Y (la position courante). Le dispositif aura maintenant
les slots de sortie correspondants, comme illustré dans la
figure 9-b, et pourra être utilisé pour d’autres applications.

Réalisation d’un adaptateur
Maintenant que Bob a réalisé une technique d’interaction
générique, il ne lui reste plus qu’à adapter ses sorties aux
entrées spécialisées des techniques Pan et Zoom. Il peut

FIGURE 10 : Ajout d’un comportement de type “trailing
widget” avec ICon.

le faire directement au niveau d’ICON, en utilisant des
dispositifs utilitaires (Figure 9-c). Cependant, l’approche
en flot de données peut s’avérer complexe pour décrire
des aiguillages et des contrôles comme requis dans ce
cas. Bob préfère décrire ce comportement avec des ma-
chines à états, et voudrait également pouvoir l’encapsu-
ler pour pouvoir le distribuer avec sa technique. Il choi-
sit donc de développer un dispositif ZUIadapter à partir
d’une machine a états (Figures 9-a et 9-b). Le rôle de
cette machine est très proche de celui des transducteurs
d’événements de Accot et al. [2] : il traduit des événements
d’un niveau d’abstraction à l’autre. Dans notre exemple, il
transforme les événements génériques CommandMove
en événements spécifiques Pan et Zoom.

Discussion
Les différents exemples ci-dessus illustrent les possibilités
multiples qu’offre FLOWSTATES pour la réalisation de
dispositifs ICON à l’aide de machines à états, que ce soit
des dispositifs d’interaction spécialisés ou génériques (les
deux versions du tracking menu) ou des dispositifs utili-
taires (l’adaptateur ZUIadapter). Ils démontrent la flexi-
bilité de FLOWSTATES entre les deux modèles machine à
états/flot de données : le programmeur peut choisir où se
situe la frontière entre les deux approches en fonction du
problème qu’il veut résoudre et de ses besoins.

Pour illustrer à nouveau ce point, Bob ou d’autres utilisa-
teurs de sa technique peuvent facilement doter le tracking
menu d’un comportement à la “trailing widget” [17] en
insérant un filtre passe-bas entre le périphérique de poin-
tage et le tracking menu dans le flot de données ICON (Fi-
gure 10). Le menu va alors “suivre” le pointeur avec un
retard qui permet d’interagir avec le fond de l’application
(pour dessiner par exemple). Cette fois, le flot de données
est plus adapté car implémenter ce comportement avec
SWINGSTATES aurait demandé de faire le changement de
coordonnées dans chaque transition.

COMPARAISON AVEC L’ETAT DE L’ART
Peu de travaux à notre connaissance ont traité de la combi-
naison de l’approche à flots de données et de celle dirigée
par les états pour la spécification de systèmes interac-
tifs, approches que nous qualifions d’hybrides. Le langage
Lustre [18] est probablement le plus ancien. Il propose
des constructions pour décrire des flots de données syn-
chrones, qui peuvent être mélangées avec des structures

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

A.2 selected publications (2005–2012) 139

de contrôle classiques mais qui ne sont pas explicitement
décrites par des machines à états comme avec FLOW-
STATES. Intuikit [9] est un second exemple qui intègre
flot de données et contrôle. Dans Intuikit, une interface
est un ensemble de composants non seulement capables
de produire des événements et d’en consommer (notam-
ment grâce à des machines à états) mais aussi capables
d’écouter des changements de propriétés et de changer des
propriétés. Flot de données et machines à états sont donc
fortement intégrés au sein d’un même composant alors
que FlowStates propose une approche plus structurée. Les
machines à états peuvent en effet aussi être utilisées pour
le contrôle au sein d’un device ICON mais FlowStates per-
met également au programmeur de s’abstraire de la lo-
gique flot de données lors de la programmation du com-
portement avec une machine à états, l’externalisation vers
le flot de données étant faite automatiquement à partir de
la machine. Par ailleurs, Lustre comme Intuikit reposent
sur des langages purement textuels.

Les travaux les plus proches de notre approche sont le
modèle PMIW [22], l’architecture VRMeer [13] et l’en-
vironnement qui intègre PetShop et ICON [28].

Dans PMIW / VRMeer, l’interaction est spécifiée en deux
parties : la logique de l’interaction est représentée par
un formalisme dirigé par les états alors que chaque état
peut contenir un ensemble de relations continues entre
variables. VRMeer et PMIW couvrent cependant un en-
semble restreint d’entrées physiques. Par exemple, PMIW
se limite aux événements clavier et souris couverts par
le système X Window et les événements d’un Polhemus
et du dispositif de suivi de regard ISCAN. PMIW est
d’ailleurs plus une preuve de concept qu’un réel outil de
développement et de prototypage.

Dans le couple PetShop/ICON, la logique de l’interac-
tion est spécifiée par des réseaux de Petri dans l’envi-
ronnement graphique de PetShop, et la gestion des dis-
positifs d’entrée est déléguée à ICON. FLOWSTATES et
PetShop visent cependant des objectifs différents : Pet-
Shop est principalement dédié à la spécification et à la
vérification formelle, alors que FLOWSTATES privilégie la
simplicité, parfois au détriment d’une approche plus for-
melle. En conséquence, nous avons choisi les machines
à états qui présentent l’avantage d’être plus faciles à ma-
nipuler. En outre, cette logique est programmée en Java
dans SWINGSTATES alors qu’elle est spécifiée visuelle-
ment dans PetShop. Bien que de manière générale les
langages visuels se prêtent bien au prototypage, ils intro-
duisent des couches de traduction qui peuvent rendre dif-
ficile l’identification de l’origine d’une erreur dans le pro-
cessus de prototypage. En effet, PetShop comme PMIW
requièrent de spécifier visuellement la logique de l’inter-
action, puis d’écrire des morceaux de programme pour
la lier au noyau fonctionnel. Dans FLOWSTATES, cette
couche de traduction est absente. La seule couche de tra-
duction se situe entre le langage visuel d’ICON et la syn-

taxe de SWINGSTATES. Par contre, nous pensons que le
recours à un langage visuel pour le traitement des entrées
est pleinement justifié, car comparé à la logique de l’in-
teraction, c’est un aspect qui est très changeant et vola-
tile : les périphériques d’entrée peuvent être très variables
d’une machine à l’autre ou nécessiter des reconfigura-
tions au cours de l’exécution d’une application. De plus,
cette partie peut être totalement découplée du code du
noyau applicatif. Nous avons vu que dans FLOWSTATES,
ces deux aspects peuvent être clairement séparés, voire
spécifiés par des concepteurs différents.

Pour finir, l’intégration entre SWINGSTATES et ICON
va plus loin que l’intégration entre PetShop et ICON.
D’une part, FLOWSTATES exploite le graphe de scène de
SWINGSTATES et offre donc une prise en charge implicite
des mécanismes graphiques. Dans PetShop/ICON, ceux-
ci doivent être spécifiés à la main, nécessitant alors la
programmation et l’ajout de dispositifs de service ICON.
D’autre part, les automates de FLOWSTATES peuvent
fournir des sorties vers ICON, ce qui permet au pro-
grammeur de basculer d’un modèle à l’autre selon sa
convenance. Ce dialogue à “double-sens” et cette flexi-
bilité entre les modèles permettent notamment de décrire
avec des automates des techniques d’interaction qui sont
indépendantes du noyau applicatif, et qui peuvent ensuite
être connectées en cascade avec ICON. Cette approche
inspirée de l’interaction instrumentale [5] et des architec-
tures à composants offre plus de flexibilité que le modèle
à couches classique de Seeheim ou de Arch [1] pour la
spécification d’interactions avancées.

CONCLUSION
Les passerelles entre flots de données et machines à états
développées dans FLOWSTATES offrent un grand pouvoir
d’expression et une grande flexibilité pour le prototypage
de l’interaction. SWINGSTATES, basée sur les machines
à états, est particulièrement appropriée à la spécification
de la logique de l’interaction tandis qu’ICON, basée sur
les flots de données et la programmation visuelle, se prête
tout à fait à la spécification de relations continues et dy-
namiques. L’intégration des machines à états dans des
flots de données permet non seulement de faciliter la
gestion du contrôle et de l’aiguillage mais aussi d’offrir
un vocabulaire d’entrée très riche aux machines à états
(des périphériques d’entrée standard comme la souris aux
périphériques les plus “exotiques” comme ceux de la Nin-
tendo wii en passant par des commandes vocales).

FLOWSTATES (http ://www.lri.fr/∼appert/FlowStates) fait
le pont entre deux boı̂tes à outils sans modifier les pa-
radigmes de programmation sous-jacents de chacune des
boı̂tes à outils dans le souci de favoriser leur adoption
par les développeurs qui sont familiers avec l’une et/ou
l’autre. Nos pistes futures s’inscrivent dans cette lignée
avec l’intégration de la boı̂te à outils ZVTM [29] pour la
programmation du rendu graphique. En effet, si SWING-
STATES propose un graphe de scène adapté à la pro-

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

140 publications

grammation de scènes vectorielles, elle n’offre pas les
mécanismes fins de rendu au niveau pixel de ZVTM pour
la programmation de techniques composant plusieurs vues
comme les Sigma Lenses [30]. Nous prévoyons également
de tester la couverture et l’utilisabilité de FLOWSTATES
grâce à un benchmark incluant la réalisation de techniques
d’interaction avancées. Enfin, si le but premier de FLOW-
STATES est le prototypage, des langages de spécification
en Java comme Biscotti [10] permettraient d’instrumenter
les machines à états pour faire de la vérification formelle.

REMERCIEMENTS
Ce travail a bénéficié du soutien de l’ANR - projet iStar.

BIBLIOGRAPHIE
1. A metamodel for the runtime architecture of an inter-

active system : the UIMS tool developers workshop.
SIGCHI Bull., 24(1) :32–37, 1992.

2. J. Accot, S. Chatty, and S. Maury. Formal transdu-
cers : Models of devices and building bricks for the
design of highly interactive systems. In Proc. DSV-
IS’97, 143–160. Springer-Verlag, 1997.

3. C. Appert and M. Beaudouin-Lafon. SwingStates :
Adding state machines to Java and the Swing toolkit.
Software : Practice and Experience, 38(11) :1149 –
1182, 2008.

4. R. Ballagas, M. Ringel, M. Stone, and J. Borchers.
iStuff : a physical user interface toolkit for ubiqui-
tous computing environments. In Proc. CHI’03,
537–544. ACM, 2003.

5. M. Beaudouin-Lafon. Instrumental interaction : an
interaction model for designing post-WIMP user in-
terfaces. In Proc. CHI’00, 446–453. ACM, 2000.

6. R. Blanch and M. Beaudouin-Lafon. Programming
rich interactions using the hierarchical state machine
toolkit. In Proc. AVI’06, 51–58. ACM, 2006.

7. F. Bourgeois and Y. Guiard. Multiscale pointing :
facilitating pan-zoom coordination. In Proc. CHI
EA’02, 758–759. ACM, 2002.

8. W. Buxton. A three-state model of graphical input.
In INTERACT, volume 90, 449–456, 1990.

9. S. Chatty, A. Lemort, and S. Vales. Multiple input
support in a model-based interaction framework. In
Proc. TABLETOP ’07, 179–186, Oct. 2007.

10. C. D. T. Cicalese and S. Rotenstreich. Behavioral
specification of distributed software component in-
terfaces. Computer, 32(7) :46–53, 1999.

11. Cycling ’74. max/msp/jitter. http://www.

cycling74.com/.
12. Dassault Systemes. Virtools Dev. www.virtools.

com/.
13. G. de Haan and F. H. Post. Flexible architecture for

the development of realtime interaction behavior. In
Workshop VR’08. IEEE Computer Society, 2008.

14. P. Dragicevic and J.-D. Fekete. Support for input
adaptability in the ICON toolkit. In Proc. ICMI’04,
212–219. ACM, 2004.

15. P. Figueroa, M. Green, and H. J. Hoover. InTml : a
description language for VR applications. In Proc.
Web3D ’02, 53–58. ACM, 2002.

16. G. Fitzmaurice, A. Khan, R. Pieké, B. Buxton, and
G. Kurtenbach. Tracking menus. In Proc. UIST’03,
71–79. ACM, 2003.

17. C. Forlines, D. Vogel, and R. Balakrishnan. Hybrid-
pointing : fluid switching between absolute and re-
lative pointing with a direct input device. In Proc.
UIST’06, 211–220. ACM, 2006.

18. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proc. of the IEEE, 79(9) :1305–1320,
1991.

19. K. Hinckley, M. Czerwinski, and M. Sinclair. In-
teraction and modeling techniques for desktop two-
handed input. In Proc. UIST’98, 49–58. ACM, 1998.

20. S. Hudson, J. Mankoff, and I. Smith. Extensible
input handling in the subArctic toolkit. In Proc.
CHI’05, 381–390. ACM, 2005.

21. S. Huot, C. Dumas, P. Dragicevic, J.-D. Fekete, and
G. Hégron. The MaggLite post-WIMP toolkit :
Draw it, connect it and run it. In Proc. UIST’04,
257–266. ACM, 2004.

22. R. J. K. Jacob, L. Deligiannidis, and S. Morrison. A
software model and specification language for non-
WIMP user interfaces. ACM Trans. Comput.-Hum.
Interact., 6(1) :1–46, 1999.

23. W. A. König, R. Rädle, and H. Reiterer. Squidy : a
zoomable design environment for natural user inter-
faces. In Proc. CHI EA’09, 4561–4566. ACM, 2009.

24. Meso Group. vvvv : a multipurpose toolkit. http:

//vvvv.org/.
25. B. Myers. Separating application code from tool-

kits : eliminating the spaghetti of call-backs. In Proc.
UIST’91, 211–220. ACM, 1991.

26. B. Myers, D. Giuse, R. Dannenberg, B. Zanden,
D. Kosbie, E. Pervin, A. Mickish, and P. Mar-
chal. Garnet : Comprehensive support for graphi-
cal, highly interactiveuser interfaces. Computer,
23(11) :71–85, 1990.

27. B. Myers, R. McDaniel, R. Miller, A. Ferrency,
A. Faulring, B. Kyle, A. Mickish, A. Klimovitski,
and P. Doane. The Amulet environment : new
models for effective user interfacesoftware develop-
ment. IEEE Trans. Soft. Eng., 23(6) :347–365, 1997.

28. D. Navarre, P. Palanque, P. Dragicevic, and R. Bas-
tide. An approach integrating two complementary
model-based environments for the construction of
multimodal interactive applications. Interact. Com-
put., 18(5) :910–941, 2006.

29. E. Pietriga. A toolkit for addressing hci issues in
visual language environments. In Proc. VL/HCC’05,
145–152. IEEE Computer Society, 2005.

30. E. Pietriga and C. Appert. Sigma lenses : focus-
context transitions combining space, time and trans-
lucence. In Proc. CHI’08, 1343–1352. ACM, 2008.

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

A.2 selected publications (2005–2012) 141

31. S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot.
Control menus : excecution and control in a single
interactor. In Proc. CHI EA’00, 263–264. ACM,
2000.

32. SENSE8. World Up. http://www.sense8.com/.

in
ria

-0
05

38
59

8,
 v

er
si

on
 1

 -
23

 N
ov

 2
01

0

142 publications

TorusDesktop: Pointing via the Backdoor
is Sometimes Shorter

Stéphane Huot1,2
huot@lri.fr

Olivier Chapuis1,2
chapuis@lri.fr

Pierre Dragicevic2

dragice@lri.fr
1LRI - Univ. Paris-Sud & CNRS 2INRIA

F-91405 Orsay, France F-91405 Orsay, France

ABSTRACT
When pointing to a target on a computer desktop, we may
think we are taking the shortest possible path. But new
shortcuts become possible if we allow the mouse cursor to
jump from one edge of the screen to the opposite one, i.e.,
if we turn the desktop into a torus. We discuss the design of
TORUSDESKTOP, a pointing technique that allows to wrap
the cursor around screen edges to open this pointing back-
door. A dead zone and an off-screen cursor feedback make
the technique more usable and more compatible with every-
day desktop usage. We report on three controlled experi-
ments conducted to refine the design of the technique and
evaluate its performance. The results suggest clear benefits
of using the backdoor when target distance is more than 80%
the screen size in our experimental conditions.

Author Keywords
Pointing Technique, Cursor Wrapping, Torus.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User inter-
faces—Graphical user interfaces.

General Terms
Human Factors, Experimentation.

INTRODUCTION
When flying from New-York to San Francisco, one usu-
ally does not fly around the globe across the Atlantic and
the Pacific Oceans. Yet we often do it on our computers:
we routinely move our mouse pointer from one side of the
screen to the opposite side – e.g., to select a tool or invoke
a menu command – ignoring potential trajectory shortcuts.
Such shortcuts would only require a small modification to
the mouse behavior: when the pointer goes past a screen
edge it re-appears on the opposite side, as in the Asteroids
or Pac-Man video-games (see Figure 1).

We introduce TORUSDESKTOP, a pointing technique which
opens these shortcuts on our computer desktops. Although
many pointing facilitation techniques have been already pro-

S. Huot, O. Chapuis and P. Dragicevic. TorusDesktop: Pointing via the
Backdoor is Sometimes Shorter. In CHI ’11: Proceedings of the SIGCHI

Conference on Human Factors and Computing Systems,
829-838, ACM, May 2011.

Authors Version
doi: http://doi.acm.org/10.1145/1978942.1979064

Figure 1. The Pac-Man video-game and a case scenario where pointing
through screen edges could be beneficial.

posed, most of them are target-aware [26, 3], i.e., they re-
quire knowledge of all the potential targets the user may ac-
quire. These techniques can be extremely efficient but they
are sensitive to distractors and are difficult to integrate to
existing systems. Only a few target-agnostic pointing facil-
itation techniques have been introduced and the results have
been mixed. TORUSDESKTOP is target-agnostic, making it
easy to integrate to existing systems and compatible with
most existing pointing facilitation techniques.

TORUSDESKTOP teleports the mouse cursor to the opposite
side of the screen when it goes past one of the screen’s edges.
This technique is sometimes referred to as cursor wrapping.
One consequence of this wrapping behavior is that the short-
est path between two points is not necessarily the on-screen
segment that connects them. Although this may evoke a
sphere topology, wrapping the cursor around screen edges
actually turns the computer desktop into a torus.

The idea of wrapping the mouse cursor around screen or
window edges is not new. In addition to video games from
the early 80’s, a few system tweaks and mouse drivers sup-
port this technique. But current implementations are all
under-designed as the cursor immediately jumps when it
reaches a screen edge. This can yield several problems:
first, it is easy to trigger the wrapping inadvertently. Second,
it might be difficult to find the new location of the cursor.
Third, the technique prevents the user from using the border
to acquire targets that are located on screen edges. TORUS-
DESKTOP addresses these issues by introducing a wrapping
dead zone and visual feedback to anticipate cursor jumps.

As cursor wrapping has never been studied experimentally,
it is not clear whether it should be supported natively by op-
erating systems and better publicized among end users, or
simply abandoned. Our initial Fitt’s Law simulations (con-

829

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

Author manuscript, published in "CHI '11: Proceedings of the SIGCHI Conference on Human Factors and Computing Systems,
Vancouver : Canada (2011)"

 DOI : 10.1145/1978942.1979064

A.2 selected publications (2005–2012) 143

sidering all possible pointing tasks on a 2560x1600 display
with 40-pixel targets) suggest that cursor wrapping should
outperform direct pointing in more than 40% of all possible
pointing tasks. But it is unlikely that the question can be ade-
quately answered by a naive Fitts’ Law simulation: choosing
to use cursor wrapping or not might have an impact on effi-
ciency, and large cursor jumps might be distracting to users
and could result in a drop in performance.

Thus we conducted three controlled experiments to refine
our design and evaluate its performance. The results of the
two first experiments identify the best off-screen feedback,
and suggest that a dead zone of 5 − 10% the size of the
screen should be provided to enable edge pointing. Our fi-
nal experiment confirms that our naive Fitts’ Law simulation
is overly optimistic as it does not account for factors such
as the distraction produced by cursor teleportation or the
cost of having to chose whether or not to use the backdoor.
Nevertheless, our experiment reveals that TORUSDESKTOP
is still faster than direct pointing for targets whose distance
is greater than 80% the width of a 2560-pixel wide display.
This suggests that enabling cursor wrapping is worthwhile,
especially in situations where commonly-accessed widgets
are located close to the edges of the screen (Figure 1) or
when going back-and-forth between two very distant targets.

RELATED WORK
A fundamental tool in the area of target acquisition is Fitts’
law [20]. This law models the movement time to acquire
a target of size W at distance D as a linear function of an
index of difficulty ID usually defined as log2

(
D
W + 1

)
. Ac-

cording to this law, techniques that try to facilitate pointing
increase W , reduce D or do both [3]. They are either target-
aware or target-agnostic.

Target-Aware Techniques
Most techniques that increase W are target-aware. They ei-
ther expand the targets themselves [21] – sometimes in the
motor space only [27, 9] – or expand the cursor’s activation
area [15, 12]. Target-aware techniques for reducing D try
to predict the target(s) the user wants to acquire. They then
bring the cursor closer to the target [2, 16] or bring potential
targets closer to the cursor [4]. Another way to reduce D
is to use a grid of cursors and a target-aware algorithm that
tries to select the appropriate cursor [19].

However, target-aware techniques fail when there are a large
number of potential targets, and they are difficult to imple-
ment at a system-wide level because they require access to
target information that is solely available at a system-level.

Target-Agnostic Techniques
Effective target-agnostic pointing facilitation techniques are
relatively rare. Speed-adaptive C-D gain has been modeled
as a technique that increases W in motor space, but exper-
iments did not confirm the improvements predicted by the
model [11]. Angle Mouse adapts C-D gain to trajectory cur-
vature, but it has been shown to only benefit motor-impaired
users [26]. Finally, visual and motor-space uniform magnifi-
cation (i.e., W and D increased in the same proportion) have
been shown to improve pointing performance, but only for
very small targets [24].

Other techniques employ more than one input device at a
time. For example, D can be reduced in a target-agnostic
manner using eye tracking. MAGIC [28] uses eye tracking
to define an area where the pointer is automatically warped.
The Rake cursor uses a grid of cursors and eye tracking for
cursor selection [10, 25]. These techniques benefit from the
increase in input bandwidth provided by gaze tracking, but
they cannot be implemented on standard computer hardware.

Adaptive [18] and adaptable [13] methods have also been
considered: DirtyDesktops [18] creates magnetic fields
around frequently-selected locations on the screen and
UIMarks [13] lets users specify on-screen locations whose
acquisition will be facilitated. However, adaptative tech-
niques improve pointing only for frequently-selected targets
and adaptable techniques require user intervention.

Edge and Displayless Pointing
HCI practitioners early noticed that targets on screen edges
are easier to acquire because screen edges stop the cursor,
effectively increasing W in the motor space. Edge pointing
has been studied experimentally in [14, 1].

Edge pointing becomes problematic in multi-display envi-
ronments: by default, desktop environments treat multiple
displays as a single space, disabling edge pointing between
them. Mouse Ether [5] takes into account the space between
the displays as well as display size and resolution to compute
a motor space – the ether – that lies between the displays.
This re-enables edge pointing, since stopping the mouse in
the ether warps the pointer to the closest display edge.

Mouse Ether is conceptually similar to our dead zones: they
both add off-screen pointing space that (among other things)
enable edge pointing. One problem with Mouse Ether is the
absence of visual feedback when the cursor is in the ether.
Several techniques have been proposed to visualize the lo-
cation of off-screen objects: Halo [7] surrounds off-screen
objects with rings large enough to reach the edge of the dis-
play, and Wedge [17] uses a triangle pointing towards the
off-screen object. A recent study suggested that augment-
ing Mouse Ether with Halo helps, while also suggesting that
Mouse Ether itself (with or without feedback) hurts perfor-
mance when displays are sufficiently far apart [23].

Cursor Warping vs. Cursor Wrapping
Cursor warping refers to the sudden teleportation of the
mouse cursor to a possibly distant place. It has been used
to reduce pointing distance in some target-aware pointing
techniques [2, 16] as well as in target-agnostic ones [28].
Manually-triggered cursor warping has also been used for
rapidly switching between displays in multi-monitor envi-
ronments [8]. However, it is also believed that sudden cursor
jumps can be confusing to users and can slow them down [6].

Cursor wrapping should not be confused with cursor warp-
ing: wrapping the mouse cursor around screen edges in-
volves a specific type of cursor warping, going from one
edge of the screen to the opposite one. Several applications
exist that support cursor wrapping. More than 15 years ago,
the FVWM X Window Manager could be configured to en-

830

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

144 publications

Figure 2. Wrapping dead zone (right) and expansion of targets located
on the screen edge (left).

able it. Today, system-level tools provide the same feature1.
But as discussed previously, none of these applications pro-
vide a dead zone or off-screen feedback. Moreover, to our
knowledge, such techniques have never been evaluated.

THE TORUSDESKTOP TECHNIQUE
The TORUSDESKTOP extends direct cursor wrapping tech-
niques with two additional features in order to make it usable
and compatible with everyday desktop usage:
• a wrapping dead zone that adds a displayless pointing

space around screen edges in order to help users antici-
pate cursor jumps and to re-enable edge pointing;
• a wrapping feedback that provides visual feedback on the

cursor’s location inside the dead zone to further increase
user’s control over cursor wrapping.

Wrapping Dead Zone
The wrapping dead zone is a displayless frame added around
the screen edges. When the cursor reaches a screen edge,
the user needs to cross this space before the cursor gets tele-
ported to the opposite edge (Figure 2). This design presents
three advantages:

Prevention of accidental triggering. In situations where
users do not want to cross the screen, the wrapping dead
zone prevents them from wrapping the cursor accidentally.
Accidental wrapping can be distracting – especially repeti-
tive wrapping when following a screen edge – and can slow
users down since they have to bring the cursor back once
they realize it has jumped. They may even lose the cursor
altogether if they do not realize it has moved to the opposite
side. The dead zone addresses this issue by making it more
difficult to trigger the wrapping and allowing to cancel it.

Support for anticipation. In cases users want to cross the
screen, the wrapping dead zone helps them anticipate the
cursor jump and gives them time to switch their visual at-
tention to the region where the cursor will re-appear. Addi-
tionally, it provides users with more flexibility, as they can
adapt their mouse movement while crossing the dead zone
to control where and when the cursor will re-appear.

Compatibility with edge pointing. As discussed previously,
targets located on screen edges are faster to acquire, a feature
that is now commonly used in window management systems
and desktops (e.g., Mac OS’ menu bars and MS Windows’
task bar). While a naive implementation of the wrapping
1E.g., www.networkactiv.com/SoundyMouse.html,
www.digicowsoftware.com/detail?_app=Wraparound

technique defeats edge pointing, using a large enough dead
zone re-enables this feature as clicks within the dead zone
are dispatched to the screen edge where the cursor comes
from (Figure 2 left).

However, using a dead zone raises two issues. First, it in-
creases the distance users have to cover during cursor wrap-
ping so it may reduce the number of cases where the tech-
nique is useful. Second, it is not clear which dead zone sizes
are small enough not to impede cursor wrapping, while be-
ing large enough to allow comfortable edge pointing. These
questions will be later addressed in our experiment sections.

Wrapping Feedback
When crossing a dead zone, a standard mouse cursor would
stop on the screen’s edge and the user would have to blindly
move a virtual cursor within the dead zone. It has been
suggested that visual feedback about the position of an off-
screen cursor helps pointing in displayless space [23], so we
chose to augment the dead zone with visual feedback. Since
there are many possible designs, we identified the three fol-
lowing requirements for TORUSDESKTOP visual feedback:

Position along the edge. The feedback needs to show
where the cursor is located along the screen edge: for ex-
ample if the exiting edge is vertical, users need to keep track
of the cursor’s y-coordinate to be able to predict where it will
re-appear on the opposite edge.

Position within the dead zone. The feedback also needs to
show the cursor’s position in the orthogonal direction, i.e.,
how deep the cursor is in the dead zone. This is necessary for
users to be able to predict when the cursor will be teleported
and better anticipate its arrival. This also allows users to
see how far they can go before the cursor jumps to prevent
accidental triggering, especially during edge pointing.

Feedback mirroring. The two pieces of information above
should be shown both near the edge where the cursor exits
the screen and near the opposite edge. Thus, users can use
the feedback whether they are focusing on the exiting side
– i.e., when moving close to the edge or when doing edge
pointing – or on the reentering side – i.e., when using cursor
wrapping to point to a distant target.

We experimented with three feedback methods: Halos, Ar-
row and Ghost. Figure 3 explains these three techniques in
detail: DZ is the dead zone size, d is the cursor’s distance to
the dead zone entrance and the constant k is Halo’s intrusion
distance. Gray arrows depict how cursor movements map to
movements of visual feedback.

Halos. Halo [7] is a technique for providing on-screen
feedback for off-screen objects, e.g., showing the location
of points of interest in a map on a handheld device. It shows
an arc of circle next to the screen edge; the circle is centered
on the off-screen object in order to convey its direction and
distance. In our case the off-screen object is the cursor it-
self, so when it enters the dead zone, we display a Halo both
on the exit and on the entrance sides of the screen (Figure
3a). As in the original technique, the arcs stick out from the
displayless space with a fixed intrusion distance k.

831

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

A.2 selected publications (2005–2012) 145

DEAD-ZONE

SCREEN

DZ

d

DZ-d

DZ-d

d

DZ

d

d

k

d+k

DZ-d+k

k

exiting edge

reentering edge

(a) (b) (c)

Figure 3. Halos, Arrow and Ghost TORUSDESKTOP feedback tech-
niques for a top-to-bottom cursor wrapping.

Arrow. The Arrow feedback is inspired from a variant of
Halo called Wedge [17]. Arrow’s triangular shape is similar
to Wedge’s but unlike Wedge, its intrusion distance is not
fixed and its shape does not change. Instead, it is a solid
triangle of constant size, always perpendicular to the screen
edge, that sticks out on both sides (Figure 3b). On the exit
side, its flat end is attached to the cursor and its tail sticks
out. On the entrance side, its tail is attached to the cursor
and its flat end sticks out. The angle formed by the flat end
conveys the cursor’s distance in a way similar to Wedge.

Ghost. Finally, we propose a simpler visual feedback
called Ghost, specifically designed for wrapping dead zones.
Next to the dead zone’s exit (bottom of Figure 3c), a circular
shape is displayed whose distance to the edge is the same
as the cursor’s. In other terms, the edge acts like a mirror
and the circular shape is like the cursor’s reflection on that
mirror. The same circular shape is displayed at the same
distance near the dead zone’s entrance.

Even if these wrapping feedback techniques fulfill the re-
quirements we identified, it is not clear how much they help,
if they help at all. We investigate this question in our study.

Corners
In a torus topology, the four screen corners are equivalent.
So when the cursor reaches a corner, it is not clear where it
should exit. Besides, the behavior of the cursor in the vicin-
ity of a corner can be disturbing. For example, a cursor going
to the top-right corner will re-appear either on the top-left or
on the bottom-right. These two locations are nevertheless
close to each other on the torus, so if the user approaches
a corner with a 45-degree angle, the cursor will eventually
appear on the opposite corner no matter which path it takes.
However, the cursor will rapidly jump twice on the screen,
which can be visually disturbing. To address these issues,
we added four corner zones of 20 pixels each. When the
cursor reaches one of these zones, it simply re-appears on
the diagonally opposite corner after the dead zone crossing.

PRELIMINARY EXPERIMENTS
We conducted two preliminary experiments in order to refine
the design of the technique before comparing it with direct
pointing. The first experiment compares the feedback tech-

niques and provides a first sense of the impact of the dead
zone on movement time. The second one investigates the
compatibility of TORUSDESKTOP with edge pointing.

Apparatus & Participants
The two experiments were conducted on a workstation run-
ning Mac OS X and with a 2560×1600 30” LCD monitor 2.
Such large displays are becoming more and more common
and are likely to become a standard once their price drops.
The TORUSDESKTOP software was implemented in Java.
The mouse was a standard optical mouse with 500 dpi reso-
lution and default system acceleration.

Eight unpaid volunteers, all male and right-handed, partic-
ipated in the experiments. Participants were experienced
mouse users with ages ranging from 24 to 31 (median 26.5).
Each participant took about 60 minutes to complete each ex-
periment after which they were given a short questionnaire.

Experiment 1: Feedback & Dead Zone
This experiment addresses the following questions:
• Q1: Which wrapping feedback (including no feedback) is

the best, with and without a dead zone?
• Q2: Does dead zone size affect movement time?

Task & Design. A trial was a TORUSDESKTOP pointing
task requiring subjects to cross either the left or the right
edge of the screen. Subjects had to click on a start target
at a distance DB1 to its closest edge and then acquire a goal
target at a distance DB2 to the opposite edge by crossing the
closest edge. Both start and goal targets were circles of 40
pixels. Targets were lying on the screen’s horizontal center-
line or placed above and below the centerline at a distance
of 300 pixels, depending on the factor ALIGN (see Figure 4a).
Task direction was either left to right (DIR = LR) or right to
left (DIR = RL).

The experiment was a within-subject design with the main
factors: (i) Feedback: FB = None, Halos, Arrow, Ghost; and (ii)
Dead zone size: DZ = 0, 125, 250, 500.

Auxiliary factors were: (i) Distance of the start target to its
closest edge, DB1 (Distance to Border 1) = 50, 150; (ii) Dis-
tance of the goal target to the opposite edge, DB2 (Distance
to Border 2) = 50, 150, 300; (iii) ALIGN and DIR.

Concerning the values we chose for dead zone size, 0 is the
baseline condition implemented in former cursor wrapping
techniques. 125 and 250 seem to be realistic values for edge
pointing [1]. We added 500 for completeness although we
expect it to be too large to be used in practice. Note that
for DZ = 0, the feedback condition is irrelevant and we only
need to test the condition for feedback = None.

We grouped trials into blocks according to DZ × FB. We
used 2 orders of presentation for DZ, increasing and decreas-
ing, and counterbalanced the presentation order of FB. Be-
fore each DZ × FB condition, participants did one block
of 24 practice trials then 2 blocks of measured trials. We
hence collected 8 (PARTICIPANT) × 48 × (4(DZ)×1(FB=None)
+ 3(DZ=125,250,500)×3(FB)) = 4992 trials for analysis.
2Yielding 100.63 ppi and a pixel size of 0.025 cm.

832

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

146 publications

1

2

2

1

DB1

DB2

300 pixels

DB1

DB2

DZ DZ

1 2

(a) (b) (c)
Figure 4. (a) Examples of target placement in experiment 1. Start targets are green, goal targets are red. Case 1: ALIGN = yes, DIR = RL, DZ on the
left. Case 2: ALIGN = no, DIR = LR, DZ on the right. (b) MT per deadzone and feedback. (c) OverShoot per deadzone and feedback.

We collected three measures: (i) MT, the time from the click
on the start target to a successful click on the goal target;
(ii) Error, whether or not there was a click outside the target;
and (iii) OverShoot, the distance in pixels of the furthest point
reached by the pointer to the goal target.

Quantitative Results. We removed 0.75% outliers (trials
with a MT that is 3 standard deviations apart from the mean
MT within the condition) and duplicated the data for DZ = 0
for each FB in order to perform a full factorial analysis: FB
× DZ × Random(PARTICIPANT) with MT, Error and OverShoot.

An analysis of variance reveals an effect of DZ on MT (F3,21 =

80.0, p < 0.0001). A Tukey post-hoc test shows a significant
difference in means between all DZ, with MT increasing with
DZ (Figure 4b). We observed no significant effect of FB on
MT. However, we found a significant interaction FB × DZ
(F9,63 = 2.62, p = 0.0123), which can be observed in Figure
4b: the difference between mean MTs for each FB value is the
largest for DZ = 500. Indeed a post-hoc test shows no sig-
nificant difference between the FBs for DZ ≤ 250, whereas
for DZ = 500, Ghost is significantly faster than Halos and None,
and Arrow is significantly faster than None.

We found an average error rate of 7.9%. An analysis of vari-
ance using a nominal logistic test for the model Error∼ FB ×
DZ reveals no significant effect, error rates being very close
for each FB × DZ (min 5.0%, max 9.9%).

For OverShoot, we found a significant effect of both FB
(F3,21 = 6.32, p = 0.0032) and DZ (F3,21 = 8.01, p = 0.0010)
(see Figure 4c). Post-hoc Tukey tests show that Ghost exhibits
significantly less OverShoot than other feedback and that Over-
Shoot is significantly larger for DZ = 500. However, there is
a significant interaction FB × DZ (F9,63 = 3.82, p = 0.0007),
which can be observed in Figure 4c: OverShoot is significantly
lower for Ghost than for all other FB when DZ = 250. For DZ
= 125, the only significant difference is between Ghost and
None. For DZ = 500 we observe more OverShoot for None than
for other feedback and less for Ghost than for Arrow.

Qualitative Results. In the post-experiment questionnaire,
participants were asked to rank the feedback techniques
globally and for each dead zone size. Among the eight par-
ticipants, five globally ranked Ghost first, and each of the
three other techniques was ranked first by one participant
(Ghost was ranked second, third and last in these cases).
Rankings by DZ are consistent with global ranking. Only
three participants ranked None higher for DZ = 125.

Summary. Back to our first question Q1, Ghost seems to be
the best choice for TORUSDESKTOP for all dead zone sizes:
even if it does not exhibit a significantly better performance
– except for the limit case DZ = 500 – it yields the smallest
OverShoot and was preferred by participants. Concerning Q2,
it is confirmed that MT increases with DZ.

Experiment 2: Edge Pointing
The questions this second experiment addresses are:
• Q1: Does a dead zone help users performing edge-

pointing tasks? If yes, is there an optimal dead zone size?

• Q2: Does wrapping feedback help or impede users during
edge pointing?

Stimuli & Design. A trial consisted in an edge pointing task
where the subject had to click on a circular start target and
then acquire a goal target on a screen edge. The goal tar-
get was located to the left or right end of the screen, and
was vertically centered (Figure 5a). It had a width of 40
pixels and two possible heights H = 40, 125 – a size com-
parable to buttons on typical task bars and menu bars. Start
targets were located on a 3 × 3 grid designed to cover sev-
eral angles of approach. Their location was defined by DB
= 200, 1200, 2200, their distance to the edge where the goal
target was, and DH = 0, 600,−600, their distance to the hor-
izontal centerline of the screen.

The experiment was a within-subject design with the same
main factors as the first experiment: (i) Feedback: FB = None,
Ghost; and (ii) Dead zone: DZ = 0, 125, 250, 500, inf. Given
the findings of the first experiment, we only tested the None
and Ghost feedback techniques in this experiment. We used
the same dead zone sizes as in the first experiment and added
an ‘infinite’ size (i.e., no cursor wrapping) as a baseline con-
dition to test standard edge pointing.

Trials were grouped into blocks by DZ × FB. For each DZ ×
FB condition, participants started with one practice block of
2 × 2(H) × 3(DB) × 3(DH) = 36 trials, then proceeded with
two measured blocks. Thus, for each participant, we col-
lected 2× 36× (2(DZ=0,inf) + 2(FB)× 3(DZ=125,250,500))
= 576 trials for analysis.

In addition to MT and Error (defined as in previous experi-
ment), we measured the dead zone distance effectively used
UseDistDZ – i.e., the maximum horizontal travel distance in-
side the dead zone – and the number of times the cursor went
past the dead zone DZOverShoot.

833

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

A.2 selected publications (2005–2012) 147

DH

DB

DZ

(a) (b) (c)
Figure 5. (a) Target placement in experiment 2. (b) MT per deadzone and feedback. (c) Error rate per deadzone and feedback.

Quantitative Results. We removed 0.97% outliers and du-
plicated the data for DZ = 0 and DZ = inf with the Ghost feed-
back to be able to perform a full factorial analysis FB × DZ
× Random(PARTICIPANT).

An analysis of variance reveals an effect of DZ on MT (F4,28 =

38.6, p < 0.0001). As expected MT decreases as DZ increases
(Figure 5b). A post-hoc Tukey test shows that (i) DZ = 0 is
significantly slower than DZ ≥ 125; (ii) DZ = 125 is signifi-
cantly slower than DZ ≥ 500; (iii) DZ = 250 is significantly
slower than DZ = inf; and that (iv) difference is not signifi-
cant for other DZ pairs. Indeed, we observe that the biggest
improvement is from DZ = 0 to DZ = 125 (a 20% speed up).

As Figure 5b suggests, an analysis of variance reveals no
effect of FB (F1,7 = 0.42, p = 0.5463) and no interaction FB
× DZ (F4,28 = 0.55, p = 0.6989) on MT. Practical equivalence
tests with a threshold of 20 ms (less than 3% of the grand
mean) give positive results (p ≤ 0.02), confirming there is
no difference in MT between None and Ghost.

Regarding error, a nominal logistic ANOVA for the model
FB × DZ ∼ Error (on the data set where 125 ≤ DZ ≤ 500)
shows a significant effect of FB (χ2 = 6.12, p = 0.0134) but no
effect of DZ (χ2 = 2.79, p = 0.2477) and no interaction FB ×
DZ (χ2 = 1.99, p = 0.3697). Figure 5c shows that Ghost is less
error-prone than None.

For DZOverShoot, the percentage of trials with accidental cur-
sor wrapping is significantly higher without a dead zone
(24.37% for DZ = 0 and less than 7% for DZ > 0). We no-
ticed small differences between Ghost and None – Ghost always
yielding less overshoots – but these are not significant.

Regarding UseDistDZ, i.e., the distance covered in the dead
zone, we observed that the 90% quantile is close to half the
dead zone size for all DZ < inf. It is close to 600 pixels for
DZ = inf, a result consistent with previous studies [1].

Qualitative Results. After the experiment, participants
were asked to tell (i) whether the Ghost feedback helped them
select the target and (ii) whether they found the feedback
distracting. Six participants out of eight agreed or strongly
agreed that the feedback helped (one was neutral and one
disagreed). However, half the participants agreed or strongly
agreed that the feedback was also distracting.

Summary. Back to our first question Q1, this study con-
firms that when cursor wrapping is enabled, users are more
efficient at selecting targets on the screen edges if a dead
zone is provided. Not only a dead zone expands these targets

(W = 40+DZ), but it also prevents accidental cursor wrap-
ping that can be time-costly to recover from. The high cost
of accidental wrapping is confirmed by participants’ conser-
vative use of dead zones when doing edge pointing. As Fig-
ure 5b does not exhibit an asymptote for DZ < inf, the study
does not suggest an optimal dead zone size. It however re-
veals that a small deadzone (125 pixels) is enough to reduce
movement time by 20%.

Regarding Q2, we observe that the Ghost feedback does not
impair performance but does not improve it either. How-
ever, it significantly reduces errors, suggesting that feedback
makes users more accurate. Since in real systems pointing
errors can have a high cost in terms of time and user frus-
tration, this further confirms that Ghost feedback should be
provided. Some users might however find the feedback dis-
tracting, as suggested by answers to our questionnaire.

COMPARING DIRECT POINTING & TORUSDESKTOP
In the two previous experiments, we validated and refined
the design of TORUSDESKTOP by confirming the benefits
of a wrapping dead zone and by identifying the best wrap-
ping feedback technique. The goal of this third experiment
is to evaluate TORUSDESKTOP by comparing it with con-
ventional pointing (i.e., is it worth opening the backdoor?).

To this end, we presented subjects with various pointing
tasks and had them either use direct pointing only (condition
Direct) or use the backdoor only (condition Wrapping). The
goal was to assess if TORUSDESKTOP can help, and when.
But since in real settings deciding whether or not to use cur-
sor wrapping may take time and/or yield suboptimal choices,
we added a more realistic condition where it was up to the
subject to go through the backdoor or not (condition Torus).

Figure 6b qualitatively illustrates our initial expectations.
Using Direct, the further apart the start and the goal targets
are, the higher the movement time. Wrapping is likely to
show the opposite trend since the further apart the targets
are, the closer they are on a torus topology (but note that
Fitts’ law cannot account for possible distracting effects of
cursor wrapping). We hypothesized that performance under
the Torus condition would roughly follow the minimum of
Direct and Wrapping, plus a possible penalty due to choice.

Apparatus & Participants
The apparatus was the same as in the previous experiments.
We recruited a total of 18 participants (5 female), all right-
handed and experienced mouse users, with ages ranging
from 23 to 35 (median 27.8). 14 of them participated in at
least one of the previous experiments or pilot studies.

834

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

148 publications

DB2

DB1

DZ

DD

DT

M
ov

em
en

t T
im

e

Distance Between Targets
non-obvious choiceDirect Pointing faster Cursor Wrapping faster

Dire
ct o

nly

Wrapping only

Torus Desktop

(a) (b)
Figure 6. (a) Targets placement in experiment 3. The start target is green and potential goal targets are outlined in red. When the start target is
acquired, the actual goal target appears with a solid color and other targets disappear. (b) Expected performance model. TORUSDESKTOP should
behave as the most efficient technique according to the distance, though a penalty may be considered because of the choice between the techniques.

Stimuli & Design
Given the results of previous experiments, we used the Ghost
feedback and a dead zone of 125 pixels for Wrapping and Torus.
Recall this dead zone size yields a reasonable trade-off that
meets the demands of both edge pointing and Torus pointing
(i.e., neither of them is strongly penalized). As before, sub-
jects had to click on a start target and acquire a goal target as
fast as possible. Both targets were located on the horizontal
centerline of the screen and were 40-pixel large3.

At the beginning of a trial, all potential goal targets were
shown. When the subject acquired the start target, the actual
goal target appeared with a solid color and non-targets dis-
appeared (see Figure 6a). This design was motivated by the
inclusion of the Torus condition. In real settings, users might
or might not know exactly where to click when they initi-
ate a pointing movement. Our design is a trade-off between
these two situations, since it reminds users of the possible
target locations, but does not give them complete informa-
tion about the task to prevent them from carefully deciding
whether or not use the backdoor before the timing starts.

In addition to the pointing conditions TECH, the experiment
included the factor DB1, the distance from the start target
to the closest screen edge; and DB2, the distance from the
goal target to the opposite edge. These two factors fully
define the pointing tasks, whose direct pointing distance is
DD = 2560 − (DB1+DB2), where 2560 is the screen width;
and whose torus pointing distance is DT = DB1+DB2+125,
where 125 is the size of the dead zone (Figure 6a). Both DB1
and DB2 values were {50, 125, 250, 500, 750}. We chose
these values according to an extensive pilot study suggest-
ing that among all possible pointing tasks defined by these
DB1×DB2 pairs, 7 clearly favor Wrapping, 7 clearly favor Di-
rect and the remaining 11 yield comparable performances.

The presentation order of the techniques was counterbal-
anced. Prior to the experiment, the Direct and Wrapping tech-
niques were introduced to the participants with two short
practice sessions. Then, the experiment was divided in two
parts. First, participants performed 4 series of 25 trials per
technique. A series of trials included all the possible com-
binations of DB1 and DB2 and was fully randomized. This
part was exclusively a training session. Then, participants

3Pilots studies did not show any effect of target size when compar-
ing TORUSDESKTOP and direct pointing.

performed 1 series of practice trials followed by 5 series of
measured trials per technique. Thus, for each participant, we
collected a total of 3 (TECH) × 5 (repetition) × 5 (DB1) × 5
(DB2) = 375 trials for analysis.

We collected movement time (MT) and errors (Error) defined
as in previous experiments. The experiment lasted about 45
minutes after which participants were given a short question-
naire and were interviewed about the strategies they devel-
oped in the Torus condition.

Quantitative Results
We removed 0.76% outliers defined as in previous ex-
periments and performed a full factorial analysis with
the model TECH×DD×Random(PARTICIPANT) and the finer
model TECH×DB1×DB2×Random(PARTICIPANT). We found
no learning effect and no significant difference in perfor-
mance between the 14 subjects who were involved in pre-
liminary experiments and the 4 new subjects.

Average Performance. The ANOVA reveals no effect of
TECH on MT (F2,34 = 0.245, p = 0.7836 for the DD model and
F2,34 = 0.612, p = 0.5481 for the DB1×DB2 model). Mean MT
are close for Direct (1091ms), Wrapping (1094ms) and Torus
(1108ms). These similarities confirm that we chose well-
balanced pairs of DB1×DB2 for Wrapping and Direct, but also
suggest that the improvement promised by Torus may have
been outweighted by the cost of choice. This will be dis-
cussed later.

We found a significant effect of TECH on ErrorRate (F2,34 =

7.74, p = 0.0017 for the DD model and F2,34 = 7.40, p = 0.0021

for the DB1×DB2 model). A post-hoc Tukey test shows that
Wrapping and Torus are significantly less error-prone than Di-
rect, with an error rate of about 6.6% for Wrapping and Torus
versus 9.2% for Direct. A possible explanation is that partici-
pants were more careful with Wrapping and Torus, as they were
less familiar with these techniques than with Direct.

Effect of Direct Distance. The ANOVA reveals a significant
effect of DD (F13,221 = 14.0, p < 0.0001) and a significant
interaction TECH×DD on MT (F26,442 = 12.5, p < 0.0001). We
found no significant effect or interaction on ErrorRate.

Figure 7 shows MT as a function of DD for the three tech-
niques. In accordance with our first intuitions, Direct gets
slower as DD increases and Wrapping gets faster, although the

835

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

A.2 selected publications (2005–2012) 149

Direct Distance

M
o
ve

m
e
n
t
T

im
e

 (
m

s
)

1060 1310 1560 1685 1760 1810 1935 2010 2060 2185 2260 2310 2385 2460

95
0

10
00

10
50

11
00

11
50

12
00

Figure 7. Direct vs. Wrapping vs. Torus as a function of DD. Since the y-axis has its origin at 950, scale bars of error and grand mean are shown.

DB1

M
o
ve

m
e
n
t
T

im
e
 (

m
s
)

50 250 500 750

9
5
0

1
0
5
0

1
1
5
0

1
2
5
0

Direct

Wrapping

Torus

DB2

M
o
ve

m
e
n
t
T

im
e
 (

m
s
)

50 250 500 750

9
5
0

1
0
5
0

1
1
5
0

1
2
5
0

Direct

Wrapping

Torus

Figure 8. MT as a function of DB1 (left) and DB2 (right) per TECH.

curve exhibits some irregularities (which will be explained
when analyzing DB1 and DB2). The two techniques are com-
parable where the two curves cross, i.e., between DD=1810
and 2010 pixels. This corresponds to a Torus travel dis-
tance of only DT=675 to 875 pixels, suggesting that Wrap-
ping is slower than what Fitts’ law would have predicted.
Taking trials where DD∼DT, we estimate this penalty to
about 200ms 4. This penalty is likely due to the difficulty
in reacquiring the mouse cursor, but far from invalidating
the whole approach, it merely increases the target distance
above which Wrapping starts to be beneficial. Indeed, post-
hoc tests show clear benefits for Wrapping above DD=2010
pixels, i.e., 80% the screen size in our experimental setup.

Figure 7 shows that the behavior of Torus is similar to Wrap-
ping for DD>2010 pixels, where it exhibits a choice penalty
of about 50ms but still clearly outperforms Direct. For
DD=1810 to 2010 the 3 conditions exhibit similar perfor-
mance. The left part of the curve is however less consistent
with our initial expectations: for DD<1810, the performance
with Torus is close to Wrapping instead of being close to Direct
as in Figure 6b. One explanation is that participants failed to
choose direct pointing when it was more efficient (our later
experimental data confirms this). However, Torus also gets
closer to Direct as DD decreases, which suggests that subjects
might still favor Direct when it is clearly beneficial.

Effects of DB1 and DB2. We found significant effects of
both DB1 (F4,68 = 68.9, p < 0.0001) and DB2 (F4,68 = 3.68,

p < 0.0090) on MT. We also found significant interactions
DB1×DB2 (F16,272 = 6.29, p < 0.0001), DB1×TECH (F8,136 =

28.5, p < 0.0001) and DB2×TECH (F8,136 = 6.67, p < 0.0001).
We found no significant effect or interaction on ErrorRate.

4This value is consistent with a Fitts’ law analysis we conducted
on an extensive pilot study comparing Wrapping with Direct.

750−50 50−750 500−250 250−500 500−50 50−500 250−250

DB1−DB2

M
o
u
v
e
m

e
n
t
ti
m

e

0
2
0
0

6
0
0

1
0
0
0

1
4
0
0 Direct Wrapping Torus

Figure 9. MT as a fct. of certain critical DB1-DB2 couples per TECH.

The interaction DB1×TECH can be observed in Figure 8 left.
As DB1 increases, MT decreases for Direct (because DD de-
creases) and increases for Wrapping (because DT increases).
For Torus, MT behaves like Wrapping up to DB1=750, suggest-
ing Direct was preferred when the start target was very far
from the edge. Ideally, MT should have followed Direct’s trend
starting from DB1=500, but both the cost of the choice and
the overuse of the backdoor seem to have prevented this.

Surprisingly, the interaction DB2×TECH is quite different
(see Figure 8 right). For the same reasons as above, MT de-
creases with DB2 for Direct. But for Wrapping, MT follows a
catenary curve with a minimum at DB2=250. Since Wrap-
ping should normally increase with DB2, this suggests an is-
sue with goal targets being very close to the edge. This is-
sue also impacts the Torus condition, which exhibits the same
minimum at DB2=250.

The asymmetric effects of DB1 and DB2 are further detailed
in Figure 9, which shows MT by TECH for each DB1-DB2
pair that yields a DD value of 1760, 1810, 2010 or 2060.
These values correspond to the irregularities we previously
observed in Figure 7. Figure 9 confirms that Wrapping does
poorly when DB2 is small. For example, Wrapping does much
worse with the pair 750-50 than the pair 50-750, despite
these pairs yielding the same DD=1760. This is the cause
for the peak in Figure 7. This peak is followed by a sharp
decline at DD=1810 which involves the more balanced pairs
500-250 and 250-500. Torus exhibits the same irregularities.

This asymmetry can be explained in the light of the opti-
mized dual sub-movement model [22] and by considering
when in the pointing movement cursor warping occurs. Us-
ing Wrapping, the mouse cursor first travels the distance DB1
+ DZ, then warps and re-appears on the opposite side, after
which it travels a distance DB2 before reaching the target. If
DB2 is small compared to DB1 + DZ, the warping occurs at

836

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

150 publications

%
 o

f
W

ra
p
p
in

g
 C

h
o
ic

e
 (

p
T

C
)

50 125 250 500 750

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

l

l
l

l

l

lDB1 DB2

Figure 10. Percentage of Wrapping choice for DB1 and DB2.

the end of the movement – i.e., the corrective phase where
visual feedback is the most crucial. Cursor warping requires
attention shift, which likely disrupts the corrective process
and slows users down. Conversely, if DB2 is large compared
to DB1 + DZ, the warping happens during the initial ballistic
phase of the movement where visual feedback is not used,
thus its impact on performance is less severe.

Note that we could have ran a post-hoc analysis, but doing so
with such a large number of data points is subject to method-
ological issues (high risks of type I or type II errors) and a
correct analysis would have required a fair amount of space
to justify and report. Since the significant interactions we
found and the Figures 7, 8 and 9 are already quite informa-
tive we chose not to perform theses analyses.

Choice Strategies
So far, our results show that using the backdoor was ben-
eficial when more than 80% of the screen had to be trav-
eled. However, we observed mixed results when subjects
had to make a choice, especially when direct pointing was
the best choice. Therefore, we further analyze the choices
made in the Torus condition. We consider the measure pTC,
i.e., the % of the time where subjects chose wrapping,
the model DD×Random(PARTICIPANT) and the finer model
DB1×DB2×Random(PARTICIPANT) for this condition.

Unsurprisingly, DD has an effect on pTC (F13,221 = 25.2, p <

0.0001) and pTC increases with DD: the larger the distance to
travel, the more often the backdoor was used.

DB1 and DB2 also have an effect on pTC (F4,68 = 28.0,

p < 0.0001 and F4,68 = 9.61, p < 0.0001 respectively), with
no DB1×DB2 interaction. As can be seen in Figure 10, the
closer to the edges the targets were, the more often cursor
wrapping was used. The dissimilar slopes further suggest
that subjects gave more weight to the distance of the start
target when they had to make a choice. This might be due to
the fact that this information was available before DB2.

During the post-experiment interviews, participants reported
using different strategies that can be summarized as:

• START: only wrap when the start target is close to the edge.
• GOAL: only wrap when the goal target is close to the edge.
• WRAP: always wrap the mouse cursor.
• DIRECT: always use direct pointing.
• NOCLUTCH: take the path that minimizes mouse clutching.
• RANDOM: choose more or less randomly.

10 participants reported relying mostly on START and 3 re-
ported using it as a secondary strategy. 5 participants re-
ported using WRAP as their primary strategy and 1 mentioned
it as a secondary strategy. All the other strategies have been
mentioned as a main strategy only once. GOAL was men-
tioned as a secondary strategy 3 times. Reported strategies
were consistent with mean pTC per participant and with our
analyses of the effects of DB1 and DB2 on pTC, except for
two participants who reported using START and DIRECT but
actually chose wrapping 93% and 76% of the time.

Overall, participants overused the backdoor: the global
mean of pTC is 75% (std dev. 15%, median 74%). Even
in the worst case scenario (DB1=DB2=750, DD=1060 and
DT=1625), wrapping was used about 30% of the time. This
trend could be partly due to a “good user” effect. It is also
likely that participants were not accurate enough at estimat-
ing when cursor wrapping would beat direct pointing. It
could be that with more training, users would develop a habit
of the technique and start making close-to-optimal choices.
But since we used an extensive training session and did not
find a learning effect – even for subjects who were not in-
volved in preliminary experiments – TORUSDESKTOP could
probably benefit from visual clues that help users make op-
timal choices and develop more rational strategies.

Another question concerns the cognitive load associated
with the choice. Although we did not measure cognitive load
formally, we gave a post-experiment questionnaire where we
asked subjects if they found it difficult to choose between di-
rect pointing and wrapping. Out of 18, 4 strongly disagreed
and 9 disagreed, suggesting cognitive load is moderate.

CONCLUSION AND FUTURE DIRECTIONS
Despite being an old idea, cursor wrapping is a simple and
target-agnostic way of reducing target distance in pointing
tasks. We discussed how such a technique should be de-
signed and proposed the TORUSDESKTOP technique: it in-
cludes a dead zone that prevents accidental cursor warp-
ing and facilitates edge pointing, and a visual feedback that
helps keeping track of the cursor inside the dead zone.

We tested several variations over this design and found that
our Ghost off-screen feedback reduces overshoots during
both edge pointing and cursor wrapping and is well-received
by end-users, and that a 125-pixel dead zone (5% the screen
size5) yields good performance for edge pointing while not
sacrificing cursor wrapping performance. Recall the optimal
dead zone size is infinite for edge pointing and is zero for
cursor wrapping. However, a 125-pixel dead zone size is a
reasonable trade-off where neither task is strongly penalized.

We also compared TORUSDESKTOP with direct pointing and
uncovered the following potential sources of difficulties with
the cursor wrapping approach:

• Cursor teleportation adds a time penalty of ∼200ms,
• Targets very close to the edges are harder to acquire,
• Chosing whether or not to use the backdoor has some cost.
5All figures are given according to our experimental setup that in-
volves a 30" 2560x1600 display.

837

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

A.2 selected publications (2005–2012) 151

In our study, the cost of choice took the form of a small time
penality (∼50ms) when cursor wrapping was the most ben-
eficial, and of suboptimal choices (overuse of the backdoor)
when direct pointing was the best option.

However, rather than invalidating the whole approach, these
difficulties merely increase the travel distance above which
TORUSDESKTOP starts being beneficial. Indeed, our study
shows that cursor wrapping outperforms direct pointing
above a travel distance of 2010 pixels (80% the screen size),
and these benefits are preserved when users have to choose
between direct pointing and cursor wrapping. These benefits
can translate to much higher gains when one needs to regu-
larly acquire targets close to an edge (e.g., toolbar buttons),
or when going back-and-forth between two very distant tar-
gets (e.g., toolbars placed at opposite sides of the screen).
However, despite extensive training, our study participants
were not very accurate at estimating which technique will be
the most efficient under a given condition. We are investigat-
ing how to augment TORUSDESKTOP with visual clues and
feedforward techniques to help users make optimal choices
and develop better strategies in the long run.

Further design is also required to support TORUSDESKTOP
in multi-display environments. Several strategies can be
considered such as disabling cursor wrapping on adjacent
screen edges, restricting wrapping to the active screen or
supporting on-demand wrapping/screen jump.

Finally, a field study of TORUSDESKTOP is clearly needed to
validate the approach and ensure that cursor wrapping can be
adopted and effectively used by end users in their everyday
desktop usage. As a first step towards this goal, we imple-
mented an application that enables TORUSDESKTOP at the
system-level on Mac OS X and that is freely available at
http://insitu.lri.fr/TorusDesktop.

REFERENCES
1. C. Appert, O. Chapuis, and M. Beaudouin-Lafon. Evalua-

tion of pointing performance on screen edges. In AVI ’08,
119–126. ACM, 2008.

2. T. Asano, E. Sharlin, Y. Kitamura, K. Takashima, and
F. Kishino. Predictive interaction using the delphian desk-
top. In UIST ’05, 133–141. ACM, 2005.

3. R. Balakrishnan. “Beating” Fitts’ law: virtual enhancements
for pointing facilitation. IJHCS, 61(6):857–874, 2004.

4. P. Baudisch, E. Cutrell, M. Czerwinski, D. Robbins, P. Tan-
dler, B. Bederson, and A. Zierlinger. Drag-and-pop and
drag-and-pick: techniques for accessing remote screen con-
tent on touch- and pen-operated systems. In Interact ’03,
57–64. IOS, 2003.

5. P. Baudisch, E. Cutrell, K. Hinckley, and R. Gruen. Mouse
ether: accelerating the acquisition of targets across multi-
monitor displays. In CHI ’04 EA, 1379–1382. ACM, 2004.

6. P. Baudisch, E. Cutrell, and G. Robertson. High-density cur-
sor: a visualization technique that helps users keep track of
fast-moving mouse cursors. In Interact ’03, 236–243. IOS,
2003.

7. P. Baudisch and R. Rosenholtz. Halo: a technique for visual-
izing off-screen objects. In CHI ’03, 481–488. ACM, 2003.

8. H. Benko and S. Feiner. Pointer warping in heterogeneous
multi-monitor environments. In GI ’07, 111–117. ACM,
2007.

9. R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Semantic
pointing: improving target acquisition with control-display
ratio adaptation. In CHI ’04, 519–526. ACM, 2004.

10. R. Blanch and M. Ortega. Rake cursor: improving point-
ing performance with concurrent input channels. In CHI ’09,
1415–1418. ACM, 2009.

11. G. Casiez, D. Vogel, R. Balakrishnan, and A. Cockburn. The
impact of control-display gain on user performance in point-
ing tasks. HCI, 23(3):215–250, 2008.

12. O. Chapuis, J.-B. Labrune, and E. Pietriga. Dynaspot:
speed-dependent area cursor. In CHI ’09, 1391–1400. ACM,
2009.

13. O. Chapuis and N. Roussel. UIMarks: Quick graphical in-
teraction with specific targets. In UIST ’10, 173–182. ACM,
2010.

14. J. Farris, K. Jones, and B. Anders. Factors affecting the use-
fulness of impenetrable interface element borders. Human
factors, 44(4):578, 2002.

15. T. Grossman and R. Balakrishnan. The bubble cursor: en-
hancing target acquisition by dynamic resizing of the cur-
sor’s activation area. In CHI ’05, 281–290. ACM, 2005.

16. Y. Guiard, R. Blanch, and M. Beaudouin-Lafon. Object
pointing: a complement to bitmap pointing in guis. In GI
’04, 9–16. CHCC Society, 2004.

17. S. Gustafson, P. Baudisch, C. Gutwin, and P. Irani. Wedge:
clutter-free visualization of off-screen locations. In CHI ’08,
787–796. ACM, 2008.

18. A. Hurst, J. Mankoff, A. Dey, and S. Hudson. Dirty desk-
tops: using a patina of magnetic mouse dust to make com-
mon interactor targets easier to select. In UIST ’07, 183–
186. ACM, 2007.

19. M. Kobayashi and T. Igarashi. Ninja cursors: using multi-
ple cursors to assist target acquisition on large screens. In
CHI ’08, 949–958. ACM, 2008.

20. S. MacKenzie. Fitts’ law as a research and design tool in
human-computer interaction. HCI, 7:91–139, 1992.

21. M. McGuffin and R. Balakrishnan. Fitts’ law and expanding
targets: experimental studies and designs for user interfaces.
ACM ToCHI, 12(4):388–422, 2005.

22. D. Meyer, J. Smith, S. Kornblum, R. Abrams, and
C. Wright. Optimality in human motor performance:
Ideal control of rapid aimed movements. Psych. Review,
95(3):340–370, 1988.

23. M. Nacenta, R. Mandryk, and C. Gutwin. Targeting across
displayless space. In CHI ’08, 777–786. ACM, 2008.

24. G. Ramos, A. Cockburn, R. Balakrishnan, and
M. Beaudouin-Lafon. Pointing lenses: Facilitating stylus
input through visual- and motor-space magnification. In
CHI ’07, 757–766, 2007.

25. K.-J. Räihä and O. Spakov. Disambiguating Ninja cursors
with eye gaze. In CHI ’09, 1411–1414. ACM, 2009.

26. J. Wobbrock, J. Fogarty, S.-Y. Liu, S. Kimuro, and
S. Harada. The angle mouse: target-agnostic dynamic gain
adjustment based on angular deviation. In CHI ’09, 1401–
1410. ACM, 2009.

27. A. Worden, N. Walker, K. Bharat, and S. Hudson. Making
computers easier for older adults to use: area cursors and
sticky icons. In CHI ’97, 266–271. ACM, 1997.

28. S. Zhai, C. Morimoto, and S. Ihde. Manual and gaze input
cascaded (MAGIC) pointing. In CHI ’99, 246–253. ACM,
1999.

838

ha
l-0

05
59

19
4,

 v
er

si
on

 3
 -

9
M

ay
 2

01
1

152 publications

Rapid Development of User Interfaces
on Cluster-Driven Wall Displays with jBricks

Emmanuel Pietriga1,2 Stéphane Huot2,1 Mathieu Nancel2,1 Romain Primet1
1INRIA 2LRI - Univ Paris-Sud & CNRS

F-91405 Orsay, France F-91405 Orsay, France

ABSTRACT
Research on cluster-driven wall displays has mostly focused
on techniques for parallel rendering of complex 3D mod-
els. There has been comparatively little research effort ded-
icated to other types of graphics and to the software engi-
neering issues that arise when prototyping novel interaction
techniques or developing full-featured applications for such
displays. We present jBricks, a Java toolkit that integrates
a high-quality 2D graphics rendering engine and a versatile
input configuration module into a coherent framework, en-
abling the exploratory prototyping of interaction techniques
and rapid development of post-WIMP applications running
on cluster-driven interactive visualization platforms.

Keywords
Wall Displays, Clusters, Interaction, Toolkit, Prototyping

INTRODUCTION
Over the last decade, wall-sized displays have evolved from
experimental, CRT monitor-based setups to sophisticated ar-
rays of tiled projectors or LCD panels. The latter are of-
ten called ultra-high-resolution displays to emphasize their
significantly higher display capacity compared to projector-
based very-high-resolution displays. They typically accom-
modate several hundred megapixels, and are driven by clus-
ters of computers. As an example, the setup depicted in Fig-
ure 1 uses 32+1 graphic processing units in 16+1 computers
to display 20480×6400 ' 131 megapixels on a 5.5m×1.8m
surface (' 100dpi). These displays enable the visualization
of truly massive datasets. They can represent the data with
a high level of detail while retaining context [16], and en-
able the juxtaposition of data in various forms. To make
them interactive, wall-sized displays are increasingly cou-
pled with advanced input devices, e.g., motion-tracking sys-
tems, wireless multitouch devices, in order to enable multi-
device and/or multi-user interaction with the displayed data
[16, 17]. These interactive ultra-high-resolution displays can
be used in many application domains, including command
and control centers, geospatial imagery, scientific visualiza-
tion, collaborative design and public information displays.

E. Pietriga, S. Huot, M. Nancel, R. Primet.
Rapid Development of User Interface

on Cluster-Driven Wall Displays with jBricks
In EICS ’11: Proceedings of the 2nd ACM SIGCHI symposium on

Engineering interactive computing systems, ACM, June 2011.
Authors Version

These new environments pose new research challenges.
From a computer graphics perspective: how to render com-
plex graphics at high frame rates, taking advantage of the
cluster’s computing and rendering power. From a human-
computer interaction perspective: how to design effective
visualizations that take advantage of the specific character-
istics of large, ultra-high-resolution surfaces; how to design
interaction techniques that are well-adapted to this particular
context of use, and how to handle the multiple and hetero-
geneous input devices and modalities typically used in this
context. Finally, from a software engineering perspective:
how to enable the rapid prototyping, development, testing
and debugging of interactive applications running on clus-
ters of computers, providing the right abstractions.

In this paper, we focus on the latter research question, that
we consider essential to foster more research and develop-
ment from the HCI perspective. We present jBricks, a Java
toolkit for the development of post-WIMP applications ex-
ecuted on cluster-driven wall displays, that extends and in-
tegrates a high-quality 2D graphics rendering engine and a
versatile input management module into a coherent frame-
work hiding low-level details from the develeoper. The goal
of this framework is to ease the development, testing and de-
bugging of interactive visualization applications. It also of-
fers an environment for the rapid prototyping of novel inter-
action techniques and their evaluation through controlled ex-
periments, such as the one we recently conducted about mid-
air pan-and-zoom techniques for wall-sized displays [16].

Background and Motivation
The parallel-rendering techniques developed over the last ten
years enable the efficient display of 3D graphics on tiled dis-
plays driven by clusters of computers. This is usually done
by sending already rendered images to the cluster nodes,
or by sending geometry and performing compositing oper-
ations to produce the final wall-sized image. Different tech-
niques exist, including sort-first and sort-last pipelines as
well as various hybrid solutions. Well-known frameworks
include Chromium [11], Equalizer [10] and SAGE [13]. See
Ni et al. [17] for a comprehensive survey.

However, not all wall display applications use 3D graphics.
With the introduction of ultra-high resolution, high-quality
2D graphics open wall-sized displays to new applications,
e.g., in astronomy, geospatial intelligence and visual ana-
lytics at large, to give a few examples. These applications
essentially combine very large bitmap images, high-quality
text and 2D vector graphics, e.g., satellite imagery aug-

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 -
13

 A
pr

 2
01

1

Author manuscript, published in "EICS '11: 2nd ACM SIGCHI symposium on Engineering interactive computing systems (2011)"

A.2 selected publications (2005–2012) 153

(a) (b)

(c)

Figure 1. jBricks applications running on the WILD platform (32 tiles for a total resolution of 20 480 × 6 400 pixels). (a) Zoomed-in visualization of
the North-American part of the world-wide air traffic network (1 200 airports, 5 700 connections) overlaid on NASA’s Blue Marble Next Generation
images (86 400 × 43 200 pixels) augmented with country borders ESRI shapefiles. (b) Panning and zooming in Spitzer’s Infrared Milky Way (396 032
× 12 000 pixels). (c) Controlled laboratory experiment for the evaluation of mid-air multi-scale navigation techniques [17].

mented with data layers, or information visualization tech-
niques for the display of large datasets, e.g., for the visual
exploration of large networks (Figure 1-a). However, there
is currently no good solution for the distributed rendering of
high-quality 2D graphics on cluster-driven wall displays.

Low-level 3D graphics APIs such as OpenGL are currently
the main solution for developing cluster-driven visualiza-
tions. They work well for the high-performance visualiza-
tion of textured 3D scenes, but are ill-suited to program-
ming high-quality 2D graphics interfaces, lacking appro-
priate support for the management and efficient rendering
of text, line styles, arbitrary 2D shapes and WIMP wid-
gets. This was already observed for desktop application
programming [6], and remains true for cluster-driven wall-
displays. Pixel streaming approaches à la SAGE work well
when combining different windows of relatively limited size
from different applications, potentially running on different
machines. They would however not work for full-screen,
highly-dynamic visualizations on ultra-high-resolution dis-
plays: updating hundreds of megapixels forming a single co-
herent image at an interactive refresh rate would require sig-
nificantly more network bandwidth than is commonly avail-
able and would put an extremely heavy load on the node in
charge of rendering the image to be streamed.

Rich interactive 2D desktop applications, usually termed
post-WIMP applications, are typically developed with struc-
tured graphics toolkits [2, 7, 12, 18] that provide useful ab-
stractions on top of low-level APIs. They enable rapid pro-
totyping and development of advanced interactive visualiza-
tions. Our goal is to offer a structured graphics toolkit capa-
ble of running transparently on cluster-driven wall displays
and capable of handling a wide range of input devices and
modalities. From a graphics perspective, this requires hid-
ing the complexity entailed by having to distribute rendering
on multiple computers. While our focus is on expressiveness
and ease-of-use, we also pay attention to scalability issues,
adapting ideas originally developed for efficient distributed
3D rendering to our context, such as the use of a multicast
protocol to transmit updates to cluster nodes, and a culling

algorithm adapted to zoomable user interfaces. From an in-
put management perspective, this requires going beyond the
basic redirection mechanisms found in existing distributed
rendering frameworks that only support conventional input
devices, i.e., mouse and keyboard operated from the mas-
ter computer. For now, support for other devices is mostly
achieved via ad hoc solutions (drivers or libraries) that are
strongly integrated and statically linked within applications.
This approach is not generic and flexible enough when ex-
ploring and prototyping novel interaction techniques [9]. An
alternative approach consists in providing high-level abstrac-
tions of input modalities that enable association and runtime
substitution of devices. It has proven successful in other do-
mains, including physical ubiquitous computing [5], virtual
reality (Gadgeteer for VR Juggler [8]) and in the more gen-
eral context of post-WIMP applications (ICon [9], Squidy
[14]), and we adapt it to interactive wall displays.

jBricks FRAMEWORK ARCHITECTURE
The framework is essentially composed of two independent
modules: one for managing all graphical operations, and
one for handling input. The two modules are loosely cou-
pled. They communicate via a dynamic plugin architecture
and network sockets using high-level protocols such as OSC.
This makes the framework highly flexible: modules can be
instantiated multiple times and can run on different nodes.

Structured Graphics
Our goal is to provide an API and feature-set similar to those
of desktop structured graphics toolkits [2, 7, 12, 18] while i)
hiding the complexity entailed by distributed rendering, ii)
promoting ease of learning and ease of use, and iii) enabling
code reuse: visualization components initially developed for
desktop computers should run on cluster-driven wall dis-
plays with minimal changes to the original application code.
With these high-level objectives in mind, we chose to ex-
tend an existing structured graphics toolkit rather than start
developing a new one from scratch.

We used the open-source ZVTM toolkit [18], that supports
most Java2D drawing primitives but offers higher-level ab-

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 -
13

 A
pr

 2
01

1
154 publications

stractions that ease the management and manipulation of
graphical objects: rendering is handled in retained mode,
meaning that the toolkit retains a complete model of the ob-
jects to be rendered. ZVTM follows a monolithic approach,
as opposed to a polylithic one1. Experience has shown that
monolithic approaches are conceptually easier to handle by
developers, generate less lines of code and require managing
a smaller number of objects [7]; properties that we consider
of high importance for rapid UI development.

Featured types of graphical objects include polygons of ar-
bitrary shape, splines, Swing widgets, bitmap images and
high-quality text, with support for advanced stroke and fill
patterns. Those objects (Glyphs) are placed on infinite draw-
ing surfaces (Virtual Spaces) that are observed through one
or more Cameras. A camera renders the objects that lie in its
viewing frustum in a View, that corresponds to a window on
the screen. The toolkit makes it easy to create zoomable user
interfaces (cameras can be smoothly panned and zoomed).
It supports multiple independent views, as well as Portals
(views within views) [6], multiple layers within a view (each
corresponding to a different camera), as well as a variety
of built-in focus+context visualization techniques. Cameras
and glyphs can be animated using various pacing functions.

Cluster-based Structured Graphics Rendering
jBricks’ extension of ZVTM to render graphics on cluster-
driven tiled displays is conceptually straightforward. It takes
an approach similar to what sort-first algorithms do for par-
allel rendering of 3D graphics in retained mode: as ZVTM
already enables multiple cameras to observe a given vir-
tual space, implementing tiled rendering basically consists
in sharing that virtual space between all cluster nodes and
setting one camera per display tile. Each camera’s view-
ing frustum is configured so that their juxtaposition forms
an overall coherent image from the user’s perspective, ac-
cording to the physical layout of display tiles.

Distributed Virtual Spaces. jBricks adopts a client-server
model [17]: as shown in Figure 2, a single instance of the
application runs on a client node, generating the geometry
(populating virtual spaces with glyphs) and distributing it to
render servers running on cluster nodes. Virtual spaces and
glyphs contained therein are broadcast to all cluster nodes.
They are replicated and kept synchronized as glyphs are
added, removed, or have their properties changed. Paral-
lel rendering frameworks for 3D graphics have mainly fo-
cused on the visualization of static-geometry models where
only the camera(s) are manipulated interactively. The appli-
cations that jBricks aims to support typically manage much
more dynamic objects, both in terms of geometry and visual
appearance (color, stroke, font, etc.), potentially requiring
a lot of network bandwidth. Multicast communication can
greatly decrease bandwidth requirements for those updates
[15]. We use JGroups (http://www.jgroups.org) as our
group communication layer, that provides reliable messag-
ing over IP multicast. Over this layer, we exchange atomic
changes called Delta, which are serialized Java objects rep-
1Monolithic toolkits primarily use compile time inheritance to ex-
tend functionality, while polylithic toolkits primarily use run-time
composition to do so, typically using a scene graph [7].

Render
Server

Render
Server

Render
Server

Render
Server

Render
Server

Client App

Input
Server

Input
Server

Render
Server

Render
Server

Render
Server

Runs Input messages Graphics messages

Figure 2. Example jBricks configuration: wall’s graphics client and
input server for motion tracker and tablet run on client node; input
server for mouse, keyboard and smartphone run on user’s laptop.

resenting a new value for a given glyph attribute, propagated
to the corresponding glyphs on render servers.

Performance. As noted by Bederson and Meyer [6] about
zoomable user interfaces: “Smooth real-time interaction is
crucial. If the system becomes slow and jerky, the metaphor
dies”. The use of a multicast protocol for updating glyphs
enables us to smoothly animate several hundred property
changes simultaneously and independently of the number
of render servers. Camera animations do not require sig-
nificant bandwidth, as moving a camera only requires up-
dating a maximum of three double-precision floating point
values per frame. A more serious bottleneck when panning
and zooming is the frame rate achieved by render servers.
ZVTM already implements efficient culling algorithms for
zoomable user interfaces. Glyphs get projected and rendered
for a given camera only if they lie in that camera’s viewing
frustum. jBricks benefits from this directly: each server ren-
ders only the glyphs that will eventually be visible in the
associated tile, which significantly decreases the computa-
tional and rendering load for scenes with high object counts.

Preliminary tests have shown that visualizations containing
up to 200,000 objects could be rendered at interactive frame
rates on the platform depicted in Figure 1. jBricks also ben-
efits from Java2D’s OpenGL pipeline, and from ZVTM’s
spatial indexing and dynamic external resource (un-)loading
mechanisms. These were developed to support multi-scale
navigation in very large datasets, such as gigapixel bitmap
images decomposed recursively as a region quadtree. We
adapted these mechanisms in jBricks to work in a distributed
context, enabling the interactive visualization of very large
images. Example images that have been visualized include
the 26 gigapixel panorama of Paris (354 048 × 75 520 pix-
els) and Spitzer’s Infrared Milky Way (Figure 1-b), that can
be freely panned and zoomed on a wall display.

Programming. jBricks adds cluster support to ZVTM by
monkey-patching the original toolkit using AspectJ, with-
out altering its source code. This makes the cluster exten-
sion module small (� 3 000 lines of code vs. � 39 000
for ZVTM) and facilitates forward compatibility. This also
keeps API changes to a minimum: virtual spaces, glyphs,
animations and most other constructs are managed through
the original ZVTM API; low-level mechanisms for distribu-
tion to render servers are hidden from the developer. Only

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 -
13

 A
pr

 2
01

1
A.2 selected publications (2005–2012) 155

cameras and views get created and managed in a slightly
different manner. The tiled display’s geometry has to be de-
clared: number of rows and columns, size of each screen
(pixels), options such as whether to paint pixels behind the
bezels separating the tiles (overlay approach) or ignore them
(offset approach). Clustered Views replace regular ZVTM
views: a clustered view is divided into blocks, each block
corresponding to a tile and render server. Render servers can
be instantiated multiple times on a single node if that node
drives multiple tiles. ZVTM-based desktop applications,
originally written to run on single hosts, can be adapted to
run on a cluster-driven large displays by changing as little as
four lines of code. Render servers are instances of a generic
display program that is part of jBricks, meaning that devel-
opers only have to modify the client application and do not
have to run application-specific code on cluster nodes. This
enables a quick development and deployment lifecycle. It is
also interesting to note that the client application and render
servers can run anywhere, including on the same computer,
which facilitates development outside the cluster platform.

Advanced Input & Interaction
Wall-sized displays are often augmented with a complex in-
teractive environment, made of heterogeneous input modal-
ities ranging from actual input devices (e.g., mouse, 6-DOF
devices, tablets), to the output of interactive systems used
for input (e.g., motion-tracking system software, multi-touch
table tracker, mobile device sensors interpreter). jBricks’s
cluster extension to ZVTM handles all aspects related to
graphics distribution and rendering, but supports little be-
yond basic input redirection for conventional devices. An
input management system is required to handle the multiple
input channels and to ease their fusion so as to eventually
deliver high-level input events to applications, that make the
description of complex interaction techniques easier [12].

We identified three main requirements for such an input
management system. The system should be able to han-
dle various kinds of distributed input in a generic way to al-
low easy substitution of input modalities, and should provide
generic output to several distributed applications, no matter
whether they were specifically developed for this platform
or not. The system should be extensible, making it easy to
support new devices and functionalities with re-usable pro-
cessing functions or interaction techniques. Finally, the sys-
tem should be adaptable, enabling runtime addition of new
devices and changes to the input configuration.

With these objectives in mind, we developed the jBricks
Input Server (jBIS), the distributed input and interaction
management system of jBricks. jBIS is built on top of
the FlowStates toolkit [3], that combines the ICon [9] and
SwingStates [2] libraries. ICon’s dataflow model can han-
dle multiple devices and describe advanced interactions ef-
ficiently [12]. Its visual editor makes it simple to connect
them to application input endpoints (Figure 3). SwingStates
extends the Java language with state machines and provides
a simple yet powerful programming language that simpli-
fies the description of interaction logics on the application
side. FlowStates integrates these two models seamlessly:
state machines are instantiated as dataflow processing de-

vices that can be graphically connected to input devices or
to other state machines in the dataflow configuration.

Input handling. Thanks to the ICon library, the jBricks In-
put Server has built-in support for various regular and ad-
vanced input devices: mouse, keyboard, various tablets,
Nintendo Wii remotes, VICON motion-trackers, interactive
pens, etc. These input devices are instantiated as dataflow
processing devices that can be connected to adapters or ap-
plication devices through the dataflow editor (see the mouse
device in Figure 3). These dataflow components are high-
level structured representations of input devices (or classes
of input devices) with typed output slots mapped to the var-
ious channels of the input device they handle.

We extended ICon to support generic devices through vari-
ous protocols with specific dataflow devices that can receive
and send OSC, Ivy or TUIO messages. This approach pro-
vides an implicit way of performing automatic device reg-
istration thanks to the addressing mechanism of these pro-
tocols: each input source that sends a message addressed
to a specific receiving device in a running configuration is
implicitly considered. For instance, a jBIS’ OSC receiver
device can listen to messages addressed to /jBIS/position

with two arguments, x and y. This device will then exter-
nalize the corresponding output slots. These will be updated
each time that a new /jBIS/position message is received,
wherever it comes from: a smartphone running an applica-
tion that sends OSC messages from touchscreen events, the
tracking software of an interactive table, mouse movements
from a laptop running another instance of the jBIS, etc.

Interaction configuration. Input configuration and the lower-
level description of interaction techniques (typically the con-
nection to inputs) get specified in jBIS with an ICon dataflow
configuration. ICon provides an extensive library of adapter
devices, e.g., math or logic operators, control structures,
flow control. These can be used to manipulate and transform
the raw values of input channels into higher-level data struc-
tures (e.g., the mult device in Figure 3). The jBIS built-in li-
brary also extends the basic processing devices of ICon with
platform-specific ones, adapted to interactive wall-sized dis-
plays: for instance, the pointed tile dataflow component re-
turns the display tile that is intersected by a 3D vector re-
ceived as input (typically modeling the user’s arm). More
than simple low-level processing components, these higher-
level devices are close to the re-usable interaction techniques
of [12], offering several levels of granularity to the user when
building an input configuration.

The jBricks Input Server also includes a plug-in mechanism
for the creation of custom dataflow devices with FlowStates
[3]: state machines are instantiated as dataflow components,
and their transitions are triggered by the connected inputs
(pointing and pan-zoom in Figure 3). Programmers can use this
descriptive and straightforward approach to extend the jBIS
library and to describe some parts of the interaction logic
of an application, or even more generic libraries that can be
used with multiple applications running on the platform.

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 -
13

 A
pr

 2
01

1
156 publications

Link with application/visualization software. In jBricks, the
higher-level interaction logic (manipulation of objects, graph-
ical feedback) is encoded in the client application (Figure
2) developed with ZVTM. The link between the jBIS and
this application can be established in two ways. The first
solution consists in using specific dataflow devices in the in-
put configuration to deliver high-level interaction events to
the application through a networking protocol such as OSC;
the client application interprets these messages and reacts
accordingly. The other solution consists in using the plug-
in mechanism of jBIS to implement application-specific de-
vices that will be instantiated as endpoints of the dataflow.
These plugins can define their own protocol to communicate
with the client application, or even encapsulate it, enabling
direct communication as the client node is running in the
same process (same Java Virtual Machine) than jBIS.

Finally, jBIS can be controlled remotely, so that applications
can trigger commands (start/stop/change the input config-
uration) or dynamically install a plugin. Several jBIS in-
stances can run simultaneously, communicating through net-
working dataflow devices (Figure 2). This modularization,
based on the description of partial input configurations, re-
inforces the flexibility and adaptability of the platform as
partial configurations can easily be substituted.

The architecture of jBricks and the resulting development
and configuration tools make it possible to develop applica-
tions outside the platform, i.e., on a simple laptop, and then
deploy and run them on an actual cluster-driven wall dis-
play. On the graphics side, changes to the client application
are minimal (four lines of code) and can easily be managed
using, e.g., command line options or Maven profiles. On
the interaction side, the jBricks Input Server makes it easy
to dynamically reconfigure and adjust inputs according to
available devices and modalities. In the following section,
we illustrate these principles with a short scenario showing
how jBricks can be used for the prototyping and implemen-
tation of interaction techniques for a controlled experiment
on a wall-sized display.

jBricks IN ACTION
Abelard and Eloı̈se need to prepare an experiment to com-
pare one-handed mid-air interaction techniques for selection
of very small targets on wall-sized displays. They consider
two techniques: a very precise bi-modal pointing technique,
and a cursor-centered pan & zoom technique.

They first describe the two techniques with state machines
(Figure 3) and plan to implement and configure them as fol-
lows. The pointing technique will be operated with a gy-
roscopic mouse and will feature a coarse mode – i.e., ray-
casting – and a precise mode – i.e., relative pointing with a
low CD gain. Precise mode will be triggered using the right
mouse button; target selection using the left button (Fig-
ure 3-a). The pan & zoom technique is operated with an iPod
Touch. Vertical thumb movements control the zoom factor,
ray-casting of the user’s arm controls the cursor’s position.
Two small areas at the bottom of the iPod’s screen trigger
panning and target selection, respectively (Figure 3-b).

(a)

(b)

mouse
button

left

middle

right

pointer

x

y

wheel

-

-

coarse CD gain

precise CD gain

mult

mult COARSE

PRECISE

R-press

R-release

L-click

L-click

mult

mult

pointing
coarse

x

y

precise

x

y

click

mode switch

-

-

mouse
button

left

middle

right

pointer

x

y

wheel

-

-

CD gain mult

mult
pan-zoom
point

x

y

pan

click

-

magnification

POINT

B-press
C-release PAN

B-release

A-swipe

ZOOM

A-release

Figure 3. jBIS configurations of the pointing (a) and pan & zoom (b)
techniques and their corresponding state machines. A mouse is used to
control the techniques and simulate unavailable devices.

Prototyping
As jBricks’ graphics and input modules are loosely-coupled,
Abelard can work on the experiment’s graphics while Eloı̈se
implements and configures the two interaction techniques.

Abelard is working on the graphics part of the experiment.
Using ZVTM, he creates an application that displays the tar-
gets, cursor appearance and textual instructions on his per-
sonal computer without having to worry about the specifics
of the cluster-based wall display environment. He just needs
to consider the actual dimensions of his graphical scene (in
this case, a 20000 × 7000 pixel area). To make the entire
scene visible on his screen, he sets the zoom factor higher
than it will eventually be in the real experiment (a straight-
forward operation in a zoomable user interface).

Meanwhile, Eloı̈se implements each technique as a Flow-
States state machine and encapsulates them in a jBricks In-
put Server plugin, making them available as dataflow pro-
cessing devices. During this early prototyping stage, Eloı̈se
focuses on developing the interaction logic, using a basic
version of the graphics interface provided by Abelard. She
does not need to work on the actual hardware platform ei-
ther. She runs jBIS on her laptop and uses a regular mouse to
simulate the actual input devices that will be used eventually
(motion-capture system, gyroscopic mouse, iPod Touch).
In this testing configuration, ray-casting with the motion-
capture system and gyroscopic mouse are replaced by mouse
coordinates; the mouse wheel and buttons are used in lieu of
touch events. The output ports of the mouse device are con-
nected to the technique devices, pan-zoom and pointing (Fig-
ure 3), the two modes of the pointing technique being simu-
lated by applying constant multipliers to the mouse coordi-
nates (the mul and CD gain processing devices). Later, these
configurations will be slightly modified to handle the actual
input devices to be used in the experiment.

Porting to the Wall Display Hardware Platform
On the input side, Eloı̈se substitutes the devices used for pro-
totyping on her laptop with the platform’s actual devices, as
shown in Figure 4. The regular mouse can be directly substi-
tuted with the gyroscopic mouse, with only a CD gain adjust-
ment (changing the value of precise CD gain, Figure 4-a). jBIS
has built-in support for the 10-camera motion tracking sys-

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 -
13

 A
pr

 2
01

1
A.2 selected publications (2005–2012) 157

(a) (b)

gyro mouse
button

left

middle

right

pointer

x

y

wheel

-

-

coarse CD gain

precise CD gain

mult

mult

mult

mult

pointing
coarse

x

y

precise

x

y

click

mode switch

-

-

VICON laser
coordinates

x

y

-

iPod (OSC)
zone A

x

y

press

zone B

press

zone C

press

-

-

-

pan-zoom
point

x

y

pan

click

-

magnification

mouse
button

left

middle

right

pointer

x

y

wheel

-

-

A

B C

CD gain mult

mult

VICON laser
coordinates

x

y

-

OSC

Figure 4. jBIS configurations of the final pointing (a) and pan & zoom
(b) techniques. The simulation inputs (in grey) can be reused at any
time simply by changing the connections.

tem in the room (the VICON laser device). For the iPod Touch,
Eloı̈se uses a built-in OSC receiver device in her input con-
figuration to receive touch events from a freely-available ap-
plication running on the handheld (Figure 4-b). To deploy
the client application on the actual hardware, Abelard only
needs to add a few jBricks instructions describing the Clus-
tered View. He then embeds the application into the jBIS
plugin made by Eloı̈se. The client application is launched
by jBIS; it has access to the state machines’ output and will
react according to the chosen interaction technique.

Further iterations, switching back and forth between the sim-
plified configuration running on personal computers and the
one for the actual wall display hardware is straightforward.
Abelard and Eloı̈se can also easily add new techniques by
implementing new state machines and test several input con-
figurations for each of them.

CONCLUSION
The jBricks framework extends and integrates state-of-the-
art structured graphics and input management toolkits to en-
able the rapid development of post-WIMP applications for
cluster-based wall displays equipped with advanced input
devices and modalities. Its architecture and features enable
easy deployment and reconfiguration, allowing developers
to partially implement and debug their applications on con-
ventional hardware such as a single laptop or workstation.

We have successfully used jBricks for the rapid prototyp-
ing of novel interaction and visualization techniques, and
to run controlled experiments for their evaluation [16]. It
is also used for the development of various applications for
the visualization of large datasets in other disciplines: as-
trophysics, social network analysis, geospatial intelligence.
The Java-based platform makes it easy to use existing li-
braries in client applications. In addition, ZVTM features
several extension modules that enable, e.g., the layout of
large networks, the visualization of treemaps, native high-
quality PDF rendering, FITS astronomy image display, inter-
active navigation in OpenStreetMap, from world overview
down to street level. Future work will focus on improving
the Java2D/OpenGL rendering pipeline by optimizing the
stream of instructions. The implementation of a higher-level
communication protocol, based on HID definitions on top
of OSC, will improve dynamic input device registration and
configuration. jBricks will be made available under an open-
source software license (http://insitu.lri.fr/JBricks).

ACKNOWLEDGEMENTS
We wish to thank Caroline Appert and Olivier Chapuis for helpful com-
ments on early drafts of this paper. This work is supported by a Région
Île-de- France / Digiteo grant.

REFERENCES
1. C. Andrews, A. Endert, and C. North. Space to think: large

high-resolution displays for sensemaking. In Proc. CHI ’10,
55–64. ACM, 2010.

2. C. Appert and M. Beaudouin-Lafon. SwingStates: Adding
state machines to Java and the Swing toolkit. SP&E,
38(11):1149 – 1182, 2008.

3. C. Appert, S. Huot, P. Dragicevic, and M. Beaudouin-Lafon.
FlowStates: Prototypage d’applications interactives avec
des flots de données et des machines à états. In Proc. IHM
’09, 119–128. ACM, 2009.

4. R. Ball, C. North, and D. Bowman. Move to improve: pro-
moting physical navigation to increase user performance
with large displays. In Proc. CHI ’07, 191–200. ACM, 2007.

5. R. Ballagas, M. Ringel, M. Stone, and J. Borchers. istuff:
a physical user interface toolkit for ubiquitous computing
environments. In Proc. CHI ’03, 537–544. ACM, 2003.

6. B. Bederson and J. Meyer. Implementing a zooming user in-
terface: experience building pad++. SP&E, 28:1101–1135,
August 1998.

7. B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit Design
for Interactive Structured Graphics. IEEE Trans. Software
Eng., 30(8):535–546, 2004.

8. A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker,
and C. Cruz-Neira. VR Juggler: A Virtual Platform for Vir-
tual Reality Application Development. In Proc. VR ’01, 89.
IEEE, 2001.

9. P. Dragicevic and J.-D. Fekete. Support for input adaptabil-
ity in the icon toolkit. In Proc. ICMI, 212–219. ACM, 2004.

10. S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer:
A Scalable Parallel Rendering Framework. IEEE TVCG,
15(3):436–452, 2009.

11. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski. Chromium: a stream-
processing framework for interactive rendering on clusters.
ACM Trans. Graph., 21(3):693–702, 2002.

12. S. Huot, C. Dumas, P. Dragicevic, J.-D. Fekete, and
G. Hégron. The MaggLite post-WIMP toolkit: draw it, con-
nect it and run it. In Proc. UIST ’04, 257–266. ACM, 2004.

13. B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguil-
era, A. Johnson, and J. Leigh. High-performance dynamic
graphics streaming for scalable adaptive graphics environ-
ment. In Proc. SuperComputing. ACM, 2006.

14. W. König, R. Rädle, and H. Reiterer. Interactive design
of multimodal user interfaces. J Multimod. UI, 3:197–213,
2010.

15. M. Lorenz, G. Brunnett, and M. Heinz. Driving tiled
displays with an extended chromium system based on
stream cached multicast communication. Parallel Comput.,
33(6):438–466, 2007.

16. M. Nancel, J. Wagner, E. Pietriga, O. Chapuis, and
W. Mackay. Mid-air pan-and-zoom on wall-sized displays.
In Proc. CHI ’11. ACM, 2011. In press.

17. T. Ni, G. S. Schmidt, O. G. Staadt, M. A. Livingston,
R. Ball, and R. May. A Survey of Large High-Resolution
Display Technologies, Techniques, and Applications. In
Proc. VR ’06, 223–236. IEEE, 2006.

18. E. Pietriga. A Toolkit for Addressing HCI Issues in Visual
Language Environments. In Proc. VL/HCC’05, 145–152.
IEEE, 2005.

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 -
13

 A
pr

 2
01

1
158 publications

Gliimpse: Animating from Markup Code to Rendered
Documents and Vice Versa

Pierre Dragicevic1

1INRIA
F-91405 Orsay, France

dragice@lri.fr

Stéphane Huot2,1

2LRI - Univ. Paris-Sud & CNRS
F-91405 Orsay, France

huot@lri.fr

Fanny Chevalier

OCAD University
Toronto, Canada

fchevalier@ocad.ca

Figure 1: Detail of an animation between this article and its source code.

ABSTRACT
We present a quick preview technique that smoothly tran-
sitions between document markup code and its visual ren-
dering. This technique allows users to regularly check the
code they are editing in-place, without leaving the text edi-
tor. This method can complement classical preview windows
by offering rapid overviews of code-to-document mappings
and leaving more screen real-estate. We discuss the design
and implementation of our technique.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors.

Keywords: Document editing, Animation, Markup code.

INTRODUCTION
Despite the popularity of WYSIWYG editors, authoring and
editing styled documents using markup languages such as
LATEX and HTML is a widespread practice among computer
literates and has recently been democratized by Wikis. Mark-
up languages are widely used and advocated because they
provide a clean separation between content and form, with
benefits in terms of maintenability, portability, visual consis-
tency, predictability, expressive power and expert user per-
formance [9]. Some users also find it easier to focus on the
content without having to deal with the form — or even with-
out having to see the form, as exemplified by the recent pop-
ularity of “dark room” word processors [4].

P. Dragicevic, S. Huot, F. Chevalier.
Gliimpse: Animating from Markup Code to Rendered Documents and

Vice Versa.
In UIST ’11: Proceedings of the 24th Symposium on User Interface

Software and Technology, ACM, October 2011.
Authors Version

One difficulty with markup code is that, although it is human-
readable, users cannot always predict the results with accu-
racy and need to regularly check if it is correct and produces
expected results. This typically requires a series of actions to
re-render the document and display it in a separate environ-
ment from the text editor. This causes disruptions of the edit-
ing flow that can be daunting to beginners who need to con-
tinuously check their code and sometimes search for com-
mands by trial-and-error. Even the most experienced users
occasionally need to check commands they are unsure about
and having to switch from the domain object (e.g., an article
being written) to the tools (a markup interpreter or document
viewer) [3] may cause them to lose their train of thought.

A great deal of effort has been spent in text editing envi-
ronments to address these issues. Markup editors help users
write correct code from the start by providing tools such as
syntax highlighting and auto-completion. Since these tools
will never eliminate the need for checking the final docu-
ment, many efforts have also been spent at improving the
document preview workflow. Most editing environments
now provide shortcuts for re-rendering and refreshing the
document into the viewer. Some of them further support ren-
dering on-the-fly, and sometimes WYSIWYG selection and/or
editing. Although these tools dramatically improved the
usability of document markup languages, they still require
users to deal with two separate windows.

In this article, we present an alternative, in-place document
preview approach called Gliimpse. This technique lets users
quickly “glimpse” into the rendered document by having the
markup code smoothly transition to the rendered document
upon a hot key press. It is based on the observation that
markup code bears visual similarities with the document it
produces, making it a good candidate for animated transi-
tions [16, 7, 8]. Animated transitions have unique features
that can potentially make them a useful complement to exist-
ing document markup editing tools. They are:

in
ria

-0
06

26
25

9,
 v

er
si

on
 1

 -
24

 S
ep

 2
01

1

Author manuscript, published in "UIST 2011 - 24th ACM Symposium on User Interface Software and Technology (2009)"

A.2 selected publications (2005–2012) 159

• Implicit. Users do not have to explicitly select the pieces
of code or regions in the document they are interested in
as in synchronized views: they only have to follow them
visually during animated transitions.

• Contextual. Animated transitions provide context on re-
gions that are not of immediate interest to users, and thus
can possibly help them by giving quick overviews of where
things go from the code to the document and providing op-
portunities for incidental discoveries (e.g., spotting a mis-
take elsewhere). The explanatory power of animations
might further help beginners learn a new markup language.

• Concise. When the animation is invoked as a quasi-mode
like in Gliimpse (using a hot key), users can quickly check
the results of a formatting command they are unsure about
and immediately come back to the code (the only bottle-
neck being rendering time). Our animations are fast but
smooth enough to let users follow objects of interest and/or
build a quick mental map of where pieces of code end up
in the final document.

• In-place. The document is shown within the text editor it-
self, which saves screen real-estate and makes it possible to
display more content relevant to the writing task. Gliimpse
additionally uses a visual stabilization algorithm that tries
to have the region of code currently edited stay in place.

After providing a brief overview of related work, we describe
the basic features of Gliimpse. We then go into more details
on the design and implementation issues behind our tech-
nique and finally discuss possible future work.

RELATED WORK
Gliimpse is related to two bodies of work: document editing
and animated transitions. We briefly review them here.

Document Editing
Document markup languages and WYSIWYG systems are
two approaches for editing documents, each with their own
advantages and drawbacks. There has been a lot of effort in
developing tools that combine the benefits of the two.

Examples of such efforts are integrated editing environments
that combine a markup language editor with a WYSIWYG
view. This idea was first introduced with the Lilac document
editor [5]. Current examples include Dreamweaver and Fire-
bug for HTML, and Instant Preview and Whizzy-TEX for
TEX. These tools typically support synchronized highlight-
ing (hovering an element in one view highlights the corre-
sponding element in the other) and in some cases synchro-
nized editing (changes in one view are reflected in the other).
Such tools have been proved very valuable but since the use
of two windows might sometimes come with disadvantages
— for one thing, two windows take more screen real-estate
than one — single-view approaches have also been explored.

Single-view preview approaches are either markup-oriented
or WYSIWYG-oriented. Markup-oriented ones include text
editors with WYSIWYG display features like WikEd, LyX
and X-Symbol [12]. These pre-render symbol commands
(e.g., displaying \int as

∫
) or use rich font attributes in

their syntax highlighting that resemble the final document.
Preview-latex [12] pushes the concept further by rendering
code regions such as math formulaes in-place. As for WYSI-

Figure 2: Animation of an HTML form.

WYG input features, toolbars and menus for inserting markup
commands into the code are common in advanced code edi-
tors like emacs. Conversely, WYSIWYG-oriented editors ex-
ist that let users type markup code that is either inserted in
the document and interpreted later like in Wikispaces or in-
terpreted on-the-fly like in TeXmacs [17]. To further explore
this rich design space, we propose an alternative in-place pre-
view approach that uses animated transitions.

Animated Transitions
Animated transitions are a type of animation that consist in
showing a visual change in a smooth rather than an abrupt
way. Their use in user interfaces has been advocated [7, 16]
and studies have shown that they can help understand the spa-
tial relationship between views and help users track changes
in a variety of tasks (for a brief review, see [8]).

Animated transitions can however be hard to design and to
implement. Animated text, in particular, has been used for
various purposes such as expressing ideas and emotions [14]
but there has been little work on when and how to support
animated text transitions. Two exceptions are Chang et al’s
system for showing and hiding annotations in documents [6]
and more recently Diffamation, a system for showing docu-
ment edits over time [8]. The latter work has shown that an-
imating text between revisions rather than abruptly flipping
pages helps users navigate in edit histories.

Gliimpse targets a different application domain and also dif-
fers from the design and implementation standpoints. Chang
et al’s system merely animates the scale and position of text
paragraphs. The Diffamation system introduces a richer an-
imation language involving text insertions and deletions and
paragraph reflow. Gliimpse goes a step further by supporting
animation between documents having a different layout, dif-
ferent fonts, and possibly involving complex transitions such
as a markup command changing into an image.

in
ria

-0
06

26
25

9,
 v

er
si

on
 1

 -
24

 S
ep

 2
01

1
160 publications

Time

Figure 4: Gliimpse’s status bar.

GLIIMPSE OVERVIEW
Gliimpse has been designed to be a quick, in-place preview
tool for document markup languages. With Gliimpse, users
stay in their text editing environment and can focus on their
code, but are still able to check its rendering whenever they
need. Whenever the user presses a hot key (we use Alt), the
text editor switches to a document view with a fluid 1-second
animation (Figures 1, 2). When she releases the hot key, the
reverse animation is performed and she is back in her code.

The use of smooth animated transitions rather than abrupt
view switches is motivated by previous work showing their
benefits for navigating across text revisions [8]. Although
fast and visually rich animated transitions can initially intim-
idate users, specific portions of text are easy to follow [8].

Gliimpse always transitions to the document region corre-
sponding to the code currently in focus. The code focus is
the area immediately surrounding the caret when it is visible,
or the whole viewport content otherwise. The result is that
the piece of code being edited will not move while the anima-
tion is performed, unless the document viewer has reached its
scrolling limits. When the user moves the caret outside the
viewport by scrolling elsewhere in the text editor and uses
Gliimpse, the overall motion of the viewport is stabilized.

Since an actual document viewer is displayed upon comple-
tion of the animation, the user can scroll the rendered docu-
ment while holding the hotkey. The viewport motion is then
stabilized in the opposite direction at key release and Gli-
impse animates back to a possibly new region of the code.
Gliimpse can therefore be used as a navigation aid: the user
just has to zoom the document out then gliimpse whenever
she wants to jump to a different part of the document.

Because the layout of documents and markup code do not al-
ways match (e.g., with table cells and floating figures), visual
objects can cross each other. To address this, Gliimpse has an
option where objects that move with respect to the current fo-
cus follow curved paths. Figure 3a on the next page shows an
example where a table (green square) is being edited. While
gliimpsing, a larger table defined below in the code jumps
above but goes around the focus (purple arrow). The user
sees that the large table went to the wrong place and edits its
placement options, which changes the focus to the large table
and stabilizes it during the next gliimpse (Figure 3b).

This scenario illustrates how the overview and context pro-
vided by animations can help users make incidental discov-
eries and quickly build a mental map of where things go from
the code to the document and vice versa. This didactic aspect
of code / document animation can be exploited to help users
learn a markup language, for example in Web tutorials.

Finally, when the code is edited, a background process re-
renders the document and the animation. In our current pro-
totype, this can last from 1/10 sec to more than a minute
depending on document size (see the implementation sec-
tion). A gray light in the Gliimpse status bar indicates that
the process is working (Figure 4). After the user stops editing
and once the animation is ready, the light switches to green,
meaning that Gliimpse can be used. After a few seconds the
light then switches to blue, meaning that a higher-quality, vi-
sually smooth version of the animation is ready to play.

DESIGN AND IMPLEMENTATION
We implemented the Gliimpse prototype in Java, with ba-
sic support for LATEX, HTML, MediaWiki and RTF docu-
ments. We describe how we animate between these markup
languages and the rendered documents.

Mapping the Code View with the Document View
To be able to compute animations, one needs to first generate
a code view (i.e., a visual representation of the code as shown
by the text editor), a document view, and retrieve a precise
(character-level) mapping between the two views.

Figure 5 illustrates the problem and introduces notations that
will be used in the rest of this section. It shows relationships
between the markup text (T0, bottom left of the Figure), the
code view (V0, top left), the document view (V1, top right)
and the document in raw text format (T1, bottom right). We
use the notation XAYB to denote a function that maps sub-
sets of XA to subsets of YB (thick black lines in the Figure):

• V0V1 (top) is the mapping between the two views. We
assume V0 and V1 to be collections of glyphs and other
graphical objects (possibly structured as a scene graph)
with all information needed to render them individually
(bounds, font, etc.). The mapping function V0V1 is the in-
formation we need in order to compute animations, which
virtually no programming library or API directly provides.

• T0V0 (bottom left) is the mapping between the source code
and its rendering in the text editor, which we assume to
be a function that maps subsets of T0 (i.e., collections of
character indices) to subsets of V0. This information is
typically provided by the text editor’s inspection methods
or accessibility API.

\documentclass{article}\n\usepackage{times}\n\n\
begin{document}\n\n\title{The Unsuccessful Self-
Treatment of a Case of ``Writer's Block''}\n\n\a
uthor{Dennis Upper\\\nVeterans Administration Ho
spital, Brockton, Massachusetts}\n\n\maketitle\n
\n\end{document}\n\n

The Unsuccessful Self-Treatment of a Case of\n «
Writer's Block»\nDennis Upper\nVeterans Administ
ration Hospital, Brockton, Massachusetts\napril
18, 2011\n1

V0 V1

T0 T1

V0V1

T0V0 T1V1

T0T1

T0V
1

Code View Document View

Raw TextMarkup Code

Re
nd

er
in

g

Animation

Figure 5: Mappings between the code (T0), its view
(V0), the document view (V1) and its text version (T1).

in
ria

-0
06

26
25

9,
 v

er
si

on
 1

 -
24

 S
ep

 2
01

1
A.2 selected publications (2005–2012) 161

a b

Figure 3: a) Motion of a large table (arrows) while another table is in focus (rectangle) ; b) The large table is now the focus.

• T0V1 (diagonal line) is the mapping between the source
code and the document view. Markup language inter-
preters and renderers rarely maintain this information and
when they do, it is often at a too coarse level of granularity
to allow for precise animations. For example, TEX Source
Specials and SyncTEX only provide mappings at the line
level due to limitations of the TEX engine [13].

• T1V1 (bottom line) is the mapping between a raw text ver-
sion of the document and the document view. This infor-
mation is typically maintainted by document viewers to al-
low for text selection or to provide accessibility support.

The best way to reconstruct V0V1 is by computing V0V1 =
T0V

−1
0 ◦ T0V1. However, since getting T0V1 at the character

level is hard in practice and because we initially just wanted
to build a prototype, we chose to reconstruct V0V1 by com-
puting V0V1 = T0V

−1
0 ◦ T0T1 ◦ T1V1. This approach is less

robust but more flexible and makes it easier to plug Gliimpse
into any interpreter and renderer available in Java.

In our current prototype, we obtain V0 and T0V0 from the
Java’s text component (JEditorPane) inspection methods.
The same Java component is used to render HTML, Medi-
aWiki and RTF documents, and also provides V1, T1 and
T1V1. LATEX source code is interpreted through a native call
to pdflatex and the generated PDF file is rendered with
a custom Java component based on the Sun PDF Renderer.
We use the fonts from this renderer and the Apache PDF-
Box library to extract V1, T1 and T1V1. In all formats, non-
character elements are mapped to white spaces in T1.

The mapping T0T1 is built by cleaning up T0 and T1 and
computing a diff between the two strings. We use Myer’s
diff algorithm [15], which supports deletions, insertions and
moves. The cleaning up of T0 essentially consists in stripping
out markup elements and replacing non-character elements
such as <img*/> with custom tags. The white spaces in T1
that are mapped to non-character glyphs are replaced with the
same tags. All string operations maintain a mapping with the
original character indices. T0T1 can therefore be obtained by
computing T0T1 = T0T

?
0 ◦T ?

0 T
?
1 ◦T1T ?−1

1 , with T ?
0 and T ?

1
being the processed texts and T ?

0 T
?
1 their diff.

For the formats we support, this method accurately rebuilds
character mappings between markup code and the raw text
version of simple documents. It is however not robust enough
for a final product: duplicate text regions and complex map-
pings can defeat the diff algorithm and cause document re-

gions to be either wrongly animated or not animated at all.
We implemented a T0T1 mapping editor and used it to author
the LATEX math tutorial scenario shown in the accompanying
video. Fully automated approaches are arguably preferable
and we hope that in-place preview techniques like Gliimpse
will inspire the implementation of accurate, robust and us-
able APIs for mapping code views with rendered views.

Animating Between Fonts
In contrast with text animation techniques described in pre-
vious work [6, 14, 8], we need to animate between different
fonts. Parametric typefaces [1] can linearly interpolate be-
tween glyphs but only if they share the exact same structure
by design. Morphing between arbitrary shapes is a hard prob-
lem for which methods have been proposed [2] but they are
computationally expensive.

For the purposes of animated transitions, we found that sim-
ply using alpha-blending to produce a dissolve effect yields
excellent visual results. However, for this effect to work
glyphs need to be properly aligned. Glyphs from different
fonts can significantly differ in size even when the same font
point size is used (Figure 6a). Aligning those glyphs based
on their logical or geometrical bounds (Figure 6b,c) does not
fully solve the problem. We therefore chose to refine glyph
alignment using a pixel-based approach (Figure 6d).

We first collect all pairs of glyphs that need to be animated.
For each pair, we draw one of the two glyphs off-screen with
a fixed size (we use a point size of 30) and draw the other one
on top using the method from Figure 6c. We compute the
pixel color difference then vary the geometry of the second
glyph (x, y, width, height and x-shear for italics) using a
gradient descent scheme until a local minimum is reached.
The result is cached and generalized to fonts of different
sizes using linear interpolation. This method works best for
within-character animations but can also polish animations
such as changes in title capitalization.

a b c d

Figure 6: Alignment of two glyphs with the same font
size (a), based on logical bounds (b), geometrical
bounds (c) and pixels (d).

in
ria

-0
06

26
25

9,
 v

er
si

on
 1

 -
24

 S
ep

 2
01

1
162 publications

Animating the Document
Gliimpse’s animation scheme is similar to the Diffamation
system [8], with a few notable differences we outline here.

Object Interpolation. Like Diffamation, Gliimpse builds a
parametric scenegraph that displays the initial document when
rendered at t = 0 and the final document when rendered at
t = 1. For t ∈]0, 1[, the scenegraph essentially performs a
linear interpolation of its nodes’ bounding boxes.

We support 3 basic node types: glyph transitions, non-glyph
transitions and paragraph transitions. Non-glyph transitions
include transitions from a glyph to an image and between
glyph groups. They are rendered by linearly interpolating
the bounding boxes of the initial and final objects and alpha-
blending them. Glyph transitions are computed the same
way in addition to the alignment transformation previously
described. Non-glyph objects are currently rendered as rect-
angles (see Figure 2). Paragraphs will be described later on.

When an object in V0 or V1 maps to nothing, we rapidly fade
it in or out, in-place (as opposed to [8] where objects grow
or shrink). Furthermore, we found that animating between
groups of glyphs produces visual clutter or very wide charac-
ters (e.g., when animating from \ref{fig:teaser} to 1),
both of which are visually unpleasant. We therefore occlude
those transitions at the middle of the animation by overlay-
ing a rectangle with opacity 1 − 2 · |t − 1/2| (see Figure 2).
Finally, the scenegraph’s root is animated by interpolating its
background color and its position in the two viewports.

Paragraph Extraction. Like in [8], we group scenegraph
nodes in paragraphs to be able to animate text reflow. How-
ever, we cannot rely on well-formed paragraph structures be-
cause some formats such as PDF produce V1 content that
merely consists in flat collections of glyphs. We therefore
extract paragraphs from individual glyphs as follows:

We iterate over characters ti of T0 and at each step we com-
pute the bounding box Bi of the object T0V1(ti) in V1 and
append it to the bounding box Li of the current text line in
V1. At each step we test the following cases (for all our for-
mats we use vspaceT0 = 2 and vspaceV 1 = 2):

• If {ti−k, . . . , ti} contains only whitespaces among which
vspaceT0 carriage returns, a new paragraph is created,

• if T0V1(ti) = ∅ we proceed to the next index i+ 1,
• if Bi

y0 > Li−1
y0 + vspaceV 1 · Li−1

height a new paragraph is
created,

• if Bi
x0 < Bi−1

x0 and Bi
y0 > Li−1

y0 a new line is started, in
which case Li is initialized to Bi,

• if Bi
x0 > Bi−1

x0 and Bi
y1 > Li−1

y0 and Bi
y0 < Li−1

y1 the line
continues and Li is updated to Li−1 ∪Bi.

• otherwise, a new paragraph is created.

Once a paragraph is created for the indices i to j, we iterate
over all subsets of {ti, . . . tj} of cardinality > 1 that map to
content in V1 and add them to the paragraph if their content
lies within the paragraph bounds in V1.

Text Reflow. Gliimpse animates text reflow within para-
graphs in a way similar to [8]: depending on which path
is shorter, a character can either follow a direct path or be

“modulo-animated”, i.e., move along its line and reach the
edge to re-appear on the other side. In our algorithm, each
character is animated independently and modulo-interpola-
tions are limited to a full paragraph width. The visual effect
on a paragraph with growing width would be that words on
the second line move slowly to the left, those on the third line
move similarly but faster, and so on until a line breaks in two
pieces, one going quickly to the left and the other one slowly
going up. Finally, our modulo metrics accounts for the fact
that our paragraphs can have lines of different heights and
these heights are linearly interpolated during the animation.

Scrolling stabilization. We stabilize horizontal and vertical
scrolling between the code and the document viewports by
minimizing the average motion of objects that are visible in
the source viewport, as described in [8]. In addition, when
the caret is visible, we use its position as the region of inter-
est and stabilize the nearest object rather than the entire view-
port. Stabilization is recomputed every time the user scrolls
into the code, moves the caret, or scrolls into the document.

Curved Trajectories. In contrast with [8], we support diff
move operations and chunks of text can therefore cross on the
screen. To make these motions easier to understand and limit
occlusions of the region of interest, an option allows objects
to follow curved trajectories (see Figure 3). Our method, in-
spired from link drawing techniques in graphs [11], consists
in having objects follow an arc and those moving in the op-
posite direction follow an arc oriented to the opposite side.
More specifically, after scrolling stabilization we add to the
absolute trajectory P (t) of each object (paragraph or isolated
node) the vector sin(πt)k·[rx(P (1)

y −P (0)
y), ry(P

(1)
x −P (0)

x)].
We use k = 0.5, rx = −0.5 and ry = 0.05.

Since arc radii are proportional to object motion, anima-
tions with no crossings will have close-to-straight trajecto-
ries (since they have been stabilized) but crossing objects
will deviate from their path as if they tried to avoid each
other. Even if this method does not guarantee the absence
of overlaps, it presents the advantage of being context-free
(every object ignores the position of others), which makes it
simple and guarantees motion coherence (objects which are
normally close will remain close). The asymmetry between
the values we chose for rx and ry stems from fact that docu-
ments are structured in lines.

Playing Back and Recomputing Animations
The animated scenegraph is parented to a Java layered con-
tainer that also contains the document viewer and the text
editor. When the hot key is pressed, the scenegraph is set to
t = 0, brought to the top and the animation starts. When the
scenegraph shows the final document at t = 1 the actual doc-
ument viewer is brought to the top. This transition is shown
with a quick dissolve effect because the document view occa-
sionally shows decorations that are not inspectable and hence
not visible during the animation. The reverse sequence of op-
erations is performed when the hot key is released.

We animate between t = 0 and 1 with a duration of 1 second,
which has been shown to be appropriate for reasonably com-
plex visual transitions and with a slow-in slow-out pacing,
which has been shown to facilitate object tracking [10].

in
ria

-0
06

26
25

9,
 v

er
si

on
 1

 -
24

 S
ep

 2
01

1
A.2 selected publications (2005–2012) 163

Task a b c d e FPS
(s) (s) (s) (s) (s) (Hz)

HTML 1st 0.21 0.12 0.04 0.03 0.29 75
2nd 0.21 0.07 0.02 0.01 0.01 89

LaTeX 1 1st 1.90 0.28 0.41 0.06 0.64 36
2nd 0.97 0.26 0.28 0.04 0.02 40

LaTeX 2 1st 3.72 37.0 8.68 10.5 19.5 12
2nd 2.68 41.3 8.53 10.5 0.62 13

Table 1: Task execution times for three documents.

Animations are updated on-the-fly by a scheduler that runs
in a separate thread and skips unnecessary computations. For
example, modifying the source code requires a) re-rendering
the document, b) computing the T0T1 mapping, c) inspecting
the views for T0V0 and T1V1, d) building the scenegraph, e)
aligning new glyphs and f) stabilizing the views. However,
when a view is resized only tasks c) to f) are performed, and
when it is scrolled only task f) is done. After the animation
is ready the scheduler runs an off-screen rendering task after
which complex animations play back more fluidly with an
optional motion blur effect (visible in the Figures).

Table 1 shows computation times on a PC with a 2.40GHz
Intel Xeon processor for the tasks mentioned above (task f
is negligible), as well as the animation frame rate. Figures
are given for the first run (1st) and after inserting a character
in the code (2nd). The first two examples are a short HTML
file (700 characters) and LATEX file (1900 characters, about 1
page). These computation times are adequate for interactive
use but the third example, a 5-page LATEX draft of this article
(30,000 characters), shows that our current prototype does
not scale up. The most expensive task is the code/document
mapping task, which uses heavy regexp searches and hashta-
bles. This operation can be optimized or avoided altogether
with an API that provides T0V0 as previously discussed.

CONCLUSION AND FUTURE WORK
We presented Gliimpse, a quick in-place preview technique
that smoothly transitions between markup code and its visual
rendering. This technique is an alternative to classical pre-
view tools that takes less screen real-estate and offers rapid
overviews of code-to-document mappings.

More work is needed to identify the actual benefits of anima-
tions over well-established approaches such as synchronized
views. We hypothesize that animations can save users time
and effort because they involve attentional rather than ex-
plicit selection of regions of interest. This is however only a
conjecture that needs to be put to the test. And even in case
animation helps, it is likely that synchronized views are more
suited for some tasks and that both need to be supported.

Possible future extensions include local animated previews,
integration with synchronized highlighting and editing, ani-
mation of series of code transformations (e.g., XSLT) and an-
imation of non-textual markup documents like music sheets
or vector graphics. Furthermore, Gliimpse is currently only
a prototype and a more robust version is necessary for users
to be able to try it on real writing tasks.

ACKNOWLEDGEMENTS
We thank Jean-Daniel Fekete for insightful discussions.

REFERENCES
1. Adobe. Designing multiple master typefaces, 1995.

http://partners.adobe.com/public/developer/

en/font/5091.Design_MM_Fonts.pdf.

2. M. Alexa, D. Cohen-or, and D. Levin.
As-rigid-as-possible shape interpolation. In Annual
Conference on Computer Graphics, 157–164, 2000.

3. M. Beaudouin-Lafon. Instrumental interaction: an
interaction model for designing post-wimp user
interfaces. In Proc. CHI ’00, 446–453. ACM.

4. S. bin Ali. 20 fantastic full screen text editor for
distraction free writing, 2009.
http://www.techmalaya.com/2009/02/07/

full-screen-text-editor-blogger/.

5. K. Brooks. Lilac: a two-view document editor.
Computer, 24(6):7 –19, jun 1991.

6. B.-W. Chang, J. D. Mackinlay, P. T. Zellweger, and
T. Igarashi. A negotiation architecture for fluid
documents. In Proc. UIST ’98, 123–132. ACM.

7. B.-W. Chang and D. Ungar. Animation: from cartoons
to the user interface. In Proc. UIST ’93, 45–55. ACM.

8. F. Chevalier, P. Dragicevic, A. Bezerianos, and J.-D.
Fekete. Using text animated transitions to support
navigation in document histories. In Proc. CHI ’10,
683–692. ACM.

9. J. H. Coombs, A. H. Renear, and S. J. DeRose.
Markup systems and the future of scholarly text
processing. Commun. ACM, 30:933–947, Nov. 1987.

10. P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist,
and J.-D. Fekete. Temporal distortion for animated
transitions. In Proc. CHI ’11, 2009–2018. ACM.

11. J.-D. Fekete, D. Wang, N. Dang, and C. Plaisant.
Overlaying graph links on treemaps. In Proc. Infovis
’03 (demo), 2003.

12. D. Kastrup. Revisiting WYSIWYG paradigms for
authoring latex, 2002.
http://www.tug.org/TUGboat/tb23-1/kastrup.pdf.

13. J. Laurens. Direct and reverse synchronization with
synctex. TUGboat, 29(3), 2008.

14. J. C. Lee, J. Forlizzi, and S. E. Hudson. The kinetic
typography engine: an extensible system for animating
expressive text. In Proc. UIST ’02, 81–90. ACM.

15. E. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1(2):251–266, 1986.

16. G. G. Robertson, J. D. Mackinlay, and S. K. Card.
Cone trees: animated 3d visualizations of hierarchical
information. In Proc. CHI ’91, 189–194. ACM.

17. J. van der Hoeven. Gnu texmacs: A free, structured,
wysiwyg and technical text editor. In Actes du
Congres GUTenberg, volume 39-40, 39–50, 2001.

in
ria

-0
06

26
25

9,
 v

er
si

on
 1

 -
24

 S
ep

 2
01

1
164 publications

BiTouch and BiPad:
Designing Bimanual Interaction for Hand-held Tablets

Julie Wagner1,2,3 Stéphane Huot2,1,3 Wendy E. Mackay1,2,3

wagner@lri.fr huot@lri.fr mackay@lri.fr
1 INRIA 2 Univ Paris-Sud (LRI) 3CNRS (LRI)

F-91405 Orsay, France F-91405 Orsay, France F-91405 Orsay, France

(a) (b) (c)

Figure 1. Bimanual interaction with BiPad: a) navigating a PDF, b) shifting to uppercase, c) zooming on a map. The non-dominant support hand can
tap, make gestures or perform chords, thus modifying interaction by the dominant hand.

ABSTRACT
Despite the demonstrated benefits of bimanual interaction,
most tablets use just one hand for interaction, to free the other
for support. In a preliminary study, we identified five holds
that permit simultaneous support and interaction, and noted
that users frequently change position to combat fatigue. We
then designed the BiTouch design space, which introduces a
support function in the kinematic chain model for interact-
ing with hand-held tablets, and developed BiPad, a toolkit
for creating bimanual tablet interaction with the thumb or
the fingers of the supporting hand. We ran a controlled ex-
periment to explore how tablet orientation and hand position
affect three novel techniques: bimanual taps, gestures and
chords. Bimanual taps outperformed our one-handed control
condition in both landscape and portrait orientations; biman-
ual chords and gestures in portrait mode only; and thumbs
outperformed fingers, but were more tiring and less stable.
Together, BiTouch and BiPad offer new opportunities for de-
signing bimanual interaction on hand-held tablets.

Author Keywords
Bimanual Interaction; Hand-held tablets; Multi-touch tablets;
BiTouch design space; BiPad.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Interaction styles; Input devices and strategies

J. Wagner, S. Huot, W. E. Mackay.
BiTouch and BiPad:

Designing Bimanual Interaction for Hand-held Tablets.
In CHI’12: Proceedings of the 30th International Conference on Human

Factors in Computing Systems, ACM, May 2012.
Authors Version

INTRODUCTION
Multi-touch tablets have become increasingly popular over
the past few years, combining relatively large screens with
portability. Their form factor encourages uses in situations
in which the user stands or walks, for example teachers can
control simulations in class and nurses can track patients on
interactive clipboards [7]. Although commercial tablets offer
intuitive interaction techniques such as a swipe to displace an
object or a tap to select an item, they do not fully exploit
the range of interaction possibilities found in the research
literature. In particular, tablets are not designed to support
bimanual input, despite the demonstrated ability to increase
performance [18] and precision [4], as well as to enhance the
user experience [16, 29].

Existing bimanual interaction techniques were designed for
independently supported displays or tabletops. Portable de-
vices pose an additional challenge: how to account for the
need to hold the device while interacting with it. Very
small devices, such as PDAs and smart phones, offer limited
possibilities for bimanual interaction, usually just typing with
both thumbs. Multi-touch tablets, with their larger screens,
offer as-yet unexplored opportunities for true bimanual in-
teraction. Our goal is to better understand the design space
for bimanual, multi-touch interaction on hand-held tablets
and to demonstrate how designers can obtain the benefits
of bimanual techniques, taking into account the challenge of
supporting the device while interacting with it.

We begin by analyzing the related literature and describe a
preliminary study that investigates how users hold tablets as
they interact. Next, we present the BiTouch design space
which identifies the key dimensions for designing bimanual
multi-touch interaction. We next present BiPad, a toolkit
that helps designers add various bimanual interaction to off-
the-shelf multi-touch tablets, illustrated with three sample

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

Author manuscript, published in "CHI'12 - 30th International Conference on Human Factors in Computing Systems - 2012 (2012)"

A.2 selected publications (2005–2012) 165

applications. We also report the results of an experiment that
compares one- and two-handed interaction performance with
respect to tablet orientation, finger placement and interaction
technique. We conclude with implications for design and
directions for future research.

RELATED RESEARCH
Desktop-based bimanual interaction techniques increase both
performance and accuracy [1, 5, 12] and are more conve-
nient when performing highly demanding cognitive tasks [16,
10]. Some techniques provide symmetric control [2]. For
example, Symspline gives both hands equal roles when ma-
nipulating curves [15]. However, most bimanual interaction
techniques build upon Guiard’s kinematic chain model [9],
based on his observations about the asymmetric relationship
between the two hands [1]. For example, toolglasses, magic
lenses and bimanual palettes [5, 3, 17] each use the non-
dominant hand to control the position of an interactive palette
while the dominant hand selects specific functions.

Bimanual Interaction: Stationary Multi-touch Surfaces
Multi-touch tables and graphics tablets are inherently well-
adapted to bimanual interaction, since the user can use multi-
ple fingers from either or both hands. Studies have shown that
bimanual interaction techniques can improve performance [6,
14] and selection accuracy [4]. However, these studies as-
sume that both hands are free to interact, e.g. on a stationary
multi-touch surface or a small multi-touch device placed on
a table. We are interested in hand-held tablets which require
at least one hand to support the device, thus restricting the
ability to interact.

Bimanual Interaction: Small Portable Devices
Commercially available PDAs and smart phones are designed
primarily for one-handed interaction [20] due to their small
size. Most interaction is accomplished with the index finger,
although some techniques use the thumb, since it can reach
the screen from most carrying positions [11, 13, 22]. Other
approaches use the outer frame of the phone to improve
pointing accuracy [8] or to disambiguate among actions and
enrich the interaction vocabulary [21].

Several research prototypes offer the potential for biman-
ual interaction by adding hardware. For example, Hand-
Sense [27] uses capacitive sensors to distinguish among six
different grasping styles. One could create simple biman-
ual tasks by allowing these grasps to modify the actions of
the dominant interaction hand. An alternative is Hybrid-
Touch [25], which adds a rear touchpad to a PDA to enable
simultaneous front and back interaction.

Wobbrock et al. [28] investigated how different hand posi-
tions on the front or back of a handheld device affect inter-
action performance with the index finger or the thumb. They
found that the index finger performed best in all conditions,
front or back, and that horizontal movements were faster and
more accurate. Although useful for comparing thumb and
finger performance on small devices, additional research is
needed to understand bimanual interaction on larger portable
devices, such as multi-touch tablets.

Bimanual Interaction: Multi-touch Tablets
Hand-held tablets offer new possibilities for bimanual inter-
action. Although their larger screen size and bezels make
two-handed thumb typing less convenient, they also afford
various support positions and can accommodate interaction
with the thumbs and multiple fingers from both hands.

To date, most bimanual interaction techniques require ad-
ditional hardware, e.g. to detect touches on the back or
sides of the device. For example, RearType [24] includes
a physical keyboard on the back of a tablet PC. Users hold
it with both hands while entering text, thus avoiding an
on-screen keyboard and graphical occlusion by the fingers.
Lucid Touch [26] is a proof-of-concept see-through tablet
that supports simultaneous touch input on the front and on
the back of the device. Users hold the device with both
hands, with thumbs on the front and remaining fingers on the
back. The device is small enough that users can reach the
entire screen, allowing multi-touch interaction with both sup-
port hands without graphical occlusion. However, the arm-
mounted camera currently makes this approach impractical.

Another intriguing possibility is Gummi [23], a prototype
“bendable” tablet that enables limited bimanual interaction
by deforming the device. For example, a user could scroll
through a list via a 2D position sensor on the back and then
select an item by bending the device. Such dual-surface
approaches are well suited for simple selection and navigation
tasks [30], but are less appropriate for complex tasks that
require additional input from the back or when users adjust
how they hold the tablet.

Our goal is to incorporate bimanual interaction on tablets, us-
ing only the multi-touch surface without additional hardware.
The next section describes a preliminary study that investi-
gates how users unconsciously hold tablets while interacting
with them, as they sit, stand and walk.

PRELIMINARY STUDY: HOLDING TABLETS
Studying how people ‘naturally’ hold tablets is tricky. Rather
than asking directly, we asked users to perform a distractor
task while observing how they held the tablet.

Participants. Six men and two women, average age 30. Four
owned iPads, four had never used a tablet.

Apparatus. Apple iPad1 (display: 9.7”, weight: 680 g,
dimensions: 19 × 24.3 × 1.3 cm).

Procedure. We told participants that we were interested
in how pointing and scrolling performance varies as people
sit, stand and walk, given different tablet orientations. This
was intentionally misleading, since we were really studying
how they unconsciously held the tablet while interacting with
it. The true experiment was a [2x3] within-subjects design
with two factors: tablet orientation (landscape, portrait) and
stance (sit, stand, walk), with tablet hold as the dependent
measure. The distractor tasks were pointing (tapping five
successive on-screen targets) and scrolling (moving a slider’s
thumbwheel from one end to the other). Pointing targets
were distributed across six equal squares on the screen; slider

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

166 publications

Thumb Bottom
(TBottom)

Thumb Corner
(TCorner)

Thumb Side
(TSide)

Fingers Top
(FTop)

Fingers Side
(FSide)

Figure 2. Five spontaneous holds (portrait orientation).

positions included the four screen borders and horizontally
and vertically in the screen center.

Participants were asked to hold the iPad comfortably and
perform each task as quickly as possible. They were allowed
to adopt a new hold only when beginning a new block.
Sessions lasted approximately 45 minutes. At the end, we
debriefed each participant as to the true goal of the study to
learn how they chose to hold the tablets. We first asked them
to reproduce the holds they had used and then to adapt them
so that the fingers or thumb of the support hand could reach
the touch screen. We asked them to rate comfort and ease
of interaction when using the support hand to interact and
whether they had suggestions for other holding positions.

Data collection. We videotaped each trial and coded how
participants supported the tablet with the non-dominant hand,
wrist or forearm. We collected touch events, including those
that occurred outside experiment trials and while reading
instructions. We also measured completion time per trial.

Results
We did not find a single, optimal hold and found significant
differences according to experience. All four novices used the
same uncomfortable position: the fingers, thumb and palm of
their non-dominant hand supported the center of the tablet,
like a waiter holding a tray. Novices found this tiring but
worried that the tablet would slip if they held it by the border.
None found other holds. In contrast, the four experts easily
found a variety of secure, comfortable holds. We identified
ten unique holds, five per orientation, all of which involved
grasping the border of the tablet with the thumb and fingers.
Fig. 2 shows these five holds in portrait mode, with the thumb
on the bottom, corner or side, or the fingers on the top or side.

Table 1 shows how these holds were distributed across the six
conditions: most common was F-side (41%), least common
was T-side (9%). The latter was deemed least comfortable,
especially in landscape mode, but participants felt that they
could use it for a short time. Experts tried nine of ten possible
holds in the sitting and walking conditions, but only six
when standing, omitting F-top or T-side in both orientations.
Individuals varied as to how many unique holds they tried,
from three to eight of ten possible. All switched holds at least

Table 1. Total holds per condition (expert users)

Fside Tbottom Ftop Tcorner Tside

L
an

ds
ca

pe 3 4 4 4 1
8 4 0 4 0
4 4 7 0 1

Po
rt

ra
it 8 3 1 0 4

8 4 0 4 0
8 1 3 1 3

41% 21% 16% 14% 9%

once and two switched positions often (50% and 66%) across
different blocks of the same condition.

We were also interested in whether accidental touches, de-
fined as touches located more than 80 pixels from the target
or slider, during or outside of experiment trials, interfered
with intentional touches by the dominant hand. Experts who
carried the tablet by the border made very few accidental
touches (3%). All were with the dominant hand, far from the
screen border, suggesting that they unconsciously prevented
the support hand from touching the screen.

Design Implications
First, tablets can feel heavy and users are more comfortable
when they can change orientation or swap the thumb and
fingers. We should thus seek a small set of roughly equivalent
bimanual interactive holds that are easy to shift between,
rather than designing a single, ‘optimal’ hold. Second, users
can use the thumb and fingers of the support hand for interac-
tion. We can thus create interactive zones on the edges of the
tablet, corresponding to the holds in Fig. 2, which were not
vulnerable to accidental touches. Fig. 3 shows these zones in
portrait and landscape mode. Although changes in the form
factor of a tablet, such as its size, shape or weight, may affect
these holds, users are still likely to shift between holds for
comfort reasons, just as when reading a book or holding a
notebook.

Fingers

Thumbs

Fingers

Thumbs

Portrait Landscape

Figure 3. Five support-hand interaction zones.

The next section describes BiTouch, a design space for ex-
ploring how to incorporate bimanual interaction on hand-held
multitouch tablets.

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

A.2 selected publications (2005–2012) 167

FrameFrame

Frame

Interact

Dominant arm Non-dominant arm

Frame Frame

Fram
e

Support

Interact

InteractInteract

SupportSupport

Interact

Interact

Support

One-hand Palm
Support

One-hand Forearm
Support

Two-hand Palm
Support

(a)

(b)

(c)

Figure 4. The user creates a spatial frame, supports the device, and
interacts with it. Different holds offer different trade-offs with respect
to interactive power and comfort.

BiTouch DESIGN SPACE
Unlike desktop PCs or multi-touch tables, bimanual interac-
tion on hand-held tablets must account for the dual role of
the non-dominant hand as it simultaneously carries the tablet
and interacts with it. Although we designed the BiTouch
design space to explore bimanual interaction on hand-held
tablets, the reasoning applies to a wider range of human-body
interaction with objects [19] and devices ranging from small,
mobile devices to large, fixed interactive tables or walls.

Kinematic Chain: Frame, Support, Interact
The first step is to understand the complementary roles of
support and interaction. Guiard’s [9] analysis of bimanual in-
teraction emphasizes the asymmetric relationship commonly
observed between the two hands. He proposes the kinematic
chain as a general model, in which the shoulder, elbow, wrist
and fingers work together as a series of abstract motors. Each
consists of a proximal element, e.g. the elbow, and a distal
element, e.g. the wrist, which together make up a specific
link, e.g. the forearm. In this case, the distal wrist must
organize its movement relative to the output of the proximal
elbow, since the two are physically attached.

Guiard argues that the relationships between the non-dominant
and dominant hands are similar to those between proximal
and distal elements: the former provides the spatial frame of
reference for the detailed action of the latter. In addition, the
movements of the proximal element or non-dominant hand
are generally less frequent and less precise and usually pre-
cede the movements of the higher frequency, more detailed
actions of the distal element or dominant hand.

We see the kinematic chain in action when users interact with
hand-held tablets: the non-dominant hand usually supports
the tablet, leaving the fingers and thumb of the dominant hand
free to interact. Fig. 4 shows three bimanual alternatives,

Table 2. Trading off framing, support and interaction functions of the
kinematic chain with respect to the body and the device.

Framing
Location: proximal link in the kinematic chain
Distribution: 1 – n body parts

Support
Location: none or middle link in the kinematic chain
Distribution: 0 – n body parts
Independence: 0% – 100% body support

Interaction
Location: distal link in the kinematic chain
Distribution: 1 – n body parts
Degrees of freedom: 0% – 100% body movement
Technique: touch, deformation,...

based on the location of tablet support within the kinematic
chain: the palm or forearm of the non-dominant arm (Fig. 4a,
4b); shared equally between the palms of both hands (Fig.
4c). In each case, the most proximal links control the spatial
frame of reference; support links are always intermediate be-
tween framing and interaction links; and the most distal links
use whatever remains of the thumb and fingers to interact.

The preliminary study highlighted ten user-generated support
holds that permit the thumb or fingers to reach the interactive
area. Each poses trade-offs between comfort and degrees of
freedom available for interaction. For example, supporting
the tablet with the forearm (Fig. 4b) provides a secure, stable
hold but forces the fingers to curl around the tablet, leaving
little room for movement. In contrast, holding the tablet in the
palm (Fig. 4a) gives the thumb its full range of movement, but
is tiring and less stable.

Note that comfort is subjective, influenced not only by the
physical details of the device, such as its weight, thickness
and size of the bezels, but also by how the tablet is held. For
example, shifting between landscape and portrait orientations
changes the relative distance between the tablet’s central
balance point and the most distal part of the support link. The
tablet acts as a lever: users perceive it as heavier as support
moves further from the fulcrum. The next step is to formalize
these observations into a design space that describes existing
and new bimanual holds and interaction techniques.

BiTouch Design Space
Table 2 summarizes the key dimensions of the BiTouch de-
sign space, according to framing, support and interaction
functions of the kinematic chain. Each is affected by the
relationship between specific characteristics of the human
body, the physical device and the interaction between them.

Framing is handled at the most proximal locations within the
kinematic chain and may be distributed over multiple parts of
the body. Support always occurs in locations within the kine-
matic chain, distal to the frame. Support may be completely
distributed over one or more body parts, symmetrically or
not; shared with an independent support, e.g. a table or lap;
or omitted, e.g. interacting on a freestanding interactive table.

Interaction is always handled at the most distal location in
the kinematic chain, immediately after the support link. Inter-

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

168 publications

action may be distributed across one or more body parts, of-
ten incorporating the thumbs or sets of fingers. The degrees of
freedom available for interaction depend upon what remains
after framing and support functions have been allocated, e.g.
a finger tip, and the inherent movement capabilities of the
body part, e.g. the pinky has little independent movement
compared to the index finger. Possible interaction techniques
are affected by all of the above, as well as the technical
capabilities of the device. For example, touch sensors might
appear on the front, side or back of the device, or the device
itself might be deformable.

Hands that interact as well as support the device have fewer
degrees of freedom available for movement. We thus expect
the support hand to be non-dominant, capable of limited
interaction, e.g. mode switches or menu choices, that frame
the interaction of the freer dominant hand.

The BiTouch design space allows us to describe all of the
user-generated holds from the preliminary study, as well as
many from the literature, e.g. bimanual interaction on free-
standing interactive tabletops. It also suggests directions for
designing new bimanual interaction techniques. For example,
although the hold in Fig. 4c did not appear in the preliminary
study, it becomes an obvious possibility if we examine ways
to share support across hands. Similarly, once we understand
which thumbs or fingers are available for interaction and what
constrains their potential movement, we can design novel
interaction techniques.

The five basic holds in Fig. 2 can each support an interactive
area on the edge of the tablet, reachable by either the thumb or
fingers of the support hand. The BiTouch design space helps
us create a set of novel bimanual interaction techniques that
take into account the potential of the thumbs and fingers at
the end of the kinematic chain. For example, all thumbs and
fingers have at least a small amount of mobility available to
perform Taps. The thumb in the Tcorner hold is fully mobile
and can perform Gestures. The presence of multiple fingers in
the Fside hold makes it possible to perform Chords. The non-
dominant role of the support hand suggests that these Taps,
Gestures and Chords can be used to frame more elaborate
interaction by the dominant hand, e.g. to select a menu item
or to shift color while drawing a line.

BiPad TOOLKIT AND APPLICATIONS
Based on our preliminary study and the BiTouch design
space, we designed the BiPad toolkit to help developers
add bimanual interaction to off-the-shelf multi-touch tablets.
BiPad creates five interactive zones, corresponding to those
in Fig. 2, where the fingers or the thumb of the supporting
hand can interact.

Software Prototype
The BiPad toolkit, written in Objective-C on Apple’s iOS
operating system, supports the development of bimanual ap-
plications as follows:

BiPad applications consist of one or more views, widgets
and controllers, similar to standard iOS applications. The
framework lays out the interface in the main view to control

(a) (b)

Figure 5. BiPad. a) Fside zone is active; other zones are shrunken. b)
Unused zones remain partially visible if commands were assigned.

overlay feedback and advanced input management required
to enable BiTouch interaction. The application defines BiPad-
enabled functions that can be mapped to interactions with the
support hand. For example, a text editing application could
define shift and num functions equivalent to pressing the shift
or number keys of a virtual keyboard.

BiPad zones appear on the sides and corners of the screen
(Fig. 5). Applications can define various interactions for the
support hand and modify the default visual representation,
e.g., buttons for taps and guides for chords. Zones are
displayed as 80-pixel strips, of which the 40 outermost are
semi-transparent, on top of the edges of the application view.
Zones may be permanently or temporarily visible and the
user’s hand position determines which is active. Temporarily
visible areas shrink automatically when not in use, displaying
only a narrow semi-transparent strip of pixels on the appro-
priate side. Touching once on the outer part of a shrunken
BiPad zone causes it to slide out and enables interaction. If
a zone contains interaction widgets and is configured to be
temporarily visible, it does not shrink completely but remains
semi-transparent (Fig. 5b).

BiPad Interaction Techniques
BiPad introduces three predefined interaction techniques for
the support hand: bimanual Taps, Chords and Gestures.
Bimanual Taps involve a press-and-release action on a button
within a BiPad zone, using a finger or the thumb (Fig. 6a).
Bimanual Chords involve multiple fingers pressing down
simultaneously within a BiPad zone, and are not possible
with thumbs. Fig. 6b shows how pressing the ‘stroke’ button
with the index finger adds additional finger positions below.
The user can adjust the stroke size by holding down a second
finger on the appropriate button.

Bimanual Gestures involve sliding the thumb or finger, start-
ing from a BiPad zone or from an edge related to a BiPad
zone, as in Bezel Swipe [21]. In the border zones, Gestures
are limited to orthogonal movements from the edge, but offer
additional degrees of freedom for the thumb in the corner
(up-to-down, right-to-left and diagonal). Small stroke shapes
indicate the direction of the gesture and its function (Fig. 6c).

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

A.2 selected publications (2005–2012) 169

Figure 6. BiPad interaction techniques: a) Taps on buttons. b) Chords with multiple fingers. c) Gestures in multiple directions.

The application defines which BiPad interaction(s) will trig-
ger which function in which zone(s). Applications can spec-
ify several interaction techniques for the same function de-
pending upon which BiPad zone (and therefore Hold) the user
registers. For example, an application might specify that a
Tap with a finger on the Fside zone and a downward Gesture
with the thumb in the Tcorner zone will both shift modes
for the dominant hand, triggering a pop-up menu rather than
selecting an on-screen object.

BiPad Applications
We used BiPad to implement three applications that illustrate
how to add bimanual interaction to handheld tablets (Fig. 1).

Quasi-modes and Shortcuts
BiPDF (Fig. 1a) is a PDF reader that uses standard touch ges-
tures to navigate through pages, scroll or zoom the document.
A pie menu contains additional commands, e.g. first/last
page. As with many tablet applications, the user must touch
and dwell to activate the menu instead of executing a gesture.
We added a bimanual tap that speeds up interaction: while
the user is touching the screen with the dominant hand, a tap
on a BiPad button activates the menu immediately.

BiText (Fig. 1b) lets users create custom bimanual shortcuts
for text entry, e.g. a button for the ‘space’ key and a quasi-
mode button for the soft keyboard’s ‘keypad’ key. Although
the dominant hand can also reach these keys, it requires
extra movement. The user can also assign any key from
the keyboard to a BiPad button by simultaneously pressing
the two. Modifier keys, such as the ‘keypad’ key become
quasi-modes: they activate the mode as long as they are
being pressed. Two other BiPad buttons accept or reject
the suggestions from the standard text completion engine,
reducing movements by the dominant hand.

Menu navigation
BiSketch uses BiPad Chords to navigate a tool menu. First-
level items, e.g. color or stroke, appear in the BiPad zone.
The user chooses a tool and holds down the corresponding
finger in the BiPad zone to trigger the next menu level. The
user can then use another finger to select the desired option,
e.g., color then red. Chords can trigger frequently used tools
or options while drawing with the dominant hand.

Spatial multiplexing
The previous example refers to two-handed interactions based
on temporal multiplexing. BiPad can also handle spatially
multiplexed tasks. BiMap (Fig. 1c) lets users zoom in and out
by pressing buttons with the support hand. They can select
part of the map larger than the view port by (i) selecting with

the dominant hand; (ii) simultaneously controlling the zoom
factor with the non-dominant hand; and (iii) continuing to
change the selection with the dominant hand.

EXPERIMENT
We ran a controlled experiment to determine whether BiPad
bimanual interaction techniques outperform a common one-
handed technique. We also wanted to see if the BiTouch kine-
matic chain analysis successfully identifies which bimanual
holds are most comfortable and efficient.

We asked participants to stand while holding a multi-touch
tablet, using one of the holds identified in the preliminary
study. We then asked them to perform a series of bimanual
Taps, Gestures or Chords, using the thumb or fingers of
the non-dominant support hand to modify the actions of the
dominant hand. The key research questions were:
Q1 Are two-handed BiPad techniques faster than a similar

one-handed technique?
Q2 What are the trade-offs among the different bimanual

holds, orientations and interaction techniques?

Participants. Nine men, three women, all right-handed, aged
22-35. Six own a touch-screen phone, one owns a tablet PC.

Apparatus. iPad1 (display: 9.7" , weight: 680g, dimen-
sions: 190× 243× 13 mm), running BiPad.

Procedure. We conducted a [2 × 5 × 3] within-subjects
design with three factors: ORIENTATION (portrait, landscape),
HOLD (Fside, Ftop, Tbottom, Tcorner, Tside), corresponding to
the five BiPad interaction zones, and TECHNIQUE (tap, chord,
gesture), i.e. 30 unique conditions, plus the no-BiPad control,
a standard one-handed task. We discarded eight conditions as
impossible or impractical:
Chords can only be performed with the Fside and Ftop HOLD

(both Orientations) since a single thumb cannot perform
multi-finger interactions.
Gestures were omitted from the Fside and Ftop landscape
conditions, since the short edge of the tablet cannot be held
steadily on the forearm.

Trials were organized into blocks of 6 trials according to
TECHNIQUE, ORIENTATION, and HOLD. Participants were asked
to stand and support the tablet with a specified hold. In
each trial, the participant touched four successive 80-pixel
circular targets with the index finger of the dominant hand
while holding the tablet with the non-dominant hand. Targets
were arranged randomly around the center of the screen. The
first target of a series was always green and one randomly

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

170 publications

chosen target of the following three targets was red. When
the red target appeared, the participant was instructed to use
the specified technique to turn the target from red back to
green before touching it with the dominant hand.

The four techniques for changing red targets to green include
the three BiPad techniques: Tap, Chord, Gesture, and the
no-BiPad control condition. The three chords use the index
finger and one or both of the remaining fingers of the support
hand (middle or ring finger). Gestures slide toward the center
of the screen, except for Tcorner, where the thumb slides
up-down, down-up or diagonally. In the no-BiPad control
condition, the user touches a button at the bottom of the
screen with the dominant hand. The task was chosen to
support both pointing and bimanual interaction, including
mode switches and quasi-modes.

Participants began with the unimanual no-BiPad control con-
dition, followed by the bimanual BiPad conditions (ORIEN-
TATION, HOLD, TECHNIQUE) counter-balanced across subjects
using a Latin square. Although this simplifies the exper-
imental design, it does not account for potential order ef-
fects between unimanual and bimanual conditions. On the
other hand, all of today’s tablets are one-handed and it is
unlikely that performing a bimanual task prior to a unimanual
one would improve performance on the latter. Indeed, the
more likely effect would be a drop in performance due to
fatigue. To ensure that participants were familiar with the
basic task and both conditions, we asked them to perform
a three-trial practice block in portrait mode prior to each
no-BiPad condition and to each TECHNIQUE×HOLD condition.
They were also allowed to perform a one-trial recall prior to
each TECHNIQUE×ORIENTATIONS×HOLD so they the could find a
comfortable position for the assigned hold.

To begin an experimental BiPad block, participants touched
the specified BiPad zone to register the support hand. Partic-
ipants were asked to maintain this hold throughout the block
and perform each task as quickly as possible. At the end
of each condition, they evaluated how comfortable it was to
interact with the support hand using that hold. Each session
lasted approximately 45 minutes.

In summary, we presented two orientations for no-BiPad, all
10 holds for bimanual taps, eight for bimanual gestures (no
landscape thumb holds) and four for bimanual chords (fingers
only). We thus collected 216 trials per participant:
• 6 replications of the no-BiPad control condition in both

ORIENTATIONS (landscape, portrait): 12 trials;
• 6 replications of the Tap technique in all HOLD and ORIEN-

TATION conditions: 60 trials;
• 6 replications of the three Chord techniques in both ORIEN-

TATIONS for finger-based HOLDS (Fside, Ftop): 72 trials;
• 6 replications of each of the three Gesture techniques:

– two-finger-based HOLDS (Fside, Ftop) in portrait ORI-
ENTATION: 12 trials;

– two thumb-based HOLDS (Tbottom, Tside) in both ORI-
ENTATIONS: 24 trials;

– one thumb-based HOLD (Tcorner) in both ORIENTA-
TIONS: 36 trials.

0

500

1000

1500

2000

2500

3000

3500

Tr
ia

l T
im

e
(m

s)

no-BiPad Tap Chords Gestures
Technique

Portrait Landscape

Figure 7. Mean Trial Time for each TECHNIQUE by ORIENTATION.

Data Collection. We videotaped each trial and recorded three
temporal measures: (i) trial time: from the appearance of the
first target to final target selection; (ii) BiPad reaction time:
from the appearance of the red target to the first touch in
the BiPad area; and (iii) BiPad completion time: from the
appearance of the red target to the successful execution of the
BiPad interaction. Comfort ratings used a 5-point Likert scale
(1 = very uncomfortable; 5 = very comfortable).

RESULTS
We conducted a full factorial ANOVA and handled ’par-
ticipant’ as a random variable, using the standard repeated
measures REML technique from the JMP statistical package.

Q1: Bimanual BiPad vs. one-handed interaction
We compared the mean trial time of BiPad techniques to the
no-BiPad control condition, using the TECHNIQUE×ORIENTATION

×Random(PARTICIPANT) ANOVA model. We found a signifi-
cant effect for TECHNIQUE (F3,33 = 16.16, p < 0.0001) but no
effect for ORIENTATION (F1,11 = 0.30, p = 0.60). However, we
did find a significant interaction effect between TECHNIQUE and
ORIENTATION (F3,33 = 8.23, p = 0.0003).

This can be explained by the faster performance in landscape
mode for the one-handed no-BiPad condition (Fig. 7): partic-
ipants performed 11.4% faster (F1,11 = 4.6, p = 0.04) because
the distance to reach the button is shorter. Thus, while biman-
ual taps are significantly faster than the control condition for
both orientations (25.9% in portrait and 14% in landscape),
bimanual gestures and chords are only significantly faster
than no-BiPad in portrait mode (10.4% and 11.7% resp.).
In landscape mode, the differences between no-BiPad and
bimanual gestures and chords are not significant.

Bimanual taps are significantly faster than bimanual gestures
and chords in both device orientations (17.3% and 16.1%
in portrait, 14.7% and 19.7% in landscape). Participants
significantly preferred bimanual taps (3.5) over bimanual
chords (3.3) and gestures (2.7) (F2,22 = 17.5, p < 0.0001).
Overall, BiPad techniques were more efficient than the one-
handed technique we compared them with.

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

A.2 selected publications (2005–2012) 171

0

500

1000

1500

2000

2500

3000

M
ea

n
of

 tr
ia

l t
im

e
(m

s)

Fside Tbottom Ftop Tcorner Tside
Holds

Figure 8. Tap performance according to HOLD.

Q2: BiPad tradeoffs: HOLD×ORIENTATION by TECHNIQUE

BiPad Taps
We ran an ANOVA with the model HOLD×ORIENTATION× Ran-
dom(PARTICIPANT) on trial time for BiPad taps. We found
significant effects for HOLD and ORIENTATION (F4,44 = 3.10,
p = 0.02 and F1,11 = 5.37, p = 0.04) and no interaction effect
(F4,44 = 0.65, p = 0.63).

For HOLD, Tukey post-hoc tests revealed only one significant
result: placing the fingers on the right is slower than placing
the thumb on the left side of the tablet for right-handed partic-
ipants (see Fig. 8). For ORIENTATION, a Student’s t-test reveals
that portrait is significantly faster (LSM = 2447.31ms) than
landscape (LSM = 2515.99ms).

Performance among bimanual taps is very similar across
conditions, making them suitable for all ten holds. The only
significant difference is between fingers and thumbs with
a side hold. However, although the Fside hold is slightly
slower, participants preferred it to the Tside hold: fingers are
more stable than thumbs and cause less fatigue.

BiPad Gestures
As we discarded the two bimanual holds with fingers placed
on the right and top of the device in landscape mode, we ex-
amined trial Time for each ORIENTATION condition separately
for the remaining eight holds. HOLD has a significant effect on
the performance time in both portrait (F4,44 = 4.14, p = 0.01)
and landscape (F2,22 = 4.75, p = 0.02).

In Portrait, post-hoc Tukey HSD tests show that, for a right-
handed user, performing gestures with the fingers on the right
side of the device is significantly slower than with the thumb
on the left side (Fig. 9a). Participants preferred performing
gestures with the fingers or with the thumb on the side of the
device. In fact, gestures are most difficult to perform when
the support hand is placed on the top or bottom of the device
when held in portrait mode.

In landscape, where only the Thumb placements were tested,
performing gestures while supporting the tablet with the thumb
on the bottom of the device is significantly faster than in the
corner (Fig. 9b). However, since gestures were performed in
both ORIENTATION conditions with the thumb, we also com-
pared performance according to thumb holds in both orienta-
tion conditions (HOLD×ORIENTATION×Random(PARTICIPANT)).

We found no significant effect of HOLD and ORIENTATION but a
significant interaction effect for HOLD×ORIENTATION (F2,22 =

15.08, p < 0.0001). This is because performing gestures with
the thumb is significantly faster in portrait, when the support
hand is on the side, but significantly slower when the thumb
is on the bottom, in which case landscape is faster. The
difference between orientations is not significant when the
thumb is placed in the corner (Fig. 9c).

The latter effect is interesting and can be explained by the
principle of a lever. The greater the distance between the
balance point and the most distal support link, the heavier
the tablet is perceived. This is considered less comfortable
and users find it more difficult to perform gestures. The
exception is when the thumb is in the corner: the distal point
of the support is equally close to the tablet’s balance point
in both orientations, thus the two holds are not significantly
different. This explanation correlates with the participants’
comfort ratings and comments. They preferred to perform
gestures with the thumb on the side in portrait and on the
bottom in landscape but had no preference for orientation
when the thumb is in the corner. Compared to other BiPad
techniques, however, gestures were perceived as relatively
uncomfortable and practical only for rapid or occasional use.

BiPad Chords
We ran an ANOVA with the model HOLD×ORIENTATION×CHORD

TYPE×Random(PARTICIPANT) on Trial Time. We found no
significant effects of HOLD and ORIENTATION and no interaction
effects. For CHORD TYPE, we found a significant effect (F2,22 =

9.09, p = 0.01): holding the index finger down together
with the middle finger is significantly faster (2875ms) than
holding down three fingers (3095ms) or the index and ring
finger together (3131ms).

Participants did not express any significant comfort prefer-
ences with respect to chords. However, some participants
reported that chords are difficult to perform at the top of the
device, especially in landscape mode, due to tension in the
arm. Two users could only perform two-finger chords since
their third finger could not easily reach the screen.

DISCUSSION
Our results demonstrate not only that hand-held touch tablets
can support bimanual interaction, but that it outperforms
all tested uni-manual interactions in almost all of our ex-
perimental conditions. We created a set of 22 bimanual
interaction techniques that combine the ten holds identified
in the preliminary study with bimanual taps (10), chords (4)
and gestures (8). These offer users trade-offs in performance,
comfort and expressive power; BiPad lets users transition
smoothly among them.

In the future, we hope to develop the predictive power of
the BiTouch design space, building upon our existing under-
standing of the physical characteristics of the human body
and exploring its relationship to hand-held interactive de-
vices. For example, we observed that bimanual taps (in both
orientations) and bimanual gestures (in Portrait mode) are
significantly faster in holds with thumbs on the side (Tside)
compared to holds with fingers on the side (Fside).

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

172 publications

0

500

1000

1500

2000

2500

3000

3500

M
ea

n
of

 T
ria

l t
im

e
(m

s)

Tside Tcorner Tbottom Ftop Fside
Holds

0

500

1000

1500

2000

2500

3000

M
ea

n
of

 tr
ia

l t
im

e
(m

s)
Thumb Holds

Tside Tbottom Tcorner

0

500

1000

1500

2000

2500

3000

3500

Tr
ia

l T
im

e
(m

s)

Tbottom Tcorner Tside
Thumb Holds

Portrait Landscape

(a) (b) (c)

Figure 9. Gesture performance according to HOLD (a) in Portrait, (b) in landscape, and (c) for the Thumb according to HOLD and ORIENTATION.

In contrast, Tside is perceived as less comfortable than Fside.
If we examine thumbs and fingers, we see that the Tside hold
leaves only two joints available for interaction, whereas the
Fside hold has three. This suggests that, all other things being
equal, performance will be better with interaction techniques
that offer a wider range of movement. Additional research is
necessary to verify if this prediction obtains for other holds.

We can also use the BiTouch design space to help us un-
derstand differences in perceived comfort. One hypothesis
is that comfort is correlated with perceived weight, which is
determined by both the location of support in the kinematic
chain and the orientation of the tablet. If we examine the
two holds, we see that the support link for the Fside hold, the
forearm, is longer than that for the Tside, the palm. On the
other hand, the former hold restricts movement more than the
latter. This suggests two open research questions:
1. Does performance decrease and comfort increase with

longer support links?
2. Does performance decrease and comfort increase with

increased support link mobility?

We also observed a major effect of tablet orientation in
some conditions, such as bimanual gestures. The previously
mentioned lever effect plays a role here. If we view the
tablet as an extension of the support link, we can estimate its
perceived weight based on the distance from the most distal
element of the support link to the balance point of the tablet.
This raises the question:
3. Do performance and comfort increase as the distance to

the balance point decreases?

Finally, multitouch tablets exist in a variety of different shapes,
sizes, and weights. We used the popular iPad1 for the first
experiment. However, when the iPad2 was released, we repli-
cated the experiment with six participants, and found no sig-
nificant differences despite the 30% reduction in weight. Of
course different tablet designs might affect the performance
and comfort of BiPad bimanual interaction. In the future, we
plan to extend the BiTouch design space to include device-
specific characteristics to increase its predictive power.

SUMMARY AND CONCLUSIONS
We investigated how to introduce effective bimanual inter-
action into hand-held tablets. We began with a preliminary

study that identified support positions while sitting, standing
and walking. We found that, although novices found it
difficult to come up with effective holds, more experienced
users produced ten unique holds that can be adapted to sup-
port bimanual interaction. We also found that users do not
seek a single, optimal hold, but instead prefer to modify
their holds over time, to reduce fatigue and increase comfort.
We concluded that the design challenge was not to create a
single bimanual technique but rather to create a set of equally
comfortable and effective techniques.

We next examined the theoretical basis of the ten observed
holds and presented the BiTouch design space, based on
Guiard’s kinematic chain model. We argue that we can under-
stand bimanual interaction with hand-held devices by exam-
ining how three functions – framing, support and interaction –
are distributed along the kinematic chain. Our goal is to offer
descriptive, predictive and generative power, and BiTouch
offers a good start: we can describe all of the unimanual and
bimanual interaction techniques observed in the preliminary
study; we can make informal predictions about which factors
affect performance, comfort and expressive power; and we
have generated a set of bimanual interaction techniques that
offer different trade-offs with respect to the above:
• Bimanual Taps: one finger or thumb taps the screen,
• Bimanual Chords: several fingers touch the screen,
• Bimanual Gestures: a finger or thumb slides on the screen.

We implemented these techniques in BiPad, a user interface
toolkit we made for designing bimanual interaction with off-
the-shelf hand-held tablets1, and developed three working
applications in which the non-dominant hand can modify the
dominant hand’s interaction using taps, chords or gestures.

We tested these interaction techniques in a controlled experi-
ment for each of the five holds and two orientations found in
the preliminary study. Bimanual taps are faster than reaching
on-screen buttons with the dominant hand only, regardless of
tablet orientation or hold. However, they can handle at most
three buttons, since the pinky cannot reach the screen and the
range of thumb movement is limited. Bimanual chords and
gestures offer a richer vocabulary for shortcuts to off-screen
functions, but have their own limitations. Chords require mul-
tiple fingers and gestures are restricted in landscape to thumb

1The BiPad toolkit is freely available at http://insitu.lri.fr/bipad

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

A.2 selected publications (2005–2012) 173

holds. The BiTouch analysis helps explain why bimanual
chords and gestures are faster only in portrait orientation: the
position of the support link in the kinematic chain directly
affects which fingers or thumbs are available for interaction
and the number of available degrees of freedom.

Together, the BiTouch design space and the BiPad toolkit
offer developers a richer understanding of bimanual interac-
tion and a practical approach for adding bimanual interaction
to hand-held tablets. Future work will explore how we can
generate new possibilities for bimanual interaction on a range
of devices in different mobile settings.

ACKNOWLEDGMENTS
We wish to thank Michel Beaudouin-Lafon for many fruitful
discussions and suggestions for improving this article. We
also thank the anonymous reviewers for their helpful com-
ments, as well as the participants for their time and effort.

REFERENCES
1. Balakrishnan, R., and Hinckley, K. The role of kinesthetic

reference frames in two-handed input performance. In
UIST ’99, ACM (1999), 171–178.

2. Balakrishnan, R., and Hinckley, K. Symmetric bimanual
interaction. In CHI ’00, ACM (2000), 33–40.

3. Beaudouin-Lafon, M., Mackay, W. E., Andersen, P.,
Janecek, P., Jensen, M., Lassen, M., Lund, K., Mortensen,
K., Munck, S., Ravn, K., Ratzer, A., Christensen, S., and
Jensen, K. Cpn/tools: revisiting the desktop metaphor
with post-wimp interaction techniques. In CHI ’01, ACM
(2001), 11–12.

4. Benko, H., Wilson, A. D., and Baudisch, P. Precise
selection techniques for multi-touch screens. In CHI ’06,
ACM (2006), 1263–1272.

5. Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and
DeRose, T. D. Toolglass and magic lenses: the
see-through interface. In SIGGRAPH ’93, ACM (1993),
73–80.

6. Brandl, P., Forlines, C., Wigdor, D., Haller, M., and Shen,
C. Combining and measuring the benefits of bimanual
pen and direct-touch interaction on horizontal interfaces.
In AVI ’08, ACM (2008), 154–161.

7. Fonville, A., Choe, E. K., Oldham, S., and Kientz, J. A.
Exploring the use of technology in healthcare spaces and
its impact on empathic communication. In IHI ’10, ACM
(2010), 497–501.

8. Froehlich, J., Wobbrock, J. O., and Kane, S. K. Barrier
pointing: using physical edges to assist target acquisition
on mobile device touch screens. In Assets ’07, Assets ’07,
ACM (2007), 19–26.

9. Guiard, Y. Asymmetric division of labor in human skilled
bimanual action: The kinematic chain as a model. J.
Motor. Behav. 19 (1987), 486–517.

10. Hinckley, K., Pausch, R., Proffitt, D., and Kassell, N. F.
Two-handed virtual manipulation. ACM TOCHI 5 (1998),
260–302.

11. Huot, S., and Lecolinet, E. Focus+context visualization
techniques for displaying large lists with multiple points
of interest on small tactile screens. In INTERACT’07,
Springer-Verlag (2007), 219–233.

12. Kabbash, P., Buxton, W., and Sellen, A. Two-handed
input in a compound task. In CHI ’94, ACM (1994),
417–423.

13. Karlson, A. K., and Bederson, B. B. One-handed
touchscreen input for legacy applications. In CHI ’08,
ACM (2008), 1399–1408.

14. Kin, K., Agrawala, M., and DeRose, T. Determining the
benefits of direct-touch, bimanual, and multifinger input
on a multitouch workstation. In GI ’09, Canadian
Information Processing Society (2009), 119–124.

15. Latulipe, C., Mann, S., Kaplan, C. S., and Clarke, C.
L. A. symspline: symmetric two-handed spline
manipulation. In CHI ’06, ACM (2006), 349–358.

16. Leganchuk, A., Zhai, S., and Buxton, W. Manual and
cognitive benefits of two-handed input: an experimental
study. ACM TOCHI 5 (1998), 326–359.

17. Mackay, W. E. Which interaction technique works
when?: floating palettes, marking menus and toolglasses
support different task strategies. In AVI ’02, ACM (2002),
203–208.

18. Moscovich, T., and Hughes, J. F. Indirect mappings of
multi-touch input using one and two hands. In CHI ’08,
ACM (2008), 1275–1284.

19. Oulasvirta, A., and Bergstrom-Lehtovirta, J. Ease of
juggling: studying the effects of manual multitasking. In
Proc., CHI ’11, ACM (2011), 3103–3112.

20. Pascoe, J., Ryan, N., and Morse, D. Using while moving:
Hci issues in fieldwork environments. ACM TOCHI 7
(2000), 417–437.

21. Roth, V., and Turner, T. Bezel swipe: conflict-free
scrolling and multiple selection on mobile touch screen
devices. In CHI ’09, ACM (2009), 1523–1526.

22. Roudaut, A., Huot, S., and Lecolinet, E. Taptap and
magstick: improving one-handed target acquisition on
small touch-screens. In AVI ’08, ACM (2008), 146–153.

23. Schwesig, C., Poupyrev, I., and Mori, E. Gummi: a
bendable computer. In CHI ’04, ACM (2004), 263–270.

24. Scott, J., Izadi, S., Rezai, L. S., Ruszkowski, D., Bi, X.,
and Balakrishnan, R. Reartype: text entry using keys on
the back of a device. In MobileHCI ’10, ACM (2010),
171–180.

25. Sugimoto, M., and Hiroki, K. Hybridtouch: an intuitive
manipulation technique for pdas using their front and rear
surfaces. In MobileHCI ’06, ACM (2006), 137–140.

26. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and
Shen, C. Lucid touch: a see-through mobile device. In
UIST ’07, ACM (2007), 269–278.

27. Wimmer, R., and Boring, S. Handsense: discriminating
different ways of grasping and holding a tangible user
interface. In TEI ’09, ACM (2009), 359–362.

28. Wobbrock, J. O., Myers, B. A., and Aung, H. H. The
performance of hand postures in front- and
back-of-device interaction for mobile computing. Int. J.
Hum.-Comput. Stud. 66 (2008), 857–875.

29. Wu, M., and Balakrishnan, R. Multi-finger and whole
hand gestural interaction techniques for multi-user
tabletop displays. In UIST ’03, ACM (2003), 193–202.

30. Yang, X.-D., Mak, E., Irani, P., and Bischof, W. F.
Dual-surface input: augmenting one-handed interaction
with coordinated front and behind-the-screen input. In
MobileHCI ’09, ACM (2009), 5:1–5:10.

ha
l-0

06
63

97
2,

 v
er

si
on

 1
 -

27
 J

an
 2

01
2

174 publications

Using Rhythmic Patterns as an Input Method
Emilien Ghomi Guillaume Faure Stéphane Huot Olivier Chapuis Michel Beaudouin-Lafon

ghomi@lri.fr gfaure@lri.fr huot@lri.fr chapuis@lri.fr mbl@lri.fr

Univ Paris-Sud (LRI) CNRS (LRI) INRIA
F-91405 Orsay, France F-91405 Orsay, France F-91405 Orsay, France

ABSTRACT
While interaction techniques that use the temporal dimension
have been used for a long time, such as multiple clicks
or spring-loaded widgets, more advanced uses of rhythmic
patterns have received little attention in HCI. Using such
temporal structures to convey information can be particularly
useful in situations where the visual channel is overloaded
or even not available. In this paper we introduce Rhythmic
Interaction as the use of rhythms for input. We report the
results of two experiments that show that (i) rhythmic patterns
can be efficiently reproduced by novice users and recognized
by computer algorithms, and (ii) rhythmic patterns can be
memorized as efficiently as traditional shortcuts when asso-
ciating them with visual commands. Overall, these results
demonstrate the potential of Rhythmic Interaction and open
the way to a richer repertoire of interaction techniques.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

Author Keywords
Rhythm; taping; hotkeys; learning; patterns; Morse code

INTRODUCTION
Rhythm plays an important role in our everyday life. Tempo-
ral patterns are of course critical in experiencing music, but
they also underlie periodic actions such as walking, breathing
or chewing, and they are even necessary for understanding
speech prosody. Rhythm is so deeply embedded in our
experience of living that it can be used to cure some diseases
such as stress or sleep disorders [29].

While perceiving and reproducing rhythm is recognized as
a fundamental human ability by physiologists and neuropsy-
chologists, it is still underused as an interactive dimension
in HCI. In common desktop environments, interaction relies
heavily on manipulating graphical widgets, simple mouse
clicks and keyboard shortcuts. This basic vocabulary, how-
ever, is often extended by using spatial or temporal features,
as with mouse gestures or multiple clicks.

E. Ghomi, G. Faure, S. Huot, 0. Chapuis, and M. Beaudouin-Lafon. Using
Rhythmic Patterns as an Input Method. In CHI ’12: Proceedings of
the SIGCHI Conference on Human Factors and Computing Systems,
1253-1262, ACM, 2012. http://doi.acm.org/10.1145/2207676.2208579
c© ACM, 2012. This is the author’s version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in CHI’12, May 5–10, 2012, Austin,
Texas, USA.

Although the spatial dimension has been the focus of much
HCI research on interaction techniques based on hand pos-
tures or gestures, e.g. [1, 3, 16], the temporal dimension has
received little attention so far. We propose to use rhythm
as an input method and introduce Rhythmic Interaction as a
complementary way to control interactive systems. Rhythmic
Interaction can be used in any event-driven environment for
a variety of input modalities: clicking the mouse, hitting
keyboard keys or a touch-sensitive surface, moving a motion-
sensing device, etc. However, it has competitive advantages
for tactile screens, since it requires less screen space than
gestural interaction and no visual attention [33]. This article
presents a first exploration of the design space of Rhythmic
Interaction in order to address the following questions:

• Feasibility. Even if perceiving and performing rhythm is
quite natural, are users able to reproduce, learn and memo-
rize patterns? Can they use them to trigger commands?

• Interaction design. The number of possible rhythmic pat-
terns is virtually infinite and they can be presented in
several ways. Which patterns make sense for interaction
and how to design a vocabulary? What feedback helps
executing and learning patterns?

• Technical issues & Integration. Like most continuous high-
level input methods, e.g. voice, marks, gestures, Rhythmic
Interaction relies on a recognizer to segment and interpret
user input. How to design effective recognizers that do not
require training?

In the rest of this paper, we survey related work and then
define a framework for Rhythmic Interaction, narrowing the
scope of our study to vocabularies of rhythmic patterns that
are relevant in the context of HCI. Then, we report on two
experiments where the patterns are rhythmic sequences of
taps performed on a tactile trackpad to trigger commands.
The first one tests the ability of novice users to reproduce
individual patterns, while the second one compares the abil-
ity of users to memorize the association of commands to
rhythmic patterns vs. keyboard shortcuts. We also describe
the recognizers that we created for these two experiments,
and draw some conclusions regarding the design of pattern
vocabularies and appropriate feedback.

BACKGROUND & RELATED WORK
The literature in cognitive science has studied the percep-
tion, reproduction and use of rhythm from several perspec-
tives: physiology, e.g., perception and action [13, 19], knowl-
edge and learning, e.g., language [24], artistic applications,
e.g., music [23], etc. Two major studies on the psychology

1

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

Author manuscript, published in "CHI '12: Proceedings of the SIGCHI Conference on Human Factors and Computing Systems, Austin
: United States (2012)"

 DOI : 10.1145/2207676.2208579

A.2 selected publications (2005–2012) 175

of rhythm in music are reported by Fraisse [12] and by
Clarke [7]. In this section, we give an overview of the lit-
erature in cognitive science that is most relevant to Rhythmic
Interaction and then focus on the few studies of using time
and rhythm to control interactive systems.

Rhythm in Music and Games
For musicians, rhythm is one of the most important features in
music, together with melody and harmony. Many traditional
forms of music combine simple rhythmic structures played in
parallel to build up higher level aggregated rhythms, called
“polyrhythms” [2]. From a cognitive point of view, these
practices suggest that the cognitive load required to deal with
an elementary rhythmic pattern is light enough to allow their
combination in more complex structures.

Highly trained musicians are able to create and play an
incredible amount of rhythmic variations. Simple patterns,
however, can be reproduced by everyone, as illustrated by
the success of popular musical games such as Guitar Hero,
TapTap or Donkey Kong, where rhythmic structures are rec-
ognized and reproduced by non-musicians of all ages.

Rhythm in Cognitive Sciences
In physiology and neuropsychology, numerous studies report
that humans have a natural perception of rhythm, thanks
to rhythmic mechanisms that are involved in the internal
functioning of our organism (heart beat, sleep cycles, etc.)
[13] and their relation with periodic external phenomena
(day/night, seasons, etc.). When listening to music, we
constantly try to infer the beat, i.e., to perceive regular and
salient events, or to group events into rhythms [18]. In fact,
we systematically try to perceive rhythm even when none is
present [25] or when being told to avoid it [12].

Rhythm perception is deeply related to the motor system [5].
Since childhood, humans are used to tap their feet, clap their
hands, snap their fingers and move in synchrony with music.
These activities are common and seem simple, even though
they involve complex rhythmic structures. Outside music,
periodic activities of different frequencies are pervasive in our
everyday life. For example, chewing or walking are known to
have universally preferred rates [13, 19].

While these studies attempt to explain how and why we
perceive and produce periodicities, they rarely deal with the
reproduction and memorization of rhythmic patterns associ-
ated to tasks that we address in this article.

Rhythm as an Input Method in HCI
Rhythm is built on the temporal dimension, which is com-
monly used in interactive software. For example, long clicks
are often distinguished from short clicks to trigger differ-
ent commands based on temporal criteria. The concept
of “dwelling”—freezing the interaction for a short amount
of time—is also used to segment gestural interaction [15]
or to explicitly switch mode [10]. Rhythmic Menus [22]
successively highlight items at a given rate while the mouse
button is pressed. When the user releases the button, the
current item is selected.

Some techniques are based on the temporal grouping of
events. Double click is the simplest and most common case,
but some studies also explored rhythmic motion: Motion
Pointing [11] assigns different periodic motions to graphical
objects in a scene or items in a pie menu; The user selects the
object or menu item of interest by performing the correspond-
ing motion. In Cyclostar [20], the user controls continuous
parameters, such as the speed of zooming, by performing
elliptical oscillatory gestures. The rate of the circling motion
controls a parameter of the resulting command.

In the above cases, rhythmic aspects are reduced to period-
icity. To the best of our knowledge, only a few techniques
involve the reproduction of rhythmic patterns. Five-key [31]
is a text entry system based on rhythmic sequences, where
letters can be entered with only five keys. However, efficiency
and learning were not studied systematically. In [9], tempo
reproduction is used to select a particular song in a music
library by tapping on a mobile device or shaking it. But
relying only on tempo raises some scalability issues that
were not assessed. Finally, Tapsongs [33] is an alternative
to textual passwords where users tap a rhythmic pattern that
they have registered with the system for authentication.

MOTIVATION
Our goals are more general than Five-key and Tapsongs:
we want to design vocabularies of rhythmic patterns that
users can learn easily and perform reliably in order to trigger
commands. This approach is somewhat similar to the use of
Morse code for encoding characters. However, the design
of Morse code was driven by information theoretic issues
rather than usability, and while early computers were able to
decode human-produced Morse code [4], it has rarely been
used in HCI [6]. Our objective is to propose a comprehensive
framework to design rhythmic patterns for interaction, with
efficient recognizers that do not need training.

Advantages of Using Rhythms for Input
The design of new techniques based on Rhythmic Interaction
is not the main focus of the present article. However, we have
identified a number of potential advantages of using rhythm
to interact with computer systems. First, as evidenced by
research in Cognitive Science, there is a direct correspon-
dence between performing a rhythm (action) and listening to
a rhythm (potential audio stimulus and feedback). Second,
rhythms can be performed in a variety of situations: while
performing a rhythm requires as little as a single degree of
freedom of one finger, many movements can be performed
rhythmically and captured using different sensors, e.g., tap-
ping fingers, tapping feet, or nodding the head.

Gestural interaction typically requires space to perform the
gestures, and often interferes with the display space on a
small touchscreen. By contrast, Rhythmic Interaction only
uses temporal features. Rhythms can be performed on a small
area of a tactile device, even in an eye-free context.

Finally, rhythmic structures can be designed in a hierarchical
way. By using common prefixes among different patterns, a
natural hierarchy emerges that can be internalized by users,
facilitating memorization and recall.

2

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

176 publications

Applications of Rhythmic Patterns
Rhythmic patterns are not meant to replace more conven-
tional command input methods. Instead, it is an alternative
that may be more adapted to specific situations, such as
eye-free operation. It is also a way to enhance existing
methods with a richer vocabulary. For example rhythmic
patterns could give access to a restricted set of commands
such as speed-dialing a phone number, navigating an e-book
or switching mode in an application.

In some situations, rhythmic patterns can simplify interaction.
For example, bookmarks, menu items or contacts are often
organized hierarchically. Rhythmic patterns could match this
hierarchy or provide an alternate hierarchy such as organizing
contacts by their first name. Also, since rhythmic patterns can
be performed without visual attention, they can be used with
a tactile device in the pocket or while driving, or in the dark,
e.g. to shut down an alarm clock, or even with devices that do
not have a display.

Rhythmic Interaction also offers novel solutions to well-
known problems. Tapping on the back of a hand-held device
can be captured without extra sensors, thanks to built-in ac-
celerometers or microphones [28]. For example, a rhythmic
pattern performed while receiving a phone call could add the
caller to the contact list, or display extra information such as
battery life or signal level. Patterns could also be performed
with the non-dominant hand or another part of the body such
as the feet [30], to switch mode or ignore an incoming call.

RHYTHMIC PATTERNS FOR INTERACTION
Our definition of a rhythmic pattern comes from music: The
elementary structure in music is called a motif, which is
defined as a “melodic, rhythmic, or harmonic cell” [21].
A rhythmic motif represents the temporal structure of a set
of notes and consists of the relative durations of notes and
silences. Notes and silences can have eight different durations
in standard musical pieces, and motifs can contain many
notes, leading to a huge number of possible rhythmic motifs.

Considering the number of commands and actions often used
when interacting with computers, such an expressive power
is not required. Therefore we propose a restricted definition
of rhythmic pattern (or simply pattern) more adapted to HCI.
A rhythmic pattern is a sequence of taps1 and breaks whose
durations are counted in beats. The beat is the basic unit
of time and its duration is defined below). We define the
complete set of possible patterns with the following rules:

• Taps can be of three types: impulse (a hit on a touch device
or a click), short tap (one beat) or long tap (two beats). A
tap starts at the beginning of a beat, and there cannot be
more than one tap per beat.

• Breaks can be of two types: short (one beat) or long (two
beats). A pattern cannot begin or end with a break, and
there cannot be two successive breaks.

This definition of taps and breaks is based on our empirical
observation that computer users are familiar with the distinc-
tion between instantaneous and long clicks or taps. By adding
1The word “tap” reflects our focus on using a tactile device for input.

Figure 1. The 16 three-beat patterns defined by our rules. Each
rectangle represents a tap. The thin gray lines show the beats.

a third duration and by taking breaks into account, we offer
designers more possibilities for selecting a set of patterns
among the possible combinations. In comparison to Morse
code, we do not need the “intra-character”, “inter-character”
and “inter-word” breaks that are specific to the coding of
language, and we do not allow more than one tap per beat.

The length of a pattern is the sum of the durations of its
taps and breaks. To simplify reproduction and memorization,
we focus on patterns between two and six beats long. The
rules above define 5 two-beat patterns, 16 three-beat patterns
(Figure 1), 53 four-beat patterns, 171 six-beat patterns and
554 six-beat patterns. By comparison, the total number of
patterns with n taps is 32n−1, i.e. 199, 290 patterns with up to
six taps.

In this entire study, beats occur at the tempo of 120 BPM
(2Hz). Thus, the onsets of two consecutive taps are separated
by at least 500 ms, i.e. a beat is half a second. This cor-
responds to a common tempo of human motor actions, e.g.
walking [19], and of contemporary music [23].

As a first step, we only consider rhythmic patterns performed
by tapping on a touch-sensitive surface. While keyboards,
accelerometers [17, 9] or eye blinks [32] can probably be used
for Rhythmic Interaction, it is out of the scope of this article.
We also do not address the segmentation of patterns from
other input. Simple solutions that should be tested include
segmenting in time by preceding each pattern with a specific
short sequence of taps, or segmenting in space by performing
patterns on a specific location of a device.

A key aspect of this research is to design a recognizer that
can reliably identify the patterns produced by users. In a
first experiment, we used a structural recognizer to assess
users’ ability to produce patterns accurately. Based on the
results, we designed a pattern classifier that accounts for
user inaccuracies while still discriminating the patterns in the
vocabulary. This classifier was used in a second experiment
where we assessed users’ ability to memorize associations
between patterns and commands in an applicative context.

EXPERIMENT 1: RHYTHMIC PATTERN REPRODUCTION
In order to assess the potential of Rhythmic Interaction, we
conducted a first experiment where novice users were asked
to replicate patterns presented to them in visual and/or audio
form by tapping on a touch surface. The goal was to assess
the accuracy of the reproduction and to compare the effects
of several feedback mechanisms while performing patterns.

3

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

A.2 selected publications (2005–2012) 177

(a) (b)
Figure 2. The stimulus in Experiment 1. A static representation is
displayed (a) and fills up in synchrony with the audio playback (b).

Recognizer
The recognizer that we designed for this experiment is based
on the above rules for defining the patterns. It first extracts the
rhythmic structure as a list of taps and breaks and infers their
respective types (impulse, short and long) using autonomous
heuristics. The reconstructed pattern is then checked against
the vocabulary used for the study.

In order to identify the type of every tap and break in the
sequence, the recognition algorithm uses k-means cluster-
ing iterated 500 times on duration values. The algorithm
builds clusters corresponding to the possible types of taps and
breaks: impulse, short and long2. A minimum distance of
200ms between the duration clusters is enforced, correspond-
ing to a maximum tempo for the pattern to be recognized. If
two clusters are closer than that distance, they are merged and
will be recognized as a single tap type. Thus, if the pattern is
performed too fast, events of different types may be confused
by the recognizer. For cluster identification, the reference
durations for short and long taps or breaks are set to 500ms
and 1000ms respectively, and the maximum duration of an
impulse or release is set to 180ms.

After clustering, breaks that correspond to the rest of a beat
after an impulse are removed from the reconstructed pattern.
The resulting pattern is then looked up in the vocabulary to
check if it matches the stimulus provided to the participant.

Note that this recognizer is intentionally very strict, in order
to assess the participants’ ability to precisely reproduce the
patterns. In particular, if the reconstructed pattern is not in the
vocabulary, the recognizer will systematically return an error.
With minimal knowledge about our definition of rhythmic
patterns, the algorithm is able to identify the type of every
tap and break in a sequence even in tricky situations, such as
when there is just one type of events. Thanks to clustering,
the recognizer adapts to the tempo (the overall tempo can be
inferred by comparing the centroids of the clusters.)

Apparatus and Participants
The experiment was implemented in Java and conducted on
a 13" Apple MacBook (Intel processor). Participants tapped
the rhythmic patterns on the embedded multitouch trackpad.

Twelve unpaid volunteers (six female) participated in this
experiment, with age ranging from 23 to 53 (mean 29, median
27). Five of them had never practiced music.

Stimulus
The pattern to reproduce is presented to the participant with
a stimulus combining a static graphical representation of the
pattern, visual animation and audio (Figure 2). The visual
2A break with a duration of an impulse is called a release. It occurs
between two adjacent taps.

Figure 3. Visual feedback while tapping a pattern.

stimulus is a stationary shape depicting the whole rhythmic
pattern, where each rectangle represents an event (Figure 2a).
This shape is then progressively filled (Figure 2b) in syn-
chrony with audio playback. Beats are marked with thin gray
lines to visualize the durations of events.

For audio playback and animation, impulses last 125ms and
the tempo is set to 120 BPM or 2Hz (500ms period). This
value is above the “synchronization threshold” [27] for both
visual and auditive stimulus, ensuring that participants can
perceive and perform it accurately. The audio stimulus is a
440Hz A, played by the General MIDI Instrument “English
Horn” and held at a constant sound level. We chose this
sound as it is soft enough for the subjects to endure during
the experiment, but has clear onset and release.

Feedback
Participants are presented with 4 input FEEDBACK conditions
while reproducing rhythmic patterns. The Audio feedback
plays the same sound as the stimulus as long as the participant
is touching the surface of the trackpad. The V isual feedback
is based on the graphical representation of the stimulus.
The rectangles representing the events appear dynamically
while the subject is tapping on the trackpad (Figure 3). The
AudioV isual feedback combines the two previous methods,
and there is no feedback at all in the None condition.

The Audio, V isual and AudioV isual feedback methods are
expected to help learning, e.g. in novice mode. Conversely,
the None condition corresponds to the situation where an
expert user is performing patterns in an eyes-free manner
without audio feedback.

Vocabulary
For this experiment, we selected 30 rhythmic patterns among
the 799 patterns with two to six beats generated by the rules
described earlier. This vocabulary (Figure 4) contains 4 two-
beats patterns, 8 three-beats patterns, 8 four-beats patterns,
6 five-beats patterns and 4 six-beats patterns. We explicitly
featured fewer patterns for the extreme situations (two, five
and six beats). Among the patterns with the same duration,
we tried to balance the number of events. For example, for
the 8 four-beat patterns, 2 contain two events, 3 contain three
events and 3 contain four events.

Task
A trial consists in reproducing a rhythmic pattern according
to the FEEDBACK condition, right after it is presented twice in
a row. The participant performs the pattern by tapping on the
trackpad with the index finger of her dominant hand. The
recognizer then computes the temporal structure of the input
and matches it with that of the stimulus. At the end of the
trial, the participant is notified about the success or the failure
of the match before advancing to the next trial.

4

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

178 publications

Figure 4. Vocabulary used in the first experiment.

Design and Procedure
The experiment is a 2×30 within-subject design with factors:
(i) FEEDBACK: Audio, V isual, AudioV isual and None; and
(ii) PATTERN: P1 – P30 (Figure 4).

At the beginning of the session, each FEEDBACK condition is
introduced to the participant with a short block of 15 random
trials. Then, the participant is asked to perform two warm-up
blocks of 15 trials in the AudioV isual feedback condition,
which we hypothesize provides the best feedback to become
familiar with the task. The 3 first trials of the first warm-up
block are performed by the experimenter to demonstrate the
feedback condition to the participant. The second warm-up
block is interrupted if the participant reports to be confident
enough to start the experiment.

During the main session, measured trials are grouped into
blocks according to the FEEDBACK factor. The presentation
order for FEEDBACK is counterbalanced across participants
with a Latin square. Within each block, the 30 patterns are
repeated twice in randomized order. A practice block of 15
randomly selected patterns is performed prior each measured
block and participants are allowed to have breaks between
and in the middle of each block. Thus, we collected 12
participants × 4 FEEDBACK × 30 PATTERN × 2 repetitions =
2880 measured trials. Participants were instructed to be as
accurate as possible by paying attention to the discrimination
of different types of taps and breaks. Each participant took
about one hour to complete the sessions, after which they
were asked to rank the feedback methods according to the
difficulty of the task on a 5-point Likert’s scale.

Quantitative Results
The overall success rate is 64.3%. This may seem low, but
recall that our recognizer is deliberately very strict regarding
the temporal structure of patterns, and that it can recognize all
799 patterns with two to six beats, not just the 30 patterns in
the study. The precise reproduction of the rhythmic patterns
in the study is similar to playing a percussion instrument, a
task that musicians can take years to master.

S5

S4

P21 P27

S3

S1
a

b

c

d e

Figure 5. Two stimuli (P21 and P27) with reproductions errors by
subjects of Experiment 1. S4: the last break is too long (a); S5: the
last tap is too long (b); S1: the last break is too short (c); S3: the first
break is too long (d), the last break is too short (e).

None Audio Visual AudioVisual

Feedback

S
u

c
c
e

s
s
 R

a
te

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0

Figure 6. Success rate for each FEEDBACK condition.

Figure 5 shows typical reproduction errors by study partici-
pants, such as release breaks that are too long and recognized
as short breaks, or breaks or taps that are too similar to
be separated during clustering. Interestingly, errors seem
more frequent with breaks than with taps, which is consistent
with the finding that users tend to be more precise when
performing notes than pauses [26].

A one-way ANOVA for FEEDBACK (with participant as a ran-
dom variable) reveals a significant effect on success rate
(F3,33 = 15.4, p < 0.0001). This effect can be observed in
Figure 63. Post-hoc t-tests with Bonferroni correction show
that the None condition is significantly worse than all other
feedback conditions. It is not surprising that the absence of
feedback while performing the pattern significantly degrades
the accuracy of rhythm reproduction.

3In all figures, error bars show the 95% confidence interval.

5

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

A.2 selected publications (2005–2012) 179

Taps Beats

S
u
c
c
e
s
s
 R

a
te

 (
%

)

0
2
0

4
0

6
0

8
0

1
0
0

2 3 4 5 6

Figure 7. Success rate by number of taps and by length in beats.

Regarding PATTERN, a one-way ANOVA reveals a significant
effect on success rate (F29,319 = 25.1, p < 0.0001). We observe
a large deviation of the success rate for some patterns: from
16% with P27 to 98% for P10. Fifteen patterns have a success
rate of at least 70%: P1–P7, P9–P13, P19, P20, and P29. All
have at least 3 taps and all but P29 are less than four-beats
long. However, some three-tap patterns have a low success
rate (below 50%): P14 and P18 (both with 4 beats).

We could not identify similarities among the patterns that
were difficult to reproduce. However, the number of taps and
beats are the most obvious characteristics that can influence
the ease of reproduction. In fact, we found a significant effect
on success rate for taps (F4,44 = 54.1, p < 0.0001) and beats
(F4,44 = 85.5, p < 0.0001), without significant interaction with
FEEDBACK. Post-hoc t-tests support this hypothesis since, in
most cases, the highest recognition rates were achieved for
patterns with a small number of taps or beats (Figure 7).

Qualitative Results
Six participants out of 12 preferred the Audio feedback, 3
the V isual feedback, 2 the AudioV isual feedbacks and 1
no feedback. Moreover, 6 participants ranked AudioV isual
second and 8 ranked the None condition last. Note that many
participants pointed out that AudioV isual was confusing,
providing too much information. They explained that in
most cases, they chose one feedback (visual or auditive) and
tried to ignore the other. Half of them preferred the Audio
feedback because it was more related to rhythm than graphics.

We assessed the subjective difficulty of the task with the state-
ment “I found it difficult to reproduce rhythmic patterns”.
Seven participants disagreed or strongly disagreed, 4 neither
disagreed nor agreed, and only one agreed, but at the same
time disagreeing for the None and V isual feedbacks.

Overall, both quantitative and qualitative results are encour-
aging and support our hypothesis that rhythmic patterns,
as defined by our framework, is a viable input technique
for interactive tasks. While quantitative results support the
need to provide feedback while performing input, qualitative
results inform on the type of appropriate feedback. Finally, an
analysis of recognition errors gives insights on how to create
a recognizer that would be more suitable for real applications.

A PATTERN CLASSIFIER
The goal of the structural recognizer in Experiment 1 was to
assess how accurately participants could reproduce a stimulus
pattern. This recognizer is deliberately strict, accounting
only for variations in the overall tempo of the pattern, and

None Audio Visual AudioVisual

Feedback

S
u

c
c
e

s
s
 R

a
te

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0

Figure 8. Revised success rate by FEEDBACK for the pattern classifier.

Taps Beats

S
u
c
c
e
s
s
 R

a
te

 (
%

)

0
2
0

4
0

6
0

8
0

1
0
0

2 3 4 5 6

Figure 9. Revised success rate by number taps and length in beats for
the pattern classifier.

it does not take advantage of the fact that the input patterns
are assumed to be part of a known vocabulary. We designed a
second recognizer for use in actual applications, that classifies
an input pattern against a vocabulary.

In order to recognize a sequence of taps, this pattern classifier
first counts the number of taps in the sequence and considers
the subset of the vocabulary with that number of taps. Then,
it calculates a score for each candidate pattern. First, it infers
the duration of a beat by considering the duration of the
sequence of taps and the number of taps of the candidate.
Using this value, it scales the pattern to match the duration
of the input sequence and sums the temporal differences of
events onsets and durations. A duration of a quarter beat is
used for impulses and releases between consecutive events
(when lifting the finger from the device). Finally, the score is
weighted by the ratio between the inferred beat duration and
the 120 BPM reference (500ms).

This classifier is less strict than the structural recognizer
because it will always match an input pattern to a pattern in
the vocabulary if it is the only one with the same number
of taps, unless a threshold is set on the lowest acceptable
score. Moreover, normalization makes the recognizer match
patterns that are homothetic of each other. This is the reason
for weighing the score by the relative beat durations.

We tested this classifier with the data and vocabulary of
Experiment 1. The overall success rate rose to 93.9%, more
in line with the expectations of an applicative context. As
with the previous recognizer, a one-way ANOVA for FEEDBACK

reveals a significant effect on success rate (F3,33 = 7.2, p =

0.0007) (Figure 8).

Figure 9 shows that unlike the structural recognizer, success
rate does not decrease with pattern “complexity”: there is
no significant effect of the number of taps or the length on

6

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

180 publications

CMD1

Ctrl+Y

R1 = P20

CMD2

Shift+H

R2 = P11

CMD3

Ctrl+X

R3 = P10

CMD4

Shift+E

R4 = P9

CMD5

Ctrl+R

R5 = P19

CMD6

Shift+F

R6 = P4

CMD7

Ctrl+N

R7 = P3

CMD8

Shift+B

R8 = P2

CMD9

Ctrl+D

R9 = P1

CMD10

Shift+T

R10 = P29

CMD11

Ctrl+H

R11 = P18

CMD12

Shift+G

R12 = P6

Ctrl+A

CMD13

R13 = P28

CMD14

Shift+W

R14 = P12

Figure 10. Commands used in Experiment 2. Pxx refers to the patterns of Experiment 1 (see Figure 4).

success rate4. Instead, we observe that success rates are
affected by the similarity between patterns: a complex pattern
can be recognized quite reliably provided that it is sufficiently
different from other patterns with the same number of taps.
For example, P30 is the only pattern made of 6 taps in our
set, making recognition failure occur only when the subject
tapped a wrong number of taps. By contrast, P17 seems to
be more “complex” than the “simple” pattern P20 but the
former has a 100% success rate and the latter 82%. In fact,
the recognizer sometimes confuses P20 with P11. However,
a post-hoc t-test with Holm correction reveals no significant
difference between patterns for success rates.

In summary, we found that this classifier was well adapted
to actual applications. In particular, a designer can create a
vocabulary that minimizes the risk of patterns being confused.

EXPERIMENT 2: RHYTHMIC PATTERNS MEMORIZATION
In order to further validate Rhythmic Interaction, we con-
ducted a second experiment to test whether patterns can be
memorized and recalled in order to be used as an alternative
to standard techniques for triggering commands. We com-
pared rhythmic patterns with standard hotkeys in a “learn and
recall” experiment similar to Appert and Zhai’s comparison
of gesture shortcuts with hotkeys [1], itself inspired by Gross-
man et al’s study of hotkeys [14].

Variables
We compare two techniques for triggering commands (TECH

factor): Hotkey and Rhythm. A third condition, Free, lets
participants choose the technique they prefer.

Each command Ci is a triplet associating an image Ii, used as
a stimulus for this command, and two triggering techniques: a
rhythmic pattern Ri and a hotkey Ki. The command set (CMD

factor) has 14 commands: C1, ..., C14. We chose the images
symbolizing the commands in a set of common objects and
fruits (Figure 10).

For the rhythmic patterns, we selected 14 patterns of varying
complexity from Experiment 1 and randomly assigned each
pattern to a command. For the hotkeys, we created combina-
tions of a modifier (Shift or Ctrl) and a letter. The letters
were chosen so that they did not match the first letter of the
name of the object representing the command, as in [1]. The
goal is to avoid giving an unfair advantage to hotkeys, since
there is no similar mnemonic association between rhythmic
patterns and command names. Furthermore, the mapping
between commands and hotkeys often varies by application
and language. Figure 10 shows the resulting assignment.
4This could be due to the fact that in the vocabulary, there were few
patterns with five taps or beats.

(a)

(b)

(c)

Figure 11. Stimulus in the learning phase for the Rhythm (a) and
Hotkey (b) conditions, and in the testing phase for both conditions (c).

Task
The primary task of the experiment is to activate a command
(Ci), presented by its stimulus image (Ii), with the triggering
technique corresponding to the current TECH condition (Ri or
Ki). The experiment has two phases: learning and testing.

During the learning phase, both the image Ii and the corre-
sponding triggering technique (Ri or Ki) are shown to the
participant. For rhythmic patterns, the static graphical repre-
sentation is displayed next to the image (Figure 11a) and the
audio stimulus is played twice. Hotkeys are presented with
a short animation of the corresponding key-press sequence,
also repeated twice, and text (Figure 11b).

In the testing phase, participants are presented with the image
Ii only (Figure 11b). According to the current TECH condition,
they must perform the corresponding hotkey Ki or rhythmic
pattern Ri. If they forgot which trigger to perform, they are
strongly encouraged to invoke a help screen by pressing the
SPACE key. The task then switches to the learning mode,
presenting the shortcut to perform as described above.

In both phases, the participant must perform the rhythmic pat-
tern or the hotkey. For rhythmic patterns, we use the Audio-
only feedback since Experiment 1 showed that it was effective
and participants preferred it. Also, this avoids interference
with the visual interface. For hotkeys, participants receive
the usual kinesthetic feedback while pressing keys.

After entering each hotkey or pattern, the participants are
asked to indicate which trigger they were trying to perform
(Figure 12). Then, participants are notified of the correctness
of their answer. If the answer is correct, they are given
the result of the recognition. If not, the correct trigger
is presented before moving to the next trial. The reason

7

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

A.2 selected publications (2005–2012) 181

(a) (b) (c)

Figure 12. Confirmation in the Rhythm (a) and Hotkey (b) conditions.
Feedback for a wrong answer in the Rhythm condition (c)).

Day 1

Day 2

Tech-Block T2Tech-Block T1

FreeT1 T2

Figure 13. A sample session. Hatched sub-blocks are learning trials,
boxed sub-blocks are sub-sessions.

for this procedure is that we are primarily interested in the
memorization of the associations, not the participants’ ability
to perform the triggers. For rhythmic patterns, it also allows
us to test the recognition rate of the classifier.

Apparatus & Participants
We used the same apparatus as in Experiment 1. We recruited
14 participants (5 female), aged between 22 and 33 (mean 26,
median 26). Five of them had participated in Experiment 1.

Design & Procedure
The experiment is a within-subject design with technique
(TECH) and command (CMD) as primary factors. The exper-
iment is split into two sessions held on two consecutive days.
The first day, all participants are presented with rhythmic
patterns in a 5 minutes practice session based on Experiment
1. We use TECH as a blocking factor, counterbalanced across
participants. The second day, a Free block is added at the end
of the testing phase. In this block, participants can choose to
use Rhythm or Hotkey for each trial, but cannot get help.

Each TECH-block is divided into several sub-blocks of 15
trials: (i) 2 learning sub-blocks with 4 testing sub-blocks
each on the first day; (ii) 4 testing sub-blocks on the second
day. Thus, the testing phase of the experiment is split into
SUBSESSIONs of 60 trials each: two on the first day to evaluate
immediate memorization of triggering commands and one on
the second day to test mid-term recall (Figure 13).

In order to simulate a more realistic setup, where some
commands are more frequently used than others, we assign an
apparition frequency to each of the 14 commands following
a Zipf distribution [14, 1]. For the learning phase we use
the frequencies (6, 6, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) and
for the testing phase (12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1).
The 14 commands are combined with these frequencies using
7 different permutations, and each frequency assignment is

1 (day 1) 2 (day 1) day 2

SubSession

R
e

c
a

ll
R

a
te

 (
%

)

0
2

0
4

0
6

0
8

0
1

0
0 Rhythm Hotkey

Figure 14. Recall rate for both techniques by sub-session.

1 (day 1) 2 (day 1) day 2

SubSession

H
e

lp
 R

a
te

 (
%

)

0
5

1
0

1
5

Rhythm Hotkey

Figure 15. Help usage rate for both techniques for each sub-session.

counterbalanced across participants, resulting in the same
number of trials for each command overall. The presentation
of the trials is randomized across consecutive pairs of sub-
blocks.

The experiment takes about one hour on day 1 and 30 minutes
on day 2, after which participants are given a questionnaire to
collect subjective observations and preferences.

Quantitative Results
Our main measures are (i) recall rate, the percentage of
correct answers in the testing phase without help; and (ii)
help rate, the percentage of trials where the participants used
help in the testing phase. We analyze the results according
to TECH and the three sub-sessions of the experiment by
considering these measures in the model TECH × SUBSESSION

× Rand(PARTICIPANT).

We find a significant effect of SUBSESSION on the recall rate
(F2,26 = 103, p < 0.0001). A post-hoc t-test with Bonferroni
correction shows that the recall rate is significantly lower
only between the first sub-session and the two following ones
(Figure 14). There is no significant effect of TECH on recall
rate (F1,13 = 0.61, p = 0.4474), but the ANOVA reveals a
significant interaction effect TECH × SUBSESSION (F2,26 = 5.36,
p = 0.0113). Post-hoc t-tests with Bonferroni correction
show a significant difference between Rhythm and Hotkey
for the first sub-session (74% and 81% respectively). For
the remaining sub-sessions, the results are extremely close
between the two techniques with a recall rate of about 93%
(Figure 14).

For the use of help, an ANOVA reveals a significant effect
of SUBSESSION (F2,26 = 17.3, p < 0.0001), no effect of TECH

(F1,13 = 0.04, p = 0.8532), and no TECH × SUBSESSION inter-
action effect (F2,26 = 0.62, p = 0.545). We find only one
significant difference among sub-sessions: help was used
more often in the first sub-session than in the two subsequent
ones (see Figure 15).

8

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

182 publications

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Participants

R
h
y
th

y
m

 C
h
o
ic

e
 (

%
)

0
2
0

4
0

6
0

8
0

1
0
0

Figure 16. Percentage use of Rhythm by participant (Free condition).

Results for rhythmic patterns and hotkeys are quite similar,
suggesting that rhythmic patterns can be memorized as suc-
cessfully as hotkeys without mnemonics. This is a remarkable
result considering how widespread hotkeys are.

Recall rates are consistent across commands. Considering
only the Rhythm condition, we build the model CMD ×
SUBSESSION × Rand(PARTICIPANT) for recall rate and help and
see a significant effect of CMD on recall rate (F13,169 = 1.17,
p = 0.025). A post-hoc t-test with Holm corrections shows
significant differences only between R3 and R13 (recall rate
about 97%) and R10, R11 and R14 (∼80%).

To test our classifier, we compare the pattern recognized
by the classifier with the answer selected by the participant
using the model TECH × SUBSESSION × Rand(PARTICIPANT). We
find a significant effect of TECH (F1,13 = 5.34, p = 0.038),
with Rhythm having a significant lower success rate than
Hotkey: 85.2% vs. 91.8%. The success rate for Hotkey is
surprisingly low, as we expect few if any errors when entering
hotkeys. This may be due to participants changing their mind
as to which was the right hotkey when they see the answer
sheet. For Rhythm, the rate is also lower than expected,
but the same phenomenon may have occurred. Indeed, the
success rate of Rhythm relatively to Hotkey is 92.8%, close
to the rate obtained on the data for Experiment 1 (94%).

Qualitative Results
Figure 16 shows the percentage of trials where participants
used rhythmic patterns in the Free condition, on the second
day of the experiment. Ten participants (out of 14) used
rhythmic patterns more often than hotkeys. Seven partic-
ipants used rhythmic patterns more than 80% of the time,
while only one participant used rhythmic patterns less than
20% of the time.

The answers to the questionnaire were generally positive,
confirming the previous results. Out of the 14 participants, 9
preferred using the rhythmic patterns, 3 the hotkeys, 2 had no
preference. Those who preferred using rhythmic patterns did
so mostly because of the “fun factor” of tapping rhythms, but
also because it could be performed “in place” on the trackpad,
even for a novice user, without having to visually search the
keys on the keyboard. On the other hand, several participants
noticed that hotkeys are faster to perform and preferred to use
hotkeys when the corresponding pattern is too long.

Regarding memorization, some participants reported using
mnemonics related to the rhythm itself in order to help mem-
orization. For instance, a subject linked the “boxing gloves”

command and the corresponding pattern P9 (Figure 4) to
a “pif paf boom” onomatopoeia that, for him, echoed the
“short short medium” structure of the pattern. Another par-
ticipant also reported linking the pattern structure with the
pronunciation of the object’s name, e.g., “toma-to-to-to-to”
for command 13 and pattern P28. Subjects also used the
graphical representation of patterns to memorize them, which
supports our design for this representation. For example, one
participant stated that “the rhythmic pattern’s visual represen-
tation for the cherry looks like a cherry”.

These comments suggest that users elaborate efficient strate-
gies for the memorization of rhythmic patterns, based on
the rhythm itself or its visualization. Since commands were
assigned to rhythmic patterns randomly, we did not expect
such associations, but this finding opens the way to studying
ways to reinforce these associations. This is commonly done
for gestures, e.g., a question mark for help, and hotkeys, e.g.
Ctrl-S for Save. In particular, various strategies could be
explored to create visual “cheatsheets” for rhythmic patterns
or display them next to menu commands, like hotkeys.

In addition, the complexity of performing rhythmic patterns
can be turned into an advantage for memorization. Since
deeper and greater numbers of levels of encoding and pro-
cessing help memory [8], combining motor and auditive
perception of rhythmic patterns may help users memorize,
i.e., encode, their associations with commands.

SUMMARY AND PERSPECTIVES
In this paper we studied the use of rhythmic patterns in
HCI. We explored Rhythmic Interaction as an opportunity to
generalize the primitive use of rhythm in existing techniques,
e.g., long click and double click, as well as to promote a new
input modality. Since Rhythmic Interaction relies on the time
dimension instead of the spatial and visual dimensions used
by most input methods, it is well suited when space is limited
or when visual attention is not available.

We presented a grammar for creating rhythmic patterns as
well as two recognizers that do not require training. A first
experiment evaluated the ability of casual users to repro-
duce rhythmic patterns very precisely with different feedback
conditions. We found that some complex patterns can be
difficult to reproduce in such a precise way, but that audio
and/or visual feedback improve accuracy. After analyzing
recognition errors, we designed a different recognizer that
reached 94% recognition rate for the 30-pattern vocabulary
of Experiment 1. We ran a second experiment to investigate
the memorization of associations between rhythmic patterns
and commands, i.e., rhythmic shortcuts. The results suggest
that rhythmic patterns are recalled as efficiently as traditional
hotkeys and that users create effective mnemonic strategies to
associate rhythms with commands.

This work demonstrates the potential of rhythmic patterns
as an input method, and contributes a 14-pattern vocabulary
that has proven usable by novice users. Beyond triggering
commands and switching modes in standard desktop envi-
ronments, rhythmic patterns could be used in many contexts:
eye-free control of a mobile device, such as a cellular phone

9

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

A.2 selected publications (2005–2012) 183

or a mobile player; remote control of interactive environ-
ments such as wall-size displays by tapping on wearable
sensors without the need for visual attention; selection of an
object on a tabletop when it is not easily reachable, etc.

Our future work will address issues such as the segmentation
of patterns, the scalability of the vocabularies and the speed
of execution, which are important for the design of Rhythmic
Interactions. Another area for future work is the use of
multiple fingers or both hands to tap patterns and to combine
rhythmic interaction with other interaction techniques. More
complex actions than tapping should also be explored to
enter rhythmic structures, such as performing sequences of
gestures or keyboard taps, as well as the use of the temporal
dimension to convey additional information. Furthermore,
rhythmic output, such as vibration patterns on mobile devices,
seems worth studying since perception and performance of
rhythmic patterns are tightly linked. Finally, the power of
rhythmic interaction could be expanded by exploiting syntac-
tic features used in music such as performing sequential or
parallel combinations of patterns.

ACKNOWLEDGEMENTS
We thank Caroline Appert for feedback on earlier versions of
this paper, our participants and the anonymous reviewers.

REFERENCES
1. Appert, C., and Zhai, S. Using strokes as command

shortcuts: cognitive benefits and toolkit support. In Proc.
CHI ’09, ACM (2009), 2289–2298.

2. Arom, S., Thom, M., Tuckett, B., and Boyd, R. African
polyphony and polyrhythm: musical structure and
methodology. Cambridge university press, 1991.

3. Baudel, T., and Beaudouin-Lafon, M. Charade: Remote
control of objects using free-hand gestures. Comm. ACM 36
(1993), 28–35.

4. Blair, C. R. On computer transcription of manual morse.
JACM 6, 3 (1959), 429–442.

5. Brochard, R., Touzalin, P., Despres, O., and Dufour, A.
Evidence of beat perception via purely tactile stimulation.
Brain Res. 1223 (2008), 59 – 64.

6. Chen, S.-C., Chien, C.-Y., Chang, W.-M., and Lin, S.-W. A
new assistive communication system for the serious disabled.
In Proc. iCREATe ’08, START Centre (2008), 59–64.

7. Clarke, E. Rhythm and timing in music. The Psychology of
Music 2 (1999), 473–500.

8. Craik, F. I., and Lockhart, R. S. Levels of processing: A
framework for memory research. J. Verbal Learning and
Verbal Behavior 11, 6 (1972), 671–684.

9. Crossan, A., and Murray-Smith, R. Rhythmic interaction for
song filtering on a mobile device. In Proc. HAID ’06,
Springer (2006), 45–55.

10. Faure, G., Chapuis, O., and Roussel, N. Power tools for
copying and moving: useful stuff for your desktop. In Proc.
CHI ’09, ACM (2009), 1675–1678.

11. Fekete, J.-D., Elmqvist, N., and Guiard, Y. Motion-pointing:
target selection using elliptical motions. In Proc. CHI ’09,
ACM (2009), 289–298.

12. Fraisse, P. Rhythm and tempo. In The Psychology of Music,
Academic Press (1982), 149–180.

13. Glass, L. Synchronization and rhythmic processes in
physiology. Nature 410, 6825 (2001), 277–284.

14. Grossman, T., Dragicevic, P., and Balakrishnan, R. Strategies
for accelerating on-line learning of hotkeys. In Proc.
CHI ’07, ACM (2007), 1591–1600.

15. Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F.
Design and analysis of delimiters for selection-action pen
gesture phrases in scriboli. In Proc. CHI ’05, ACM (2005),
451–460.

16. Kurtenbach, G., and Buxton, W. User learning and
performance with marking menus. In Proc. CHI ’94, ACM
(1994), 258–264.

17. Lantz, V., and Murray-Smith, R. Rhythmic interaction with a
mobile device. In Proc. NordiCHI ’04, ACM (2004), 97–100.

18. Large, E. W. Periodicity, pattern formation, and metric
structure. J. New Music Research 30, 2 (2001), 173 – 185.

19. MacDougall, H. G., and Moore, S. T. Marching to the beat of
the same drummer: the spontaneous tempo of human
locomotion. J. Applied Physiology 99, 3 (2005), 1164–1173.

20. Malacria, S., Lecolinet, E., and Guiard, Y. Clutch-free
panning and integrated pan-zoom control on touch-sensitive
surfaces: the cyclostar approach. In Proc. CHI ’10, ACM
(2010), 2615–2624.

21. Manuel, R. Histoire de la Musique. Encyclopédie de la
Pléiade, Gallimard, Paris, France, 1960.

22. Maury, S., Athénes, S., and Chatty, S. Rhythmic menus:
toward interaction based on rhythm. In Proc. CHI ’99 EA,
ACM (1999), 254–255.

23. Moelants, D. Preferred tempo reconsidered. In Proc.
ICMPC ’02, AMPS (2002), 580–583.

24. Petitto, L. A., Holowka, S., Sergio, L. E., Levy, B., and
Ostry, D. J. Baby hands that move to the rhythm of language:
hearing babies acquiring sign languages babble silently on
the hands. Cognition 93, 1 (2004), 43 – 73.

25. Potter, D. D., Fenwick, M., Abecasis, D., and Brochard, R.
Perceiving rhythm where none exists: Event-related potential
(erp) correlates of subjective accenting. Cortex 45, 1 (2009),
103–109.

26. Rammsayer, T., and Lima, S. Duration discrimination of
filled and empty auditory intervals: Cognitive and perceptual
factors. Perception and Psychophysics 50 (1991), 565–574.

27. Repp, B. H. Rate limits in sensorimotor synchronization.
Advances in Cognitive Psychology 2, 2 (2006), 163–181.

28. Robinson, S., Rajput, N., Jones, M., Jain, A., Sahay, S., and
Nanavati, A. Tapback: towards richer mobile interfaces in
impoverished contexts. In Proc. CHI ’11, ACM (2011),
2733–2736.

29. Sacks, O. Musicophilia: Tales of Music and the Brain, 2 ed.,
vol. 1. Vintage Books, New York, USA, 2008.

30. Scott, J., Dearman, D., Yatani, K., and Truong, K. N. Sensing
foot gestures from the pocket. In Proc. UIST ’10, ACM
(2010), 199–208.

31. Szentgyorgyi, C., and Lank, E. Five-key text input using
rhythmic mappings. In Proc. ICMI ’07, ACM (2007),
118–121.

32. Westeyn, T., and Starner, T. Recognizing song-based blink
patterns: Applications for restricted and universal access. In
Proc. FGR ’04, IEEE (2004), 717–722.

33. Wobbrock, J. O. Tapsongs: tapping rhythm-based passwords
on a single binary sensor. In Proc. UIST ’09, ACM (2009),
93–96.

10

ha
l-0

06
63

97
3,

 v
er

si
on

 2
 -

13
 M

ay
 2

01
2

184 publications

A Body-centric Design Space for Multi-surface Interaction

Julie Wagner1,2,3 Mathieu Nancel2,1 Sean Gustafson4 Stéphane Huot2,1 Wendy E. Mackay1,2

wagner@telecom-paristech.fr {nancel, huot, mackay}@lri.fr sean.gustafson@hpi.uni-potsdam.de
1Inria – 2Univ. Paris-Sud & CNRS (LRI) 3Télécom ParisTech 4Hasso Plattner Institute

F-91405 Orsay, France Paris, France Potsdam, Germany

ABSTRACT
We introduce BodyScape, a body-centric design space that
allows us to describe, classify and systematically compare
multi-surface interaction techniques, both individually and
in combination. BodyScape reflects the relationship be-
tween users and their environment, specifically how different
body parts enhance or restrict movement within particular
interaction techniques and can be used to analyze existing
techniques or suggest new ones. We illustrate the use of
BodyScape by comparing two free-hand techniques, on-body
touch and mid-air pointing, first separately, then combined.
We found that touching the torso is faster than touching the
lower legs, since it affects the user’s balance; and touching
targets on the dominant arm is slower than targets on the torso
because the user must compensate for the applied force.

Author Keywords
Multi-surface interaction, Body-centric design space

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces.: Theory and methods

INTRODUCTION
Multi-surface environments encourage users to interact while
standing or walking, using their hands to manipulate objects
on multiple displays. Klemmer et al. [19] argue that using
the body enhances both learning and reasoning and this in-
teraction paradigm has proven effective for gaming [32], in
immersive environments [26], when controlling multimedia
dance performances [21] and even for skilled, hands-free
tasks such as surgery [35].

Smartphones and devices such as Nintendo’s Wii permit such
interaction via a hand-held device, allowing sophisticated
control. However, holding a device is tiring [27] and limits
the range of gestures for communicating with co-located
users, with a corresponding negative impact on thought, un-
derstanding, and creativity [13]. Krueger’s VIDEOPLACE [20]
pioneered a new form of whole-body interaction in which
users stand or walk while pointing to a wall-sized display. To-
day, off-the-shelf devices like Sony’s Eyetoy and Microsoft’s

J. Wagner, M. Nancel, S. Gustafson, S. Huot, W. E. Mackay.
A Body-centric Design Space for Multi-surface Interaction.

In CHI’13: Proceedings of the 31st International Conference on Human
Factors in Computing Systems, ACM, April 2013.

Authors Version

Kinect let users interact by pointing or moving their bodies,
although most interaction involves basic pointing or drawing.
Most research in complex device-free interaction focuses on
hand gestures, e.g. Charade’s [2] vocabulary of hand-shapes
that distinguish between “natural” and explicitly learned hand
positions, or touching the fore-arm, e.g. Skinput’s [16] use
of bio-acoustic signals or PUB’s [23] ultrasonic signals.

However, the human body offers a number of potential targets
that vary in size, access, physical comfort, and social accep-
tance. We are interested in exploring these targets to create
more sophisticated body-centric techniques, sometimes in
conjunction with hand-held devices, to interact with complex
data in multi-surface environments. Advances in sensor
and actuator technologies have produced a combinatorial
explosion of options, yet, with few exceptions [31, 27], we
lack clear guidelines on how to combine them in a coherent,
powerful way. We argue that taking a body-centric approach,
with a focus on the sensory and motor capabilities of human
beings, will help restrict the range of possibilities in a form
manageable for an interaction designer.

This paper introduces BodyScape, a design space that classi-
fies body-centric interaction techniques with respect to multi-
ple surfaces according to input and output location relative to
the user. We describe an experiment that illustrates how to use
the design space to investigate atomic and compound body-
centric interaction techniques, in this case, compound mid-air
interaction techniques that involve pointing on large displays
to designate the focus or target(s) of a command. Combin-
ing on-body touch with the non-dominant hand and mid-air
pointing with the dominant hand is appealing for interacting
with large displays: both inputs are always available without
requiring hand-held devices. However, combining them into
a single, compound action may result in unwanted interaction
effects. We report the results of our experiment and conclude
with a set of design guidelines for placing targets on the
human body depending on simultaneous body movements.

BODYSCAPE DESIGN SPACE & RELATED WORK
Multi-surface environments require users to be “physically”
engaged in the interaction and afford physical actions like
pointing to a distant object with the hand or walking towards
a large display to see more details [3]. The body-centric
paradigm is well-adapted to device- or eyes-free interaction
techniques because they account for the role of the body
in the interactive environment. However, few studies and
designs take this approach, and most of those focus on large
displays [22, 31, 27].

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

Author manuscript, published in "CHI'13 - 31st International Conference on Human Factors in Computing Systems (2013)"

A.2 selected publications (2005–2012) 185

Today’s off-the-shelf technology can track both the human
body and its environment [17]. Recent research prototypes
also permit direct interaction on the user’s body [16, 23] or
clothes [18]. These technologies and interaction techniques
suggest new types of body-centric interaction, but it remains
unclear how they combine with well-studied, established
techniques, such as free-hand mid-air pointing, particularly
from the user’s perspective.

Although the literature includes a number of isolated point
designs, we lack a higher-level framework that character-
izes how users coordinate their movements with, around and
among multiple devices in a multi-surface environment. Pre-
vious models, such as the user action notation [11], separate
interaction into asynchronous tasks and analyze the individ-
ual steps according to the user’s action, interface feedback,
and interface internal state. Loke et al. investigated users’
input movements when playing an Eyetoy game [24] and
analyzed their observations using four existing frameworks.
These models do not, however, account for the body’s in-
volvement, including potential interaction effects between
two concurrent input movements. Our goal is to define a more
general approach to body-centric interaction and we propose
a design space that: (i) assesses the adequacy of specific
techniques to an environment or use context; and (ii) informs
the design of novel body-centric interaction techniques.

We are aware of only two design spaces that explicitly ac-
count for the body during interaction. One focuses on the
interaction space of mobile devices [7] and the other offers
a task-oriented analysis of mixed-reality systems [28]. Both
consider proximity to the user’s body but neither fully cap-
tures the distributed nature of multi-surface environments.
We are most influenced by Shoemaker et al.’s [31] pioneer-
ing work, which introduced high-level design principles and
guidelines for body-centric interaction on large displays.

BodyScape
BodyScape builds upon Card et al.’s morphological analy-
sis [5], focusing on (i) the relationships between the user’s
body and the interactive environment; (ii) the involvement
of the user’s body during the interaction, i.e. which body
parts are involved or affected while performing an interaction
technique; and (iii) the combination of “atomic” interac-
tion techniques in order to manage the complexity of multi-
surface environments. These in turn were inspired by early
research on how people adjust their bodies during coordinated
movements, based on constraints in the physical environment
or the body’s own kinematic structure [25]. They help iden-
tify appropriate or adverse techniques for a given task, as
well as the impact they may have on user experience and
performance, e.g., body movement conflicts or restrictions.

Relationships Between the Body and the Environment
Multi-surface environments distribute user input and system
visual output1 on multiple devices (screens, tactile surfaces,
handheld devices, tracking systems, on-body sensors, etc.).

1We do not consider auditory feedback since sound perception does
not depend upon body position, except in environments featuring
finely tuned spatial audio.

The relative location and body positions of the user thus
play a central role in the interactions she can perform. For
example, touching a tactile surface while looking at a screen
on your back is obviously awkward. This physical separation
defines the two first dimensions of BodyScape: User Input
(D1) and System Visual Output (D2). Using a body-centric
perspective similar to [7, 28], we identify two possible cases
for input and output: Relative to the body and Fixed in the
world. Such body-environment relationships have been con-
sidered in Augmented Reality systems [12], but never applied
to a body-centric description of interaction techniques.

D1: Input – User input may be relative to the body and
thus performed at any location in the environment, e.g. on-
body touch, or fixed in the world, which restricts the location
and body position of the user, e.g. standing next to an
interactive table. Different technologies offer users greater
or lesser freedom of movement. Some interaction techniques
require no devices, such as direct interaction with the user’s
body [23] or clothes [18]. Others require a hand-held device,
constraining interaction, but not the orientation of the body.
Others further restrict movement, such as mid-air pointing
at a wall display, in which the user holds the arm, which is
tracked in 3d, in a fixed position relative to an external target.

D2: Visual Output – Multi-surface environments are in-
evitably affected by the separation of visual output over sev-
eral devices [33, 34]. Users must adjust their gaze, switching
their attention to output devices that are relevant to the current
task by turning the head and – if that is not sufficient – turning
the torso, the entire body, or even walking. Visual output
relative to the body is independent of the user’s location in the
environment, e.g., the screen of a hand-held device. It does
not constrain the user’s location or body position, except if a
limb must hold the device. Conversely, visual output fixed in
the world requires users to orient the head towards the target’s
physical location, e.g., where it is projected on a wall. Users’
location and body positions are constrained such that they can
see the visual output effectively.

The BodyScape design space differentiates between Touch-
based and Mid-air user input, since these can affect perfor-
mance and restrict the position of the body. Body movements
and their coordination depends upon the physical connec-
tion with the environment [10]. For example, Nancel et
al. [27] showed that touch-based pan-and-zoom techniques
are faster on large displays than mid-air gestures because
tactile feedback helps guide input movements. Multi-surface
environments may add additional constraints, such forcing
users to walk to an interactive tabletop in order to touch it.

Body Restriction in the Environment – We define this as
a qualitative measure of how a given interaction technique
constrains the user’s body position, as determined by a com-
bination of the Input and Visual Output dimensions above,
from free to restricted (horizontal axis in Fig. 1). The Input
dimension clearly restricts body movement more than Visual
Output, and Touch is more restrictive than Mid-air gestures,
when the input is fixed in the world. For example, one can
watch a fixed display from a distance, at different angles,
whereas touch input devices require physical proximity.

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

186 publications

5

4

3

2

1

mid-air mid-airtouch touch

N
um

be
r o

f I
nv

ol
ve

d
&

Af
fe

ct
ed

 B
od

y
Pa

rts

Body Restriction in the Environment

On-body
Touch

PinStripe

Armura PUB
Skinput

Handheld touch

Mid-air
Pointing

Virtual
Shelves

Shoemaker
PalmRC

Pick
& Drop

barcode
Multitoe

On-body
Touch &
Mid-air

Pointing

Touch
Projector

+

+

++ +++

restrictedfree

Input: relative
Output: relative

Input: relative
Output: fixed

Input: fixed
Output: relative

Input: fixed
Output: fixed

VIDEOPLACE

Charade

5 groups
of body parts

Figure 1. Atomic body-centric interaction techniques in BodyScape,
according to the level of Body Restriction in the Environment and
number of Involved and Affected limbs. Compound techniques (colored
background) are linked to their component atomic techniques.

Together, Input and Visual Output dictate the body’s remain-
ing degrees of freedom (translation and rotation) available for
other potential interactions or body movements. Note that
Body Restriction is not necessarily negative. For example,
assigning each user their personal display area in a collab-
orative multi-surface environment restricts their movement,
but can prevent common problems that arise with interactive
tables [30] such as visual occlusions, collisions, conflicts and
privacy concerns. Figure 1 shows various atomic interaction
techniques in terms of their level of body restriction and the
total number of involved and affected body parts, and shows
how combining them into a compound technique further
restricts body movement.

D3: Body Involvement – BodyScape offers a finer grained
assessment of body restriction by considering which parts
of the user’s body are involved in an interaction technique.
Every interaction technique involves the body with varying
degrees of freedom, from simple thumb gestures on a hand-
held device [27], to whole-body movements [21]. We define
a group of limbs involved in a technique as the involved body
parts. For example, most mid-air pointing techniques involve
the dominant arm, which includes the fingers and hand, the
wrist, the forearm, the upper arm and the shoulder.

A technique may involve a group of limbs and also affect
other limbs. For example, on-body touch interaction involves
one hand and the attached arm, and the limb touched by the
hand is the affected body part. This implies further restrictions
on the body, since affected body parts are unlikely to be
involved in the interaction and vice versa, especially when
interaction techniques are combined. We define five groups
of involved body parts: the dominant arm, the non-dominant
arm, the dominant leg, the non-dominant leg and the torso.

We omit the head when considering involved and affected
body parts, since the location of the visual output is the
primary constraint. Although head orientation has been used
to improve access to data on large displays [8], this is only
a “passive” approach in which the system adapts itself to the
user’s head orientation.

re
la

tiv
e

to
 th

e
bo

dy

relative to the body

fix
ed

 in
 th

e
w

or
ld

fixed in the worldInput
touchmid-air

VI
su

al
 O

ut
pu

t

touchmid-air

re
la

tiv
e

to
 th

e
bo

dy

mid-air
a b

g h

e f

c d

restrictedfree restrictedfree

restrictedfree restrictedfree

Figure 2. BodyScape presents a taxonomy of atomic body-centric
interaction techniques, organized according to Input and Visual Output.
a) Virtual Shelves [22]; b) Skinput [16]; c) Body-centric interaction
techniques for large displays [31]; d) PalmRC [9]; e) Scanning
objects with feedback on a device; f) Pick and Drop [29]; g) Mid-air
pointing [27]; and h) Multitoe [1].

Classification of Body-centric Interaction Techniques
Figure 2 lays out atomic body-centric interaction techniques
from the literature along the Input and Visual Output di-
mensions, illustrating their impact on body restrictions in
the environment. Each technique involves performing an
elementary action, e.g. moving a cursor or selecting a target.

Relative Input / Relative Output – The least restrictive com-
bination lets users move freely in the environment as they
interact and obtain visual feedback. VirtualShelf [22] is a
mid-air example in which users use the dominant arm to
orient a mobile phone within a spherical area in front of them
to enable shortcuts (Fig.2a). Armura [15] extends this ap-
proach with wearable hardware that detects mid-air gestures
from both arms and projects visual feedback onto the user’s
body. Skinput [16] (Fig. 2b) is a touch example that accepts
touch input on the user’s forearm and provides body-relative
visual output from a projector mounted on the shoulder.
The dominant arm is involved and the non-dominant arm is
affected by the pointing.

Relative Input / Fixed Output – A more restrictive combina-
tion constrains the user’s orientation and, if the distance to the
display matters, the user’s location. Shoemaker’s [31] mid-
air technique involves pointing to a body part and pressing a
button on a hand-held device to select a command. Visual
output consists of the user’s shadow projected on the wall
with the available commands associated with body locations.
Only the pointing arm is involved and users must remain
oriented towards the screen (Fig. 2c). PalmRC [9] (Fig. 2d)
allows free-hand touch operations on a TV set. Users press
imaginary buttons on their palm [14] and see visual feedback
on the fixed TV screen. One arm is involved in the interac-
tion; the other is affected.

Fixed Input / Relative Output – The next most restrictive
approach requires users to stand within a defined perimeter,
limiting movement. Here, touch is more constrained than
mid-air gestures: standing within range of a Kinect device
is less restrictive than having to stand at the edge of an
interactive table. A simple mid-air example involves a user

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

A.2 selected publications (2005–2012) 187

who scans a barcode while watching feedback on a separate
mobile device (Fig. 2e). Pick and Drop [29] uses touch to
transfer an object from a fixed surface to a mobile device
(Fig. 2f). Both examples involve the dominant arm and affect
the non-dominant arm, which carries the handheld device.

Fixed Input / Fixed Output – The most restrictive combination
constrains both the user’s location and visual attention. A
common mid-air technique uses the metaphor of a laser
pointer to point to items on a wall-sized display. Although the
interaction is performed at a distance, the user must stand at a
specified location in order to accurately point at a target on the
wall, making it “fixed-in-the-world” (Fig. 2g). Conventional
touch interaction on a tabletop or a large display is highly
restrictive, requiring the user to stand in a fixed location with
respect to the surface. Multitoe [1] is even more constrained,
since both touch input and visual output appear on the floor,
next to the feet (Fig. 2h).

Body Involvement – Figure 1 shows that most body-centric
techniques only involve and affect one or two groups of
body parts, usually the arms. We know of only a few
“whole-body” techniques that involve or affect the entire
body: VIDEOPLACE [20] and its successors for games and
entertainment and PinStripe [18], which enables gestures on
the users’ clothing.

Compound Techniques in Multi-surface Environments
Complex tasks in multi-surface environments combine sev-
eral interaction techniques: (i) in series, e.g., selecting an
object on one touch surface and then another; or (ii) in
parallel, e.g., simultaneously touching one object on a fixed
surface and another on a handheld device.

Serial Combination – a temporal sequence of interaction
techniques. The combined techniques can be interdependent
(sharing the same object, or the output of one as the input of
the other), but the first action should end before the second
starts. For example, the user can select an object on a tactile
surface (touch and release) and then apply a function to this
object with a menu on a mobile device. Serial compound
techniques do not increase the restrictions imposed by each
atomic technique in the sequence, nor the involved or af-
fected body parts. However, one must still design serial
combinations to avoid awkward movements, such as having
to constantly walk back and forth, move a device from one
hand to another or repeatedly switch attention between fixed
and relative displays.

Parallel Combination – performing two techniques at the
same time. The techniques may be independent or depen-
dent. For example, the user might touch two tactile surfaces
simultaneously in order to transfer an object from one to
the other [36]. Unlike serial combinations, these compound
techniques may significantly restrict the body’s movement
and raise conflicts between involved and affected body parts.

The constraint on body movement is determined by the more
restrictive of the combined techniques. Thus, combining a
“fixed-in-the-world” with a “relative-to-the-body” technique
will be as restrictive as “fixed-in-the-world”. Touchpro-
jector [4] illustrates this well (see Fig. 1). The user uses

one device as a lens to select objects on a distant display,
orienting it towards the target (mid-air fixed input and fixed
output) while simultaneously touching the device’s tactile
screen to select the target (touch relative input + relative
output). Touchprojector is thus considered a “touch fixed
input and fixed output” technique in BodyScape. The ad-
vantage of minimizing body restrictions with relative-to-the-
body technique is overridden by requiring a fixed input. Even
so, Touchprojector offers other advantages, since users can
interact directly with a remote display without having to move
to the display or use another interaction device.

BODYSCAPE EXPERIMENT:
COMBINING ON-BODY TOUCH AND MID-AIR POINTING
Our work with users in complex multi-surface environments
highlighted the need for interaction techniques that go beyond
simple pointing and navigation [3]. Users need to combine
techniques as they interact with complex data spread across
multiple surfaces. The BodyScape design space suggests
a number of possibilities for both atomic and compound
interaction techniques that we can now compare and contrast.

This section illustrates how we can use the BodyScape design
space to look systematically at different types of body-centric
interaction techniques, both in their atomic form and when
combined into compound interaction techniques. We chose
two techniques, illustrated in Figure 2d, ON-BODY TOUCH input,
and 2g, MID-AIR POINTING input, both with visual output on a
wall display, which is where our users typically need to inter-
act with their data. Although the latter has been well-studied
in the literature [27], we know little of the performance and
acceptability trade-offs involved in touching one’s own body
to control a multi-surface environment. Because it is indirect,
we are particularly interested in on-body touch for secondary
tasks such as confirming a selection, triggering an action on
a specified object, or changing the scope or interpretation of
a gesture. We are also interested in how they compare with
each other, since MID-AIR POINTING restricts movement more
than ON-BODY TOUCH (Fig. 2g vs. 2d), while ON-BODY TOUCH

affects more body parts than MID-AIR POINTING (Fig. 1).

Finally, we want to create compound interaction techniques,
so as to increase the size of the command vocabulary and
offer users more nuanced control. However, because this
involves coordinating two controlled movements, we need to
understand any potential interaction effects. The following
experiment investigates the two atomic techniques above,
which also act as baselines for comparison with a compound
technique that combines them. The two research questions
we are addressing are thus:

1. Which on-body targets are most efficient and acceptable?
Users can take advantage of proprioception when touching
their own bodies, which enables eyes-free interaction and
suggests higher performance. However, body targets differ
both in the level of motor control required to reach them,
e.g., touching a foot requires more balance than touching
a shoulder, and in their social acceptability, e.g., touching
below the waist [18].

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

188 publications

2. What performance trade-offs obtain with compound body-
centric interaction techniques? Users must position them-
selves relative to a target displayed on the wall and stabilize
the body to point effectively. Simultaneously selecting
on-body targets that force shifts in balance or awkward
movements may degrade pointing performance. In addi-
tion, smaller targets will decrease pointing performance,
but may also decrease ON-BODY TOUCH performance.

Method
Participants
We recruited sixteen unpaid right-handed volunteers (13 men,
average age 28); five had previous experience using a wall-
sized display. All had good to excellent balance (median 4
on a 5-high Likert scale) and practiced at least one activity
that requires balance and body control. All wore comfortable,
non-restrictive clothing.

Apparatus
Participants stood in front of a wall-sized display consisting
of 32 high-resolution 30” LCD displays laid out in an 8×4
matrix (5.5m ×1.8m) with a total of 20480×6400 pixels
(100.63 ppi). Participants wore passive infra-red reflective
markers that were tracked in three dimensions by ten VICON
cameras with sub-millimeter accuracy at a rate of up to
200 Hz. Markers were mounted on a wireless mouse held
in the user’s dominant hand to track pointing at a target on
the wall, on the index finger of the non-dominant hand to
track on-body touches, and on protective sports gear – belt,
forearms, shoulders and legs – to track on-body targets. The
latter were adjustable to fit over the participants’ clothing.
VICON data was filtered through the 1Euro filter [6].

Based on pilot studies, we defined 18 body target locations
distributed across the body (Fig. 3), ranging in size from 9cm
on the forearm to 16cm on the lower limbs, depending upon
location and density of nearby targets, grouped as follows:
Dominant Arm: 4 targets on dominant arm (D ARM = upper

arm, elbow, forearm, wrist)
Dominant Upper Body: 4 targets on dominant side of upper

body (D UPPER = thigh, hip, torso, shoulder)
Non-dominant Upper Body: 4 targets on non-dominant

side of upper body (ND UPPER = thigh, hip, torso, shoulder)
Dominant Lower Leg: 3 targets on dominant side of lower

leg (D LOWER = knee, tibia, foot)
Non-dominant Lower Leg: 3 targets on non-dominant side

of lower leg (ND LOWER = knee, tibia, foot)

In ON-BODY TOUCH conditions, participants wore an IR tracked
glove on the non-dominant hand with a pressure sensor in the
index finger. The system made an orthogonal projection from
the index finger to the touched limb segment using a skeleton-
based model to calculate the closest body target.

Wall pointing tasks varied in difficulty from easy (diameter of
the circular target was 1200px or 30cm) to medium (850px
or 21.25cm) to hard (500px or 12.5cm). Wall targets were
randomly placed 4700px (117.5cm) from the starting target.

Data Collection
We collected timing and error data for each trial, as follows:

dominant non-dominant

upper

lower

dominant upper

dominant lower

dominant arm

non-dominant
upper
non-dominant
lower

ar
m

for
ea

rm

1

2

3

4

5

1
2

1
4

1
4

1
4+

1
2

1
4

Figure 3. 18 body targets are grouped into five categories.

TRIAL TIME: from trial start to completion.
POINTING REACTION TIME: from appearance of on-screen target

to cursor displacement of more than 1000px.
POINTING MOVEMENT TIME: from initial cursor movement to en-

try into goal target.
CURSOR READJUSTMENT TIME: from leaving goal target to relo-

cating cursor onto goal target.
BODY REACTION TIME: from appearance of trial stimulus to

leaving starting position.
BODY POINTING TIME: from leaving start position to touching

on-body target.
BODY ERRORS: number of incorrect touches detected on body

target2; includes list of incorrect targets per error.

We debriefed participants at the end of the experiment and
asked them to rank on a Likert scale: (i) perceived comfort of
each body target according to each MID-AIR POINTING condi-
tion (‘1=very uncomfortable’ to ‘5=very comfortable’); and
(ii) social acceptability of each on-body target:“Would you
agree to touch this body target in a work environment with
colleagues in the same room?” (‘1=never’ to ‘5=certainly’).

Procedure
Each session lasted about 60 minutes, starting with a training
session, followed by blocks of trials of the following condi-
tions, counter-balanced across subjects using a Latin square.
BODY ONLY: Non-dominant hand touches one of 18 on-body

targets (atomic technique − 18×5 replications = 90 trials)
POINTING ONLY: Dominant hand points to one of three target

sizes (atomic technique − 3×5 replications = 15 trials)
POINTING+BODY: Combines touching an on-body target with

selecting a wall target (compound technique − (18×3)×5
replications = 270 trials)

Participants were thus exposed to 75 unique conditions, each
replicated five times, for a total of 375 trials. BODY ONLY and
POINTING+BODY trials were organized into blocks of six, with

2Includes both system detection and user errors.

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

A.2 selected publications (2005–2012) 189

interactive
wall

easy
1200 px

medium
850 px

difficult
500 px

interactive
wall

easy
1200 px

medium
850 px

difficult
500 px

a) START b) BODY ONLY c) POINTING ONLY d) POINTING+BODY

Figure 4. a) Starting position b) BODY ONLY c) POINTING ONLY d) POINTING+BODY

Starting position: non-dominant hand at the hip and/or dominant hand points to a starting target on the wall display.
BODY ONLY and POINTING ONLY are atomic conditions; POINTING+BODY is compound: a body touch triggers the selected wall target.

the location of body targets randomized and no two succes-
sive trials involved the same body target group. POINTING ONLY

trials were organized into blocks of five and all wall pointing
trials were counterbalanced across difficulty. The two atomic
interaction techniques, BODY ONLY and POINTING ONLY serve
as baseline comparisons for performance with the compound
interaction technique, POINTING+BODY.

TASK: Participants were asked to perform trials as quickly
and accurately as possible. They were asked to point and
select on-body targets using their non-dominant hand’s index
finger in the BODY ONLY condition, and to point and select wall-
targets using a mouse device held in the dominant hand in
the POINTING ONLY condition. The compound POINTING+BODY

condition asked users to point to the wall-target and keep the
cursor inside before selecting an on-body target.

BODY ONLY (Fig. 4b): The starting position involves standing
comfortably facing the wall display, with the non-dominant
hand at the thigh (Fig. 4a). The trial begins when an image
of a body silhouette appears on the wall, with a red circle
indicating the location of the on-body target to acquire. The
participant touches that target with the index finger of the
non-dominant hand as quickly and accurately as possible.
Participants were asked to avoid crouching or bending their
bodies, which forced them to lift their legs to reach lower-leg
targets. The trial ends only when the participant selects the
correct target; all intermediate incorrect selections are logged.

Figure 5 shows how different body parts interact for different
on-body targets. The non-dominant arm is always involved,
since it is responsible for pointing at the target. However,
some on-body targets also affect other body parts, which may
have adverse effects, such as shifting one’s balance to touch
the foot (Fig. 5c).

POINTING ONLY (Fig. 4c): The starting position involves stand-
ing comfortably facing the wall display and using the domi-
nant hand to locate a cursor within a circular target displayed
in the center of the wall. The trial begins when the starting
target disappears and the goal target appears between 0.5s
and 1s later, to reduce anticipatory movements and learning
effects. The participant moves the dominant hand to move the
cursor to the goal target and selects by pressing the left button
of the mouse bearing the optical marker used for pointing.
The trial ends only when the participant successfully clicks
the mouse button while the cursor is inside the goal target.

On-body Touch arm
+ Mid-air Pointing

affected
parallel technique
composition

involved

Torso

(a)

Arm

(b)
Leg

(c)
(d)

(e)

Mid-air Pointing

On-body Touch

Figure 5. Body parts involved when touching the (a) torso, (b) arm, (c)
leg; (d) mid-air pointing; and (e) in parallel, when the dominant hand
points in mid-air and non-dominant hand touches the dominant arm.

POINTING+BODY (Fig. 4d): The starting position combines
the above, with the non-dominant hand at the thigh and the
dominant hand pointing to the starting target on the wall. The
trial begins with the appearance of a body-target illustration
and the goal target on the wall display. The participant first
points the cursor at the goal target, then completes the trial
by touching the designated on-body target. The trial ends
only when the on-body touch occurs while the cursor is inside
the goal target on the wall. As in the BODY ONLY condition,
multiple body parts may be involved, sometimes with adverse
effects. Fig. 5e shows the interaction between the dominant
arm, which is trying to point to a target on the wall and the
non-dominant arm, which is pointing at the dominant arm.

Training
Participants began by calibrating the system to their bodies,
visually locating, touching and verifying each of the 18 body
targets. They were then exposed to three blocks of six BODY

ONLY trials, with the requirement that they performed two on-
body touches in less than five seconds. They continued with
three additional blocks to ensure they could accurately touch
each of the targets. Next, they were exposed to all three levels
of difficulty for the POINTING ONLY condition: easy, medium
and hard, in a single block. Finally, they performed three ad-
ditional blocks of the compound POINTING+BODY technique.

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

190 publications

B
od

y
Po

in
tin

g
Ti

m
e

(m
s)

0

1000

2000

D ar
m
D w

ris
t

D el
bo

w

D fo
rea

rm
D be

lly

D sh
ou

lde
r
D hi

p

D th
igh

D kn
ee

D tib
ia
D fo

ot

ND be
lly

ND sh
ou

lde
r

ND th
igh

ND hi
p

ND kn
ee

ND tib
ia

ND fo
ot

Body Target

NDupperDupper NDlowerDlowerDarm

1096

845

1246

763

1138

Figure 6. Mean BODY POINTING TIME is faster for both upper body
targets (D UPPER and ND UPPER) compared to other targets. Horizontal
lines indicate group means; performance within groups is consistent.

Results
Q1: Efficiency & acceptability of on-body targets
Our first research question asks which on-body targets are
most efficient and which are socially acceptable. We con-
ducted a full factorial ANOVA on the BODY ONLY condition,
with PARTICIPANT as a random variable based on the standard
repeated measures (REML) technique from the JMP 9 statis-
tical package. We found no fatigue or learning effects.

Figure 6 shows the times for touching all 18 on-body targets,
grouped into the five body areas. We found significant effects
of BODY TARGET on BODY POINTING TIME: touching lower body
targets is slower. Since BODY POINTING TIME is consistent
for targets within a given target group, we report results
according to target group, unless otherwise stated.

Overall, we found a main effect of BODY TARGET GROUP on
TRIAL TIME (F4,60 = 21.2, p < 0.0001). A post-hoc Tukey
test revealed two significantly different groups: body targets
located on the upper torso required less than 1400ms to be
touched whereas targets on the dominant arm and on the
lower body parts required more than 1600ms. Results are
similar for BODY POINTING TIME with a significant effect of
BODY TARGET GROUP only for the D UPPER group (F3,45 = 5.07,
p = 0.004), specifically, targets on the dominant thigh are
touched more slowly than those on the shoulder or torso. For
BODY REACTION TIME, despite a significant effect, values are
very close for each BODY TARGET GROUP (530ms± 20ms).

Participants were able to quickly touch on-body targets with
an accuracy of 92.4% on the first try. A post-hoc Tukey test
showed that targets on the dominant arm were more prone
to errors than other body target areas (14.8% vs. 6% for
dominant and non-dominant upper body and 2.9% for non-
dominant lower body targets). Most errors obtained when tar-
gets were close to each other, i.e. when the participant’s hand
touched the boundary between the goal and a nearby target or
when the dominant arm was held close to the torso, making
it difficult to distinguish between the torso and arm targets.
Touching lower body parts is, not surprisingly, slower, since
these targets are further from the starting position and require
more complex movements. However, the difference is small,
about 200ms or 12% of global trial time.

upper

lower

dominant non-dominant

3

5

4

4.5

4
4

5 4.5

5

55

4 5

3.5 3.5

2

2

2.5

2

Preference BodyOnly
dominant non-dominant

5

5

5

5
5

5 5

5

55

4 5

2.5 2.5

2

2

2

2

Social Acceptability
dominant non-dominant

5

4

4

3
3

5 4.5

5

54

4 5

3 3

2

2

2

1

Preference Body+Pointing(a) (b) (c)

Figure 7. Median preference and acceptability rankings of on-body
targets (from green = acceptable to red = unacceptable).

Qualitative measures of Preference and Social Acceptance
Figure 7a shows that participants’ preferences (median values
of Likert-scale) for and within each BODY TARGET GROUP were
consistent with performance measures: targets on the upper
body parts were preferred over lower body parts (consistent
with [18]) and the torso were slightly more preferred than on
the dominant arm.

Interestingly, preferences for non-dominant foot and the dom-
inant arm decrease when on-body touch interaction is com-
bined with mid-air pointing (Fig. 7b). The latter is surprising,
given that the most popular location for on-body targets in
the literature is on the dominant arm. This suggests that inter-
action designers should explore alternative on-body targets
as well. Social acceptability varies from highly acceptable
(upper body) to unacceptable (lower body) (Fig. 7c).

Q2: Performance Trade-offs for compound techniques
The second research question examines the effect of combin-
ing two atomic interaction techniques, in this case BODY ONLY

and POINTING ONLY, into a single compound technique. We
treat these atomic techniques as baseline values to help us
better evaluate the compound task.

Pointing Only task
Not surprisingly, hard pointing tasks are significantly slower
(TRIAL TIME of 1545ms avg., F2,30 = 40.23, p < 0.0001)
than medium (1216ms) or easy (1170ms) tasks, which are
not significantly different from each other (Fig. 8a). POINT-
ING REACTION TIME is also significantly slower for difficult
(498ms) as opposed to medium (443ms) or easy (456ms)
tasks. POINTING MOVEMENT TIME is significantly different for
all three levels of difficulty: hard (708ms), medium (511ms)
and easy (435ms).

Participants made few errors but occasionally had to relocate
the cursor inside the goal target before validating the selection
with the mouse. This occurred rarely (1.8% of all trials),
but was significantly more likely for difficult pointing tasks
(15%) (F2,30 = 8.02, p = 0.0016) and accounts for the differ-
ences in TRIAL TIME and POINTING MOVEMENT TIME.

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

A.2 selected publications (2005–2012) 191

M
ea

n
of

 T
ria

l T
im

e
(m

s)

0

500

1000

1500

2000

2500

Pointing Only Pointing + Body

Pointing Task
difficultmediumeasy

(a)

(b)

Figure 8. TRIAL TIME for (a) Pointing Only and (b) Pointing + Body, by
pointing difficulty.

M
ea

n
of

 P
oi

nt
in

g
M

ov
em

en
t T

im
e

(m
s)

0

200

400

600

800

1000

none NDupper Dupper NDlower Dlower Darm
Body Target Group

Pointing task easy medium difficult

Figure 9. Interaction Pointing×Body on POINTING MOVEMENT TIME.

Compound Pointing plus Body task
Figure 8b shows that the combined MID-AIR POINTING and ON-
BODY TOUCH task is significantly slower than MID-AIR POINTING

alone for all levels of difficulty. TRIAL TIME is significantly
slower for difficult MID-AIR POINTING (2545ms) than both
medium (1997ms) and easy (1905ms) tasks. In fact, the
easiest compound task is significantly slower that the hardest
POINTING ONLY task.

BODY TARGET GROUP also has an effect on TRIAL TIME (F4,60 =

34.1, p < 0.0001) with the same significant groups as for
BODY ONLY: TRIAL TIME is significantly faster when touching
upper body targets (ND UPPER = 1794ms, D UPPER = 1914ms)
than lower body targets (ND LOWER = 2267ms, D LOWER =
2368ms) or the dominant arm (D ARM = 2401ms). BODY

REACTION TIME is faster than POINTING REACTION TIME, regardless
of pointing difficulty.

Although we can see that the individual techniques are both
more efficient than the compound technique, the question is
why? Just how does ON-BODY TOUCH affect MID-AIR POINTING?
Figure 9 shows interaction effects between the two elements
of the compound tasks, by both BODY TARGET GROUP and point-
ing difficulty. While POINTING MOVEMENT TIME is close to the
pointing baseline for all difficulties when MID-AIR POINTING is

M
ea

n
of

 C
ur

so
r R

ea
dj

us
tm

en
t T

im
e

(m
s)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

none NDupper Dupper NDlower Dlower Darm
Body Target Group

Pointing task easy medium difficult

Figure 10. Effect of Pointing difficulty and BODY TARGET GROUP on
CURSOR READJUSTMENT TIME.

combined with ON-BODY TOUCH on the upper body parts, we
observe a stronger negative effect for the lower body parts
and the dominant arm, especially for difficult pointing tasks.

This impact of ON-BODY TOUCH on the MID-AIR POINTING task
does not only relate to the movement phase but also cursor
readjustments. For the combined POINTING+BODY task, 31% of
the trials required the participants to relocate the cursor inside
of the target before validating the selection with a body touch,
compared to only 6% for POINTING ONLY. Thus, we found
significant effects of MID-AIR POINTING (F2,30 = 59.64, p <

0.0001), BODY TARGET GROUP (F5,75 = 23.03, p < 0.0001) and MID-
AIR POINTING×BODY TARGET GROUP (F10,150 = 8.45, p < 0.0001)
on CURSOR READJUSTMENT TIME. As shown in Figure 10, CURSOR

READJUSTMENT TIME increases significantly for each level of
difficulty of MID-AIR POINTING but selecting body targets on
some BODY TARGET GROUP, especially in D LOWER and D ARM,
affects the body configuration and requires even more time to
relocate the cursor inside of the on-screen target.

This result reveals two important things: (1) touching the
dominant arm while pointing affects the precision of pointing
and requires “force-balance” (targets on D ARM); (2) touching
targets on the lower body parts affects the precision of point-
ing and requires “movement-balance” (targets on ND LOWER

and D LOWER). Overall, since the impact of both D LOWER and
D ARM is similar, we observe that maintaining force-balance
is as difficult as maintaining movement-balance during the
pointing task, and that the difficulty in movement-balance is
not only caused by standing on one leg, but by simultane-
ously crossing the body’s sagittal plane (difference between
D LOWER and ND LOWER).

Similarly, we studied the effect of MID-AIR POINTING on ON-
BODY TOUCH by performing an ANOVA with the model MID-
AIR POINTING[none /easy/medium/difficult]×BODY TARGET GROUP. We
did not find any effect on BODY REACTION TIME. On BODY

POINTING TIME, we did find a significant effect of BODY TARGET

GROUP (F4,60 = 38.69, p < 0.0001), of MID-AIR POINTING (F3,45 =

78.15, p < 0.0001) and a significant MID-AIR POINTING×BODY

TARGET GROUP interaction (F12,180 = 2.28, p = 0.01). The
main effect of BODY TARGET GROUP is similar to the baseline
(with ND UPPER and D UPPER significantly faster than all other

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

192 publications

M
ea

n
of

 B
od

y
Po

in
tin

g
Ti

m
e

(m
s)

0

500

1000

1500

2000

2500

NDupper Dupper NDlower Dlower Darm
Body Target Group

 Pointing Task easy medium difficultnone

Figure 11. Interaction Pointing×Body on BODY POINTING TIME.

groups). The main effect of MID-AIR POINTING is also similar
to those observed before, showing that difficult pointing tasks
make simultaneous body touching slower than medium or
easy pointing task. Obviously, these are all significantly
slower than the BODY ONLY baseline.

More interesting, the MID-AIR POINTING×BODY TARGET GROUP

interaction effect reveals the actual impact of MID-AIR POINT-
ING on ON-BODY TOUCH. As shown in Figure 11: (i) the increas-
ing difficulty of the pointing task increases BODY POINTING

TIME. In fact, despite the fact that our task required body
target selection as the final action, the reaction times indicate
that both tasks start almost simultaneously (ON-BODY TOUCH

even before MID-AIR POINTING). (ii) The increase in difficulty
does not change the difference between the groups of targets,
but rather amplifies them. ND UPPER and D UPPER remain the
groups of targets that require less time to be touched.

In summary, the compound POINTING+BODY task involves in-
teraction effects between the two atomic techniques, which
not only incur a time penalty when the tasks are performed
simultaneously, but also degrades pointing performance for
MID-AIR POINTING (fixed in the world) when combined with
a body-relative technique that involves and affects multiple
limbs. However, our results also reveal that ON-BODY TOUCH

on the lower parts of the body significantly impair the move-
ment phase of pointing, and that the overall negative impact
increases with the difficulty of the pointing task, especially
when targeting on the pointing arm.

CONCLUSION
The BodyScape design space uses a body-centric approach to
classify both existing and novel interaction techniques. The
distributed nature of multi-surface environments highlights
the need for combining interaction techniques, in series or
in parallel, to accomplish more complex tasks. A body-
centric approach can help predict possible interaction effects
of body movements by (i) analyzing the spatial body-device
relationship and (ii) proposing ways to decompose individual
techniques into groups of body parts that are either involved
in or affected by the interaction. We argue that studying com-
pound interaction techniques from a body-centric perspective
will lead to powerful guidelines for interaction design, both
with and without physical devices.

We illustrate BodyScape by examining the effects of combin-
ing two multi-surface interaction techniques: mid-air point-
ing and on-body touch. This novel combination enables an
eyes-free interaction with on-body targets while offering a
rich set of mid-air pointing commands to access a remote vir-
tual target on a large display. We ran a controlled experiment
to study both techniques individually and in combination,
investigating performance and acceptability of 18 on-body
targets, as well as any interaction effects that obtain when
the two techniques are combined. Participants were most
efficient with targets on the torso and least efficient with
targets on the lower body and on the dominant arm, especially
in the combined condition: Reaching targets on the lower legs
requires additional balance and touching the dominant arm
impairs the precision of mid-air pointing because of the force
applied on the pointing arm. Users consistently preferred
targets located on the upper body.

Our results suggest three guidelines for designing on-body
interaction:
G1 Task difficulty: On-body targets should be placed on

stable body parts, such as the upper torso, when tasks
require precise or highly coordinated movements.

G2 Body balance: Anticipatory movements, such as shifts in
balance, can be detected to accommodate corresponding
perturbations in a primary task, e.g. freezing an on-screen
cursor. The precision of a pointing task can be adversely
affected if users must also touch on-body targets that
require a shift in balance or coordination, in particular,
touching the dominant arm while it is performing a sepa-
rate task.

G3 Interaction effects: Designers should consider which
body parts negatively affect users’ comfort while
touching on-body targets as well as side effects of each
task, such as reduced attention or fatigue that may lead
to unexpected body positions or increases in errors.

Future work will develop more detailed descriptions of each
limb’s involvement in the interaction. We also plan to in-
crease the predictability of BodyScape, following Card et
al. [5], such as developing a Fitts-style pointing model for
on-body touch.

ACKNOWLEDGEMENTS
We wish to thank the participants for their time and effort, as
well as the anonymous reviewers for their helpful comments.

REFERENCES
1. Augsten, T., Kaefer, K., Meusel, R., Fetzer, C., Kanitz,

D., Stoff, T., Becker, T., Holz, C., and Baudisch, P.
Multitoe: high-precision interaction with back-projected
floors based on high-resolution multi-touch input. In
Proc. UIST (2010), 209–218.

2. Baudel, T., and Beaudouin-Lafon, M. Charade: remote
control of objects using free-hand gestures. CACM 36
(July 1993), 28–35.

3. Beaudouin-Lafon, M., Huot, S., Nancel, M., Mackay,
W., Pietriga, E., Primet, R., Wagner, J., Chapuis, O.,
Pillias, C., Eagan, J., Gjerlufsen, T., and Klokmose, C.

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

A.2 selected publications (2005–2012) 193

Multi-surface Interaction in the WILD Room. IEEE
Computer 45, 4 (2012), 48–56.

4. Boring, S., Baur, D., Butz, A., Gustafson, S., and
Baudisch, P. Touch projector: mobile interaction
through video. In Proc. CHI (2010), 2287–2296.

5. Card, S., Mackinlay, J., and Robertson, G. A
morphological analysis of the design space of input
devices. ACM Trans. Inf. Syst. 9, 2 (Apr. 1991), 99–122.

6. Casiez, G., Roussel, N., and Vogel, D. 1e filter: a
simple speed-based low-pass filter for noisy input in
interactive systems. In Proc. CHI (2012), 2527–2530.

7. Chen, X. A., Marquardt, N., Tang, A., Boring, S., and
Greenberg, S. Extending a mobile device’s interaction
space through body-centric interaction. In Proc.
MobileHCI (2012), 151–160.

8. de Almeida, R., Pillias, C., Pietriga, E., and Cubaud, P.
Looking behind bezels: french windows for wall
displays. In Proc. AVI (2012), 124–131.

9. Dezfuli, N., Khalilbeigi, M., Huber, J., Müller, F., and
Mühlhäuser, M. PalmRC: imaginary palm-based remote
control for eyes-free television interaction. In Proc.
EuroiTV (2012), 27–34.

10. Dickstein, R., and Laufer, Y. Light touch and center of
mass stability during treadmill locomotion. Gait &
Posture 20, 1 (2004), 41–47.

11. Dievendorf, L., Brook, D., and Jacob, R. J. K. Extending
the user action notation (UAN) for specifying interfaces
with multiple input devices and parallel path structure.
Tech. rep., Naval Research Laboratory, 1995.

12. Feiner, S., MacIntyre, B., Haupt, M., and Solomon, E.
Windows on the world: 2D windows for 3D augmented
reality. In Proc. UIST (1993), 145–155.

13. Goldin-Meadow, S., and Beilock, S. L. Action’s
influence on thought: the case of gesture. Perspectives
on Psychological Science 5, 6 (2010), 664–674.

14. Gustafson, S., Holz, C., and Baudisch, P. Imaginary
Phone: learning imaginary interfaces by transferring
spatial memory from a familiar dvice. In Proc. UIST
(2011), 283–292.

15. Harrison, C., Ramamurthy, S., and Hudson, S. On-body
interaction: armed and dangerous. In Proc. TEI (2012),
69–76.

16. Harrison, C., Tan, D., and Morris, D. Skinput:
appropriating the body as an input surface. In Proc. CHI
(2010), 453–462.

17. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., and Fitzgibbon, A.
KinectFusion: real-time 3D reconstruction and
interaction using a moving depth camera. In Proc. UIST
(2011), 559–568.

18. Karrer, T., Wittenhagen, M., Lichtschlag, L., Heller, F.,
and Borchers, J. Pinstripe: eyes-free continuous input on
interactive clothing. In Proc. CHI (2011), 1313–1322.

19. Klemmer, S., Hartmann, B., and Takayama, L. How
bodies matter: five themes for interaction design. In
Proc. DIS (2006), 140–149.

20. Krueger, M., Gionfriddo, T., and Hinrichsen, K.
VIDEOPLACE—an artificial reality. In Proc. CHI
(1985), 35–40.

21. Latulipe, C., Wilson, D., Huskey, S., Word, M., Carroll,
A., Carroll, E., Gonzalez, B., Singh, V., Wirth, M., and
Lottridge, D. Exploring the design space in
technology-augmented dance. In CHI Extended
Abstracts (2010), 2995–3000.

22. Li, F., Dearman, D., and Truong, K. Virtual shelves:
interactions with orientation aware devices. In Proc.
UIST (2009), 125–128.

23. Lin, S., Su, Z., Cheng, K., Liang, R., Kuo, T., and Chen,
B. PUB - Point Upon Body: exploring eyes-free
interactions and methods on an arm. In Proc. UIST
(2011), 481–488.

24. Loke, L., Larssen, A. T., Robertson, T., and Edwards, J.
Understanding movement for interaction design:
frameworks and approaches. Personal Ubiquitous
Comput. 11, 8 (Dec. 2007), 691–701.

25. Massion, J. Movement, posture and equilibrium:
interaction and coordination. Progress in Neurobiology
38, 1 (1992), 35–56.

26. Mine, M., Brooks Jr, F., and Sequin, C. Moving objects
in space: exploiting proprioception in
virtual-environment interaction. In Proc. SIGGRAPH
(1997), 19–26.

27. Nancel, M., Wagner, J., Pietriga, E., Chapuis, O., and
Mackay, W. Mid-air pan-and-zoom on wall-sized
displays. In Proc. CHI (2011), 177–186.

28. Pederson, T., Janlert, L.-E., and Surie, D. Towards a
model for egocentric interaction with physical and
virtual objects. In Proc. NordiCHI (2010), 755–758.

29. Rekimoto, J. Pick-and-drop: a direct manipulation
technique for multiple computer environments. In Proc.
UIST (1997), 31–39.

30. Scott, S., Carpendale, S., and Inkpen, K. Territoriality in
collaborative tabletop workspaces. In Proc. CSCW
(2004), 294–303.

31. Shoemaker, G., Tsukitani, T., Kitamura, Y., and Booth,
K. Body-centric interaction techniques for very large
wall displays. In Proc. NordiCHI (2010), 463–472.

32. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T.,
Finocchio, M., Moore, R., Kipman, A., and Blake, A.
Real-time human pose recognition in parts from single
depth images. In Proc. CVPR (2011), 1297–1304.

33. Su, R., and Bailey, B. Put them where? towards
guidelines for positioning large displays in interactive
workspaces. In Proc. Interact (2005), 337–349.

34. Tan, D., and Czerwinski, M. Effects of visual separation
and physical discontinuities when distributing
information across multiple displays. In Proc. Interact
(2003), 252–255.

35. Wachs, J., Stern, H., Edan, Y., Gillam, M., Handler, J.,
Feied, C., and Smith, M. A gesture-based tool for sterile
browsing of radiology images. Journal of the American
Medical Informatics Association 15, 3 (2008), 321–323.

36. Wilson, A., and Benko, H. Combining multiple depth
cameras and projectors for interactions on, above and
between surfaces. In Proc. UIST (2010), 273–282.

ha
l-0

07
89

16
9,

 v
er

si
on

 1
 -

16
 F

eb
 2

01
3

194 publications

B
C U R R I C U L U M V I TA E

195

Stéphane Huot
Maître de conférences – Univ. Paris-Sud
on leave at Inria (2011-2013)Ç in|situ| group (LRI - UMR 8623 & Inria Saclay–Ile-de-France)

Laboratoire de Recherche en Informatique
Université Paris-Sud - Bât. 650 (PCRI)

91405 ORSAY Cedex, France
H +33 6 76 04 51 81
T +33 1 69 15 42 29

B Stephane.Huot@lri.fr
Í http://www.lri.fr/~huot

Curriculum Vitae

196 curriculum vitae

Education
Doctorate (Ph.D.) in Computer Science (HCI)

Jan. 2001–July 2005 Université de Nantes & École des Mines de Nantes, Nantes, Computer
Science Dpt. of École des Mines de Nantes, Interactive Design and Modeling
group (CMI), defended on July 12, 2005.

Title Une nouvelle approche pour la conception créative : De l’interprétation du dessin
à main levée au prototypage d’interactions non-standard.
A New Approach for Creative Design : From the Interpretation of Freehand
Drawings to the Prototyping of Alternative Interaction Techniques.

Supervision Gérard Hégron (Professor, head of the CERMA–UMR CNRS 1563 laboratory)
and Cédric Dumas (Associate Professor, École des Mines de Nantes).

Jury Referees : Pierre Leclercq (Professor, Université de Liège, Belgium), Philippe
Palanque (Professor, Université Paul Sabatier Toulouse 3) ; President : Henry
Briand (Professor, Université de Nantes) ; Examiner : Claudie Faure (Research
Scientist, CNRS, ENST Paris) ; Invited : Jean-Daniel Fekete (Research Director,
INRIA Saclay–Ile-de-France).

Keywords Human-Computer Interaction, Creative Design, 3D Modeling, Pen-based Interfaces,
Input Devices, Interaction Techniques, Multimodal Interaction, Post-WIMP Interfaces,
GUI Toolkits.

DEA (M.Sc.) in Computer Science
Sept. 1999–Sept. 2000 Université de Nantes, Nantes, Computer Science Dpt. (IRIN), Computer

Science Dpt. of École des Mines de Nantes, Interactive Design and Modeling
group (CMI), defended on September 2000.

Title Reconstruction de bâtiments 3D à partir d’images.
3D Modeling of Buildings from Images.

Supervision Christian Colin (Associate Professor, École des Mines de Nantes).

Undergraduate & Graduate
Education

‘DEUG’ MIAS (Mathematics, Physics and Computer Science), ‘Licence’ and
‘Maîtrise’ (Computer Science) at Université de Limoges.

Employment
Sept. 2011–present on leave at Inria, Inria Saclay–Ile-de-France, Saclay.

in|situ| group.
Sept. 2007–present Associate Professor, IUT d’Orsay – Université Paris-Sud, Orsay.

Member of the ‘Laboratoire de Recherche en Informatique’–UMR CNRS 8623, in|situ|
group (joint project between LRI & Inria Saclay–Ile-de-France).
Lecturer at the Computer Science Department of IUT d’Orsay.

Feb. 2007–Aug. 2007 Postdoctoral Fellow, LRI-CNRS & Inria, Orsay.
AVIZ group (Inria Saclay–Ile-de-France), with Jean-Daniel Fekete.
Research topics : Information Visualization.

Feb. 2006–Feb. 2007 Postdoctoral Fellow, Telecom ParisTech, Paris.
I3 group (Information, Interaction, Intelligence), Computer Science and Networks Dpt.–
UMR CNRS 5141, with Eric Lecolinet, in collaboration with Alcatel-Lucent.
Research topics : Interaction in mobility conditions.

Awards
2013 ACM CHI 2013 “Honorable mention” (top 5%) [I.1].
2012 ACM CHI 2012 “Best paper” (top 1%) [I.2].

ACM CHI 2012 “Honorable mention” (top 5%) [I.3].
2009 IHM 2009 “Best paper” [D.2].

curriculum vitae 197

Teaching
Before being on leave at Inria for two years, I was teaching at the Computer

Admin.
13.5% (90h)

CM
9.7% (65h)
Supervision
13.8% (92h)

TD/TP
63% (420h)

Science Department of IUT d’Orsay (the Institute of Technology of the Université
Paris-Sud which delivers 2- and 3-years undergraduate degrees). I have taught GUI
Programming and Object Oriented Programming courses, and supervised students’
projects and internships. Between 2008 and 2011, my yearly teaching load was of
an average 200 hours, with about 35 additional hours of administrative duties :
courses management, exams supervision, in charge of Apogee for the department
(students registration and grades management system). The chart on the left gives
an overview by activity (2008-2011).

Note : CM=Lecture, TD=Tutorial and TP=Practical. Total teaching load is counted in TD hours, with 1h CM=1.5h TD/TP.

Université Paris-Sud, Computer Science Department
2010–2011 9h eq. TD

Master (M2R IAC) Human-Computer Interaction, 6h CM, Lecturer.
Two lectures for the HCI course in the IAC Master’s degree program : “Graphical
Interaction : Interaction Styles and Elementary Tasks” (3h) and “Graphical Interaction :
Engineering of Interactive Systems, Software Architectures and Toolkits” (3h).
Université Paris-Sud, IUT d’Orsay

2010–2011 203,5h eq. TD
DUT S2

(1st year)
Graphical User Interface Programming, 16h CM + 67,5h TD/TP, Lecturer.
Introduction to web programming (XHTML/css), event-driven programming, GUIs
(WIMP), basics of engineering of interactive systems and UI-Data connection.Ç In charge of this course for 3 years, I revisited its contents by adding basics of
interactive systems programming as well as an introduction to web technologies.

DUT S3
(2nd year)

Object Oriented Programming – Java, 49h TD, Co-Lecturer.
Basics of OOP, Java language, MVC, GUI programming (AWT and Swing).Ç From 2008 to 2010, I was in charge of the lectures on “MVC” & “GUI Programming”.

DUT S4
(2nd year)

Synthesis Project, 27h TD.
Last projects before end studies internship. The project is conducted by a group of 13
to 15 students during 7 weeks and they have two tutorial sessions of 3h each week.Ç My objective is to help students in practicing and mastering theoretical concepts with
attractive topics and novel technologies : mobile devices, mutlitouch, novel input devices.

DUT S2
(1st year)

Tutored Projects, 16h TD.
Supervision of groups of 3-4 1st year students for their first Computer Science project.

DUT S4
(2nd year)

Internship Supervision, 8h TD.
Supervision of students during their end studies internship (April-June).

Licence Pro. SRSI Apprenticeship Supervision, 8h TD.
Supervision of an apprentice student.

2009-2010 213h eq. TD (see details above).
DUT S2 Graphical User Interface Programming, 15h CM + 67,5h TD, Lecturer.
DUT S3 Object Oriented Programming – Java, 6h CM + 51h TD, Co-Lecturer.
DUT S4 Synthesis Project, 27h TD.
DUT S2 Tutored Projects, 16h TD.
DUT S4 Internship Supervision, 8h TD.

Licence Pro. SRSI Apprenticeship Supervision, 8h TD.

2008-2009 192,5h eq. TD (see details above).
DUT S2 Graphical User Interface Programming, 15h CM + 60h TD, Lecturer.
DUT S3 Object Oriented Programming – Java, 7h CM + 49h TD, Co-Lecturer.
DUT S4 Synthesis Project, 22,5h TD.

198 curriculum vitae

DUT S2 Tutored Projects, 16h TD.
DUT S4 Internship Supervision, 12h TD.

2007-2008 150h eq. TD, unload of 42h for the 1st year of service (see details above).
DUT S2 Graphical User Interface Programming, 30h TD.
DUT S3 Object Oriented Programming – Java, 49h TD.
DUT S4 Synthesis Project, 45h TD.
DUT S2 Tutored Projects, 16h TD.
DUT S4 Internship Supervision, 10h TD.

Professional Service
Administrative Activities

Université Paris-Sud
– Member of the University Consultative Specialists Committee in Computer
Science (hiring and promotions at the department level), CCSU 27 (since 2010).

IUT Orsay
– In charge of the registration and grading management system (Apogée) for the
Computer Science Department (2008–2011).

Inria - in|situ|
– in|situ| representative at the Inria “Mobile Services Initiative”.
– in|situ| correspondent (alternate) for the Inria-Saclay “Equipment Committee”.

LRI
– Member of the “Equipment Committee”.
– Member of the “Web Committee”.

Evaluation of Research
Program Committees International Conferences

– ACM CHI’13 (Associate Chair, subcommittee “Interaction Techniques and Devices”).
– IFIP TC13 Interact 2009 and 2013.
Domestic Conferences
– IHM 2010 (Papers co-Chair), 2011 (Demonstrations co-Chair) and 2013 (Program
co-Chair).

– UbiMob 2008 and 2009.
– Workshop ‘Visual Data-Mining’, EGC 2011.

Reviewing
– Journal d’Interaction Personne-Systèmes (JIPS).
– International Conferences : ACM CHI (since 2004), ACM UIST (since 2005),
IFIP TC13 Interact (since 2009), ACM EICS (2013), TEI (2013), Mobile HCI
(2012), Intelligent User Interfaces (2012), 3D User Interfaces (2011), NordiCHI
(2006–2008).

– Domestic Conferences : IHM (since 2003), UbiMob (2008–2009).
Evaluation Committees and

Invited Expertise
– Expert reviewer for ANR (French National Research Agency) – AAP JCJC -
SIMI 2, 2012.

– Hiring Committees at Univ. Paris-Sud – Orsay, in 2009, 2010 and 2011.
– Hiring Committee at Univ. Paul Sabatier – Toulouse, in 2012.
– Hiring Committee at Univ. Bordeaux 1 – Bordeaux, in 2013.

curriculum vitae 199

Ph.D. Juries
– Mathias Baglioni. Nouvelles interactions physiques pour dispositifs mobiles.
Télécom ParisTech, Ph.D. Thesis, April 25, 2012. Examiner.

– Julie Wagner. A Body-centric Framework for Generating and Evaluating Novel
Interaction Techniques. Université Paris-Sud & Inria, Ph.D. Thesis, December
6, 2012. Examiner (co-advisor).

– Émilien Ghomi. Designing Expressive Interaction Techniques for Novices Ins-
pired by Expert Activities : The case of musical practice. Université Paris-Sud,
Ph.D. Thesis, December 17, 2012. Examiner (co-advisor).

Conferences Organization
IHM 2011 Conference of the Francophone Association in HCI, Demonstrations co-Chair.

RJC-IHM 2006 French Symposium for Junior Researchers in HCI, co-Chair.

Invited Talks and Seminars
RWTH Aachen

Aachen, Germany
“Novel Interaction Techniques and Engineering of Interactive Systems”, Media
Computing Group seminar, October 2011.

Institut Farman
ENS Cachan

Cachan, France

“Designing Advanced Interaction Techniques for Interactive High-Resolution
Visualization Platforms”, Institut Farman annual seminar, November 2012.

Societies
– Member of the AFIHM Scientific Board (CPPMS), the Francophone Association
in Human-Computer Interaction (since 2012).

– Member of the AFIHM Council, the Francophone Association in Human-
Computer Interaction (2005–2008).

– Member of the ACM SIGCHI Paris Chapter (since 2010).

Funded Projects & Technology Transfer
Funded Projects

since 2012 Digipods : Distant Collaborative Interaction Between Heterogeneous
Visualization Platforms, “Équipement mi-lourd SESAME 2012” of Région Île-de-
France, 850KAC (total : 1.9MAC).

Partners FCS Campus Paris-Saclay, Université Paris-Sud, Inria, CNRS, CEA-LIST and
Télécom ParisTech.

Role Coordinator and principal investigator.
since 2011 DIGISCOPE (High-Performance Infrastructure for Collaborative In-

teractive Visualization), ANR-EQUIPEX 2010, coordinator : Michel Beaudouin-
Lafon, LRI–in|situ|, 6.7MAC (total : 22MAC).

Partners FCS Campus Paris-Saclay, Univ. Paris-Sud, CNRS, CEA, Inria, Télécom-
ParisTech, Ecole Centrale, UVSQ, ENS Cachan and Maison de la Simulation.

Role Co-Chair of the Technical Committee (management of hiring and purcha-
sing processes, supervision of project engineers), node-manager for WILD
(Université Paris-Sud platform), specification of WILDER (Inria platform),
coordination and participation in related future research projects.

since 2009 WILD (Wall-sized Interaction with Large Datasets), Région Ile-de-France,
Digiteo, CNRS, Inria, Inria-MSR, Université Paris-Sud, ANR, (coordinator : Emmanuel
Pietriga, Inria–in|situ|), 429KAC.

Partners Université Paris-Sud, Inria, CNRS.

200 curriculum vitae

Role Manager of the platform since July 2012, coordination and participa-
tion in related research projects.

2008-2011 iStar, ANR, (coordinator LRI : Michel Beaudouin-Lafon, LRI–in|situ|).
Partners LRI, ENAC, IntuiLab, Anyware Technologies.

Role Participant.
Technology Transfer

since 2011 VCoRE (Visual COmputing Runtime Environment), Inria/IGD Fraunhofer
Institute, (coordinators : Bruno Raffin & Jean-Christophe Lombardo, Inria).

Partners Inria (Grenoble, Lille, Rennes, Saclay, Sophia Antipolis), IGD Fraunhofer Institute.
Role Coordinator and investigator for in|situ|/Inria Saclay–Île-de-France.

Software Development & Distribution
Input Configurator http://inputconf.sourceforge.net/

A Java toolkit and a visual editor for the support and the dynamic configuration
of a large range of input devices and advanced interaction techniques [I.13].
- Principal developer and maintainer (formerly by P. Dragicevic & J.-D. Fekete).
- Distributed under the BSD license and used in several projects as the core component
for input and interaction management.
- Will be refactored and extended (see FlowStates and WILDInputServer below) as part
of the VCoRE technological development action of Inria (see p.6).

FlowStates http://www.lri.fr/~appert/FlowStates/
A Java toolkit that combines state machines and data flow paradigms (ICon) for
prototyping and configuring advanced interaction techniques. [D.2].
- Principal maintainer (developed with C. Appert).
- Will be integrated into ICon distribution.

WILDInputServer http://inputconf.sourceforge.net/
A standalone application based on ICon, that improves the control of interactions
in large multi-surface environments (wall-sized displays, VR platforms, etc.) [I.7].
- Developer and maintainer (part of the jBricks framework, with E. Pietriga & R. Primet).
- Add support for specific input devices (e.g., trackers) and protocols (OSC, TUIO, vrpn)
to ICon, as well as a remote control protocol and a dynamic plugins mechanism.
- Will be integrated into ICon distribution as part of the VCoRE technological develop-
ment action of Inria (see p.6).

Gliimpse http://www.aviz.fr/gliimpse/
A Markup Language editor that allows to smoothly transition from the code to the
rendered document [I.5].
- Developer and maintainer, with P. Dragicevic.
- Looking for opportunities to integrate Gliimpse in a real editor.

TorusDesktop http://insitu.lri.fr/TorusDesktop
A MacOS X application that implements a new pointing technique based on
‘cursor-wrapping’ in a real desktop environment [I.6].
- Developer and maintainer.

curriculum vitae 201

WikipediaViz http://reactivitiz.lri.fr/mediawiki/index.php
A set of visualizations designed for casual users of Wikipedia, that reveal some
important data about an article and help to assess potential quality problems. [I.9].
- Former designer and developer (with J.-D. Fekete & F. Chevalier).
- Implemented on a Wikipedia mirror site as a proof of concept and for evaluation
purposes.

SpiraClock & HeliCal http://www.emn.fr/z-info/spiraclock/ & http://www.lri.fr/~dragice/helical/
An interactive technique for the continuous and non intrusive visualization of temporal
events. [I.15].
- Design and development, with P. Dragicevic.
- Several applications were developed for use with different calendar systems (Outlook,
Google, etc.). Downloaded more than 5000 times.

202 curriculum vitae

Supervision of Research
Ph.D. Students

Jan. 2013 Justin Mathew (advisor, 80%)
with Brian F.G. Katz (LIMSI-CNRS) & Hervé Roux (Digital Media Solutions)

Funding ANRT CIFRE with Digital Media Solutions.
Title New Visualization and Interaction Techniques in Spatial Composition for Mixing

Interfaces in the Context of 3D Spatial Audio.
Keywords Interaction Techniques, Visualization, Audio Mixing Interfaces, 3D Spatial Audio.

Sept. 2010–Dec. 2012 Julie Wagner (joint advisor, 50%)
with Wendy E. Mackay (Inria) – Ph.D. started in 2009, joint advisor since 2010

Funding Inria CORDI.
Defense December 6, 2012.

Title A Body-centric Framework for Generating and Evaluating Novel Interaction
Techniques.

Keywords Body-centric Interaction, Kinematic Chain, Proprioception, Multi-surface Environments.
Publications “BiTouch and BiPad : Designing Bimanual Interaction for Hand-held Tablets” [I.4] – “Left-

over Windows Cause Window Clutter... But What Causes Left-over Windows ?” [D.1] – “A
Body-centric Design Space for Multi-surface Interaction” [I.1].

Sept. 2008–Dec. 2012 Émilien Ghomi (joint advisor, 60%)
with Michel Beaudouin-Lafon (Université Paris-Sud)

Funding MENRT & ATER.
Defense December 17, 2012.

Title Designing Expressive Interaction Techniques for Novices Inspired by Expert
Activities : The case of musical practice.

Keywords Expert practices, Direct Interaction, Multitouch Interaction, Rhythmic Interaction,
Interaction Techniques, Music Practice and Experience.

Publications “Conception et apprentissage des interactions tactiles : le cas des postures multi-doigts” [WS.2]
– “Using Rhythmic Patterns as an Input Method” [I.2].

Engineers
Nov. 2012–Oct. 2014 Software Engineer, INRIA (“Ingénieur Jeune Diplômé”), ADT VCoRE.

Improving and extending the ICon toolkit and the WILDInputServer software for their
integration into the VCoRE framework.

since June 2012 Software Engineer, CNRS (IR), Equipex Digiscope.
Technology watch, feasibility studies and software developments in System and Networks
for the Digiscope platform.

since Dec. 2011 Software Engineer, CNRS (IE), Equipex Digiscope.
Technology watch, feasibility studies and software developments in Computer Graphics
and Interaction for the Digiscope platform.

M.Sc. Students
Dec. 2010–July 2011 Can Liu, RWTH Aachen University, Germany (80%)

with Jonathan Diehl and Jan Borchers, RWTH Aachen University
Six months research internship under my supervision at in|situ|.

Title Exploring Mobile Augmented Reality Instructions to Assist Operating Physical
Interfaces.

Keywords Mobile Interaction, Mobile Augmented Reality, Context-aware, Reminder, Physical
Interaction, PIM.

curriculum vitae 203

Publications “Mobile Augmented Note-taking to Support Operating Physical Devices” [WS.1] – “Evaluating
the Benefits of Real-time Feedback in Mobile Augmented Reality with Hand-held Devices” [I.3].

Feb. 2010–July 2010 Quentin Roy, Univ. Lyon 2 and École Polytechnique Univ. Nantes (70%)
with James Eagan, postdoc at LRI, now Assistant Professor at Télécom ParisTech
Six months research internship under my supervision at in|situ|.

Title Transformation and Adaptation of Interaction Techniques as Part of the GUI
Teleportation Process.

Keywords Interfaces “Deconstruction” and Teleportation, Adaptability, Heterogeneous and Multi-
device Environments, Engineering of Interactive Systems.

204 curriculum vitae

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis is
available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a
collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of May 16, 2013 (Stuf’s HDR version 0.9).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	RR1576entete
	RR1576rapp
	Abstract
	Acknowledgments
	Contents
	Conventions
	1 Introduction
	1.1 Many Things Have Been Done
	1.2 Many Things Remain to Be Done
	1.3 Still Need To Make These Things Possible

	2 From Designing Interaction to Engineering Interactive Systems
	2.1 Interaction On the Desktop
	2.1.1 Pointing
	2.1.2 Advanced Input Methods for Triggering Commands
	2.1.3 Improving Users' Workspace

	2.2 Interaction With Mobile Devices
	2.2.1 Target Acquisition
	2.2.2 Manipulating Lists and Triggering Commands
	2.2.3 Advanced Mobile Interaction

	2.3 Interaction Design Challenges Technology
	2.3.1 When Interaction Design Is Driven by Technology
	2.3.2 When Interaction Design is Constrained by Technology
	2.3.3 When Interaction Design Improves/Extends Technology
	2.3.4 Revisiting Interactive Technologies

	3 From Engineering Interactive Systems to Designing Interaction
	3.1 Unifying Two Models for Describing and Programming Interaction
	3.2 Distributed Graphics and Interaction in Multi-Surface Environments
	3.2.1 The WILD Project
	3.2.2 Technical Issues of Distributed Graphics and Interaction
	3.2.3 Engineering in the WILD
	3.2.4 Going WILD-er

	3.3 Engineering Unleashes Interaction Design
	3.3.1 When Technology Defines Possible Designs
	3.3.2 When Technology Enables The Evaluation Of Designs
	3.3.3 When Technology Integrates Designs (Or Not)
	3.3.4 A Missing Link Between Interaction Design and Engineering

	4 Designeering Interaction
	4.1 The Cycle of Designeering Interaction
	4.2 Towards a Conceptual Framework
	4.2.1 Extension and Operationalization of The Framework

	4.3 Tools for Designeering Interaction
	4.3.1 System & Programming Languages
	4.3.2 Creative Prototyping: Sketching Interaction, not Interfaces
	4.3.3 Adaptability for End-Users

	Bibliography
	List of Figures
	Acronyms
	Appendices
	A Publications
	A.1 Full List of Publications
	Refereed International Journals and Magazines
	Refereed International Conferences
	Refereed Domestic Conferences
	Workshops
	Thesis
	Other Publications

	A.2 Selected Publications (2005–2012)
	Focus+Context Visualization Techniques for Displaying Large Lists with Multiple Points of Interest on Small Tactile Screens
	TapTap and MagStick: Improving One-Handed Target Acquisition on Small Touch-screens
	FlowStates: Prototypage d'applications interactives avec des flots de données et des machines à états
	TorusDesktop: Pointing via the Backdoor is Sometimes Shorter
	Rapid Development of User Interfaces on Cluster-Driven Wall Displays with jBricks
	Gliimpse: Animating from Markup Code to Rendered Documents and Vice Versa
	BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets
	Using Rhythmic Patterns as an Input Method
	A Body-centric Design Space for Multi-surface Interaction

	B Curriculum Vitae

